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Abstract: A new chemoselective reductive nitro-Mannich

cyclization reaction sequence of nitroalkyl-tethered lac-
tams has been developed. Relying on the rapid and che-

moselective iridium(I)-catalyzed reduction of lactams to
the corresponding enamine, subsequent nitro-Mannich
cyclization of tethered nitroalkyl functionality provides

direct access to important alkaloid natural-product-like
structures in yields up to 81 % and in diastereoselectivities

that are typically good to excellent. An in-depth under-
standing of the reaction mechanism has been gained
through NMR studies and characterization of reaction in-
termediates. The new methodology has been applied to

the total synthesis of (�)-epi-epiquinamide in four steps.

Reaction cascades are becoming mainstream in organic syn-
thesis, allowing the synthesis of advanced structures with

fewer purification steps, increased speed and efficiency.[1, 2] The
development of new cascade sequences can be either meth-
odology- or target-driven and in a few cases they can provide

the critical link from a late stage intermediate to the end-game
sequence in a total synthesis. To this end we recently reported

an unprecedented chemoselective reductive nitro-Mannich

cyclization of 1 proceeding via a putative iminium intermedi-
ate to form the B ring in manzamine A (2) (Scheme 1).[3, 4]

Recognising the synthetic potential of this novel annulation

strategy, we wanted to investigate whether an analogous re-
ductive nitro-Mannich cyclization of N-linked lactam substrates

of type 3 was feasible.[5–7] Such chemistry would allow direct
access to fused nitrogen-containing bicycles of type 5 via reac-

tive iminium ion intermediates 4 (Scheme 2).[8] These motifs

are abundant in nature, making up major classes of alkaloid

natural products which show important biological activity.[9, 10]

In addition, the presence of the versatile nitro group could be
exploited as a handle to access, for example, ketone[11] and

amine functionality. As such the new methodology would be
useful for natural product and library synthesis alike. Herein we

wish to report our findings.
Readily prepared caprolactam-derived substrate 3 a was se-

lected as a model system and initially subjected to the modi-
fied Buchwald conditions used in the synthesis of manza-

mine A.[12, 13] Pleasingly we were able to isolate the desired bi-
cycle 5 a albeit in only 17 % yield (Table 1, entry 1). A range of
typical hydridic reducing agents including DIBAL (diisobutylalu-
miniumhydride) and Schwartz reagent ([ZrCl(C5H5)2H]) were
screened. Unfortunately, in all cases poor yields and/or full re-

duction products were observed. However, inspired by the
work of Nagashima,[14] an attempted reduction of 3 a using

substoichiometric Vaska’s complex [IrCl(CO)(PPh3)2][15]

(2.5 mol %) and silane (TMDS or PMDS)[16] resulted in the desir-
able formation of 5 a in 23 and 36 % yield, respectively

(Table 1, entries 2 and 3). Quenching the reaction with 1 m HCl
allowed efficient removal of excess silane and its by-products.

Basification, extraction and purification afforded 5 a in im-
proved yield (Table 1, entry 4). With this promising method in
hand we attempted to lower the catalyst loading (Table 1, en-

tries 4–6). Pleasingly lowering to 0.1 % had little detrimental
impact on the yield; however, for practicality (in weighing out

the catalyst) we chose to use 0.5 mol % of Vaska’s complex. A
solvent screen (Table 1, entries 7–9) revealed that toluene was
indeed the best solvent. The concentration of the reaction was
an important parameter, with high dilution leading to an in-

Scheme 1. Reductive nitro-Mannich cascade in the total synthesis of manza-
mine A.[3]

Scheme 2. Proposed partial reductive nitro-Mannich cyclization concept.
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creased yield of 80 % (Table 1, entries 10 and 11). After optimi-

zation we demonstrated the reaction was scalable; using 2 g
of 3 a bicycle 5 a was formed in good yield and excellent dia-

stereoselectivity (Table 1, entry 12).[17]

NMR experiments were performed to identify the intermedi-

ates present at each stage of the reaction. Pure starting materi-

al is shown in Figure 1 spectrum A and starting material with
TMDS and mesitylene internal standard is shown in spec-

trum B. On addition of Vaska’s complex, rapid (5 mins) and
clean conversion to the enamine intermediate 7 was witnessed

(Figure 1, spectrum C). On addition of HCl, iminium ion 8 was
clearly observed (Figure 1, spectrum D) ; subsequently, and in

a separate reaction, iminium ion 8 was isolated and fully char-

acterized.[18] Upon basification with solid K2CO3 and extraction
the desired bicycle 5 a was formed (Figure 1, spectrum E).

Given the direct evidence for the presence of each inter-
mediate at their respective stages in the reaction we can pos-

tulate that the reaction proceeds by the mechanism shown in
Scheme 3. The iridium complex catalyses the partial reduction

of amide 3 a to the siloxy intermediate 9,[19] elimination and

subsequent loss of a proton reveals enamine 7. Only upon

acidic workup does the enamine reprotonate to give the
stable, water-soluble, iminium ion 8. Upon addition of solid po-

tassium carbonate, the resulting rise in pH to >10 facilitates
smooth cyclization of the putative nitronate 10 to form prod-

uct bicycle 5 a.

With optimized conditions in hand we proceeded to assess
the scope of the reaction (Figure 2). The size of the lactam ring

could be varied from five-membered up to eight-membered
with all substrates progressing in good to excellent d.r. (5 a–

5 d). The reaction also tolerated ether functionality as demon-
strated in the synthesis of oxazapane 5 e. The method could

be extended by lengthening the nitroalkane tether to access

seven-membered rings on ring closure as exemplified by 5 f
and 5 g. Shortening the nitroalkane tether was also possible,

with bicycles 5 h and 5 i being formed in good yield albeit
with a reduction in diastereoselectivity.

