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NeuroMem: Analog Graphene-
Based Resistive Memory for 
Artificial Neural Networks
Heba Abunahla1, Yasmin Halawani1, Anas Alazzam2 ✉ & Baker Mohammad1 ✉

Artificial Intelligence (AI) at the edge has become a hot subject of the recent technology-minded 
publications. The challenges related to IoT nodes gave rise to research on efficient hardware-based 
accelerators. In this context, analog memristor devices are crucial elements to efficiently perform the 
multiply-and-add (MAD) operations found in many AI algorithms. This is due to the ability of memristor 
devices to perform in-memory-computing (IMC) in a way that mimics the synapses in human brain. 
Here, we present a novel planar analog memristor, namely NeuroMem, that includes a partially reduced 
Graphene Oxide (prGO) thin film. The analog and non-volatile resistance switching of NeuroMem 
enable tuning it to any value within the RON and ROFF range. These two features make NeuroMem a 
potential candidate for emerging IMC applications such as inference engine for AI systems. Moreover, 
the prGO thin film of the memristor is patterned on a flexible substrate of Cyclic Olefin Copolymer 
(COC) using standard microfabrication techniques. This provides new opportunities for simple, flexible, 
and cost-effective fabrication of solution-based Graphene-based memristors. In addition to providing 
detailed electrical characterization of the device, a crossbar of the technology has been fabricated 
to demonstrate its ability to implement IMC for MAD operations targeting fully connected layer of 
Artificial Neural Network. This work is the first to report on the great potential of this technology for AI 
inference application especially for edge devices.

Memristor device (MR), a resistor with a memory, is an emerging resistive random access memory (RRAM) type 
technology that plays a great role beyond Complementary Metal Oxide Semiconductor (CMOS)-based platforms 
with extendable performance. MR was firstly postulated by Leon Chua in 19711. Although many researches have 
been carried out related memristive switching phenomena2, the first link to Chua’s theory was done by HP labs 
in 20083. After this, the MR research started to gain an increasing attention, especially in device fabrication and 
optimization. One of the key features of MR device is its ability to work as an analog memory that mimics the syn-
apse behavior in the brain and consequently achieve a bio-inspired system. MR devices can be fabricated with a 
synaptic density greater than that of human brain tissue4,5. Neuromorphic systems based on such circuits produce 
high density and extreme low-power hardware designs that are capable of performing many MAD operations in 
parallel in the analog domain6–8. Thus, efficient mapping of neural network algorithms can be translated to MR 
operations to achieve MR-based deep system9.

From this perspective, numerous recent works report on multi-state MR devices, as the gradual change in 
resistivity emulates the synapse plasticity change in the brain10–16. Many metal oxides (e.g. CuO, TiO2, HfO2, ZnO) 
are used as the switching medium in the MR devices, where the conducting filaments are created via the migra-
tion of the oxygen vacancies and/or the electrodes metal ions17–21. Few researchers are investigating the use of 
Graphene or Graphene Oxide (GO) as electrodes or switching material in MR; targeting neuromorphic behavior, 
due to the outstanding features of Graphene in terms of flexibility, low cost, adaptability, and being environmen-
tally friendly22–27. It has been shown that deploying Graphene as electrodes in MR can increase the conductivity 
and therefore improve the performance of the device. Additionally, synthesizing MR with GO as switching mate-
rial can assist the analog switching behavior which is considered an asset for neuromorphic applications.

To the best of our knowledge, this work is the first to report on a one directional planar flexible prGO-based 
MR, named NeuroMem, with analog switching behavior22–26. Being a one directional device, NeuroMem emulates 
the memorization behavior of humans, which is irreversible once new information is added. Forgetting informa-
tion, after a certain duration, which is the natural action of the human brain can be mapped to the retention time 
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of the MR. Moreover, the device exhibits an extremely analog behavior by demonstrating a continuous change 
in the device resistance depending on the applied voltage, compared to only six distinct states reported in the 
literature of Graphene-based memristors22. Furthermore, the prGO thin films in NeuroMem are fabricated from 
an aqueous solution of GO over a polymer flexible substrate by using standard microfabrication processes. This 
makes the process simple, cost effective, and suitable for mass production of the device. It also enables the fabri-
cation of low-cost disposable flexible electronics. It is worth mentioning that NeuroMem is fabricated using low 
temperature process (below 70 °C) which enables compatibility with CMOS backend process for heterogeneous 
integration28. The planar nature of NeuroMem enables using multi-layer of the same technology. Moreover, it is 
considered a great asset for sensing applications as it provides more interaction volume29. Also, the planar struc-
ture is gaining great interest in the field of adaptable communication systems, for which the planar MR can be 
integrated easily to provide tunable feature to the associated communication component30. Furthermore, planar 
devices require less fabrication steps, especially if both electrodes are of the same material, which leads to lower 
cost and faster fabrication process. In this article, we have successfully utilized the analog behavior of NeuroMem 
device to fabricate MR crossbars to perform the computation needed by the inference engine in AI applications.

As shown in Fig. 1(a), NeuroMem consists of one pair of first and second Au electrodes separated by a gap con-
taining a thin film of prGO. The prGO film and metal electrodes rest on a COC substrate (Fig. 1(b)). Operating 
the device on a flexible substrate enables its integration in flexible electronics technology that allows building 
electronic circuits on flexible polymer substrates that can be bendable and/or stretchable. Flexible electronics 
have many applications including flexible sensors, flexible batteries, and flexible memory, which all are essential 
elements for wearable devices31. Thus, the flexible substrate of NeuroMem extends its potential to be integrated 
in smart wearable devices, where the flexible memory and Artificial Intelligence (AI) elements play vital role for 
such technology. The scanning electron microphotograph presented in Fig. 1(c) shows the morphology of the 
deposited prGO film at high magnification. The present work details the NeuroMem electrical characterization 
with a plausible elucidation of the switching phenomena associated with the device. Also, it presents the deploy-
ment of NeuroMem fabricated crossbars in artificial neural network (ANN) inference application. In addition, 
this article details the fabrication method of NeuroMem device.

Results
NeuroMem electrical characteristics.  The data provided in Fig. 2 is used to show the non-volatility of 
NeuroMem with unipolar switching behavior. NeuroMem devices are characterized using Keithley 4200 SCS 
Parameter Analyzer (see Fig. 2(a)). Sweep mode is used to obtain Current-Voltage (I-V) characteristics for iden-
tical devices.

Fresh NeuroMem device is tested by consecutively applying positive, negative and then positive voltage 
sweeps. As shown in Fig. 2(b). The application of Sweep 1 puts the device in the OFF state. Under the application 
of Sweep 2 and 3, it is clear that the device holds the last written state and the initial ON state cannot be retrieved. 
This switching behavior mimics the memorization process of the brain as humans generally cannot unlearn infor-
mation; however, it can be forgotten after a certain time. In MR devices this time can be compared to the retention 
time of the device. To confirm the unipolar switching behavior of NeuroMem, two fresh devices are characterized 
by applying +6.5 V and −6.5 V voltage sweeps, respectively. As presented in Fig. 2(c,d), NeuroMem preserves its 
behavior regardless of the applied polarity, rather it depends on the synergistic effect of the device current and 
the applied voltage.