Substrates possessing an arene group in the nitroalkane
tether also cyclized to their respective tricyclic products (5 j–5 l)
in good to excellent yields (52–81 %) and diastereoselectivities
up to 98:2 (Figure 3).

Application of the methodology to the synthesis of (�)-epi-
epiquinamide[20] was demonstrated from bicycle 5 c. Following
the key reductive nitro-Mannich cyclization step, Raney nickel

reduction and concommitant acetylation of bicycle 5 c allowed
the synthesis of natural product (�)-epi-epiquinamide[20] in four

steps from valerolactam and dibromobutane starting materials

(Scheme 4).[18] The synthesis of (�)-epi-epiquinamide confirmed
the relative stereochemistry of 5 c as (R*,S*) by comparison

with literature data.[20] Compounds 5 f and 5 g (formed by
a seven-membered ring cyclization) were also assigned as

(R*,S*) by NOE spectroscopy data from compound 5 f. All other
compounds were assigned as (R*,S*) by analogy to 5 c and 5 f.

Table 1. Optimization results.

Entry[a] T Solvent Conc.
[m]

Catalyst Cat. loading
[mol %]

Silane Silane
[equiv]

Work
up

Yield[b]

[%]
d.r.[c]

1[d] RT toluene 0.05 [Ti(OiPr4)] 210 TMDS 2.1 silica gel[e] 17 98:2
2 RT toluene 0.05 [IrCl(CO)(PPh3)2] 2.5 TMDS 2.0 silica gel[e] 23 97:3
3 RT toluene 0.05 [IrCl(CO)(PPh3)2] 2.5 PMDS 2.0 silica gel[e] 36 88:12
4 RT toluene 0.05 [IrCl(CO)(PPh3)2] 2.5 TMDS 2.0 HCl[f] 53 88:12
5 RT toluene 0.05 [IrCl(CO)(PPh3)2] 0.5 TMDS 2.0 HCl[f] 68 89:11
6 RT toluene 0.05 [IrCl(CO)(PPh3)2] 0.1 TMDS 2.0 HCl[f] 55 91:9
7 RT hexane 0.05 [IrCl(CO)(PPh3)2] 0.5 TMDS 2.0 HCl[f] 53 91:9
8 RT THF 0.05 [IrCl(CO)(PPh3)2] 0.5 TMDS 2.0 HCl[f] 50 86:14
9 RT CH2Cl2 0.05 [IrCl(CO)(PPh3)2] 0.5 TMDS 2.0 HCl[f] 48 88:12

10 RT toluene 0.25 [IrCl(CO)(PPh3)2] 0.5 TMDS 2.0 HCl[f] 54 91:9
11 RT toluene 0.01 [IrCl(CO)(PPh3)2] 0.5 TMDS 2.0 HCl[f] 80 88:12
12[g] RT toluene 0.01 [IrCl(CO)(PPh3)2] 0.5 TMDS 2.0 HCl[f] 71 98:2

[a] All reactions carried out on 0.10 g of 3 a unless otherwise started, the major by-product was the corresponding fully reduced lactam (1-(4-nitrobutyl)aze-
pane). [b] Isolated yield after purification. [c] d.r. measured by NMR spectroscopy of the isolated products. [d] Reaction time 28 h. [e] Reaction mixture was
concentrated in vacuo and injected directly onto a silica gel column for chromatography. [f] Reaction was extracted with HCl (1 m), basified (K2CO3) and ex-
tracted into ether. [g] Reaction performed on 2 g of 3 a.

Scheme 3. Postulated reaction mechanism.
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In conclusion, we have developed a novel chemoselective
reductive cyclization. The process is unprecedented, fast, effi-

cient and stereoselective and provides heterocyclic com-
pounds with cores that are abundant in nature and make up

classes of alkaloids that show potent biological activity. We
have gained a thorough understanding of the reaction mecha-

Figure 1. 1H NMR spectra of starting material, intermediates and the desired product at selected stages of the reaction. Spectra A, B, and C were measured in
[D8]toluene. Spectrum D was obtained in D2O and spectrum E was measured in CDCl3.

Figure 2. Reaction scope (aliphatic tether).

Figure 3. Reaction scope (aryl-linked tether).

Scheme 4. Total synthesis of (�)-epi-epiquinamide.
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nism through NMR studies and have applied the new method-
ology to the total synthesis of (�)-epi-epiquinamide in four

steps. We are currently developing an asymmetric variant of
this reaction and expanding the concept of the reductive cycli-

zation to include a range of new substrates, all of which will
be disclosed in due course.

Experimental Section

TMDS (2.0 equiv) and [IrCl(CO)(PPh3)2] (0.005 equiv) were added to
a stirred solution of nitro-lactam 3 (1.0 equiv) in toluene (0.01 m)
under an inert atmosphere at room temperature. The resulting so-
lution was stirred for 10 mins until complete conversion of the
starting material was observed (TLC), and then quenched with 1 m
HCl (12 mL mmol¢1 3). The aqueous layer was separated and the
organic layer was extracted (1 m HCl, 3 Õ 12 mL mmol¢1 3). The
combined aqueous extracts were washed (Et2O, 3 Õ 6 mL mmol¢1 3)
and basified to pH>10 (K2CO3). The aqueous layer was then ex-
tracted (Et2O, 3 Õ 6 mL mmol¢1 3), and the organic phases com-
bined, dried (MgSO4), filtered and concentrated in vacuo. The resi-
due was purified by FCC to yield the desired compound 5.
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