For NeuroMem, it is observed that the switching voltage reduces with a smaller gap size. This is confirmed by 
testing devices with different gaps (20 µm, 60 µm, and 80 µm) fabricated on the same wafer. As shown in Fig. 3, 
10 identical devices are tested for each gap length to confirm the uniformity of the deposited prGO film and 

Figure 1.  NeuroMem structure: (a) Device schematic to show the planar Au/prGO/Au structure (Drawing 
Software: Microsoft Powerpoint 2016). (b) A macrograph of the fabricated NeuroMem devices on COC 
substrate. (c) Scanning electron microphotograph of the deposited prGO layer, top view, under secondary 
electron mode (accelerating voltage, 5 kV; magnification, 24 000 ×; working distance, 10 mm).
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the reproducibility of the electrical characteristic of NueroMem. It can be observed that the switching voltage 
decreases when the gap decreases from 80 µm to 20 µm. This can be explained through the Joule heating taking 
place and contributing to the switching mechanism of the device. To elaborate more, the devices with shorter 
gap has lower resistance and consequently higher initial current. Thus, the power of heating needed to switch the 
device can be achieved at lower voltage.

When talking about MR devices switching, two terminologies can be distinguished; (i) the switching behavior 
and (ii) the switching mechanism. Switching behavior is related to the polarity of the applied voltage and how it 
does affect the state changing in memristors. Two switching behaviors can be observed in memristor devices; the 
bipolar and unipolar switching. In bipolar, the switching from OFF to ON, or reve rsely depends on the polarity 

Figure 2.  The data provided here is used to show the non-volatility of NeuroMem with the unipolar switching 
behavior. (a) A schematic to show the testing setup of NeuroMem. A chart illustrating the measured current 
across NeuroMem fresh devices with gap of 50 µm (Drawing Software: Microsoft Powerpoint 2016) (b) under 
the application of three consecutive voltage sweeps, (c) under the application of + 6 V voltage sweep, (d) under 
the application of − 6 V voltage sweep.

0.E+00

5.E-03

1.E-02

2.E-02

2.E-02

3.E-02

3.E-02

4.E-02

4.E-02

0 1 2 3 4 5

)
A( tnerruC

Voltage (V)

20 um

60 um

80 um

Figure 3.  Chart illustrating the measured current across NeuroMem devices fabricated with gap of 20 µm, 
60 µm, and 80 µm under the application of + 5 V voltage sweep. For each width gap, the illustrated data 
represents the average result obtained from 10 identical devices, with error bars for the measured current 
variation.
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of the voltage applied, while it relies on the voltage magnitude in unipolar devices. Based on that, NeuroMem can 
be considered as unipolar memristor as it can have similar I-V characteristics in both voltage polarities. As for 
the switching mechanisms, the most common mechanisms associated to memristor devices are (i) the valence 
change memory (VCM)32 and (ii) the electrochemical metallization (ECM)33 memory. These mechanisms depend 
on creating the conducting filaments through the migration of oxygen vacancies or the metal ions. This can 
be achieved by applying high electric field which in most of the available structures is achieved by fabricating 
nano-thick devices. In some cases, a thermochemical process is also provided in addition to VCM and ECM 
to explain the stoichiometric changes taking place in the switching layer, as a result of current-related thermal 
effects21,34–36.

Here we give an insight into the possible switching phenomena associated with NeuroMem devices. As 
depicted in Fig. 4(a) (Stage 1), the active layer (prGO) is supposed to contain oxygen vacancies distributed 
among the deposited film. Following the results obtained in Figs. 2 and 3, the clockwise I-V loops recorded with 
NeuroMem gradually decline towards lower current values, which indicates a progressive buildup of internal 
resistance. Observing the device behavior when the applied voltage is less than the threshold voltage Vth (Vth 
depends on the gap width), a slight decrease in the resistance can be observed. This is represented in Fig. 4(a) 
(Stage 2), which is in agreement with the results reported in literature37. Ekis et al. proved that, in ambient atmos-
phere, partially reduced Graphene Oxide can be oxidized and reduced with positive and negative charge, respec-
tively. The same authors reported that oxidation rate is smaller than reduction rate at similar magnitude bias, 
which explains the mild decrease in NeuroMem resistance when the applied voltage is less than Vth. Upon increas-
ing the voltage (i.e. V > Vth), NeuroMem resistance starts to rise. A plausible explanation for this is the antifuse 
mechanism relying on the Joule heating effect34. According to this view, RESET operation occurs by heat-induced 
solid phase dissolution of oxygen species at very high current densities. Therefore, on the incident of writing a 
higher resistance state during a certain sweep, lowering the level of the current passing through the device, a 
higher threshold voltage is required in the following sweep to achieve the power of heating needed to perform 
the oxidation process. Therefore, NeuroMem resistance can be further increased and a new state is added into the 
device. To confirm the Joule heating effect in NeuroMem, the I-V characteristics is measured for a fresh device 
under vacuum (i.e. pressure = 5 × 10−5 Pa). As shown in Fig. 4(b), the device preserves its switching behavior 
which proves that Joule heating is the dominant force responsible of the switching taking place in NeuroMem 
devices.

NeuroMem analog switching characteristics.  To explore the analog behavior of the fabricated 
NeuroMem, a fresh device is characterized using consecutive voltage levels starting from 3 V, with an increment 
of 0.5 V in each sweep. The test is stopped once the device reaches the full OFF state. As shown in Fig. 5(a), a new 
state is written on the device when a new sweep with a higher voltage amplitude is applied. For each voltage the 

Figure 4.  Switching Mechanism of NeuroMem. (a) Schematic representation of the switching phenomenon 
occurring in NeuroMem; (stage 1) pristine stage, (stage 2) after applying voltage of magnitude: Voltage Bias 
< Vth, (stage 3) after applying consecutive voltage sweeps of increasing magnitude: Voltage Bias > Vth. 
Dimensions are for illustration purposes. (b) A chart illustrating the measured I-V across NeuroMem fresh 
device with gap of 20 µm under vacuum (i.e. pressure = 5 × 10-5 Pa).

https://doi.org/10.1038/s41598-020-66413-y


5Scientific Reports |         (2020) 10:9473  | https://doi.org/10.1038/s41598-020-66413-y

www.nature.com/scientificreportswww.nature.com/scientificreports/

device has a maximum state drift that can be achieved. In such situation, the written state cannot be erased unless 
we apply a voltage sweep higher than the previous one.

To investigate the possibility of increasing the number of states generated in NeuroMem, a new device is char-
acterized by applying successive voltage sweeps with an increment of 0.25 V in each sweep. Figure 5(b) shows that 
twenty-one distinct resistance states can be achieved by NeuroMem, compared to only six distinct states reported 
in the literature of Graphene-based memristors22. This can be further enhanced by tuning the voltage increment 
in each sweep. As it is presented in the following section, NeuroMem exhibits the ability to be tuned to any value, 
by careful optimization of the voltage pulse, within its RON and ROFF range, which confirms the analog switching 
property of the device. As NeuroMem is one directional device, its endurance can be associated to its switching 
property. This means that the device can keep switching to new state as long as sufficient voltage is applied and the 
full OFF state (the maximum resistance the device can have) is not reached.

NeuroMem potential application.  The analog behavior exhibited by the fabricated NeuroMem makes 
it suitable for non-volatile multi-level cell (MLC) memories where higher density can be achieved compared to 
Flash, which is considered the best existing technology in the current market36,38. Furthermore, NeuroMem has 
much lower writing voltage when compared to 16 V needed for Flash cell39. The analog feature of NeuroMem, 
with the ability to mimic the memorization behavior of human brain, can be used to build artificial neural 
networks for neuromorphic computation which is important building block to enable AI40. The possibility of 

Figure 5.  I-V traces and DC response of NeuroMem devices under the application of: (a) 12 voltage sweeps 
across fresh NeuroMem device, with a voltage step of 0.5 V. (b) 21 voltage sweeps across fresh NeuroMem 
device, with a voltage step of 0.25 V. (c) consecutive increasing writing voltage pulses from 3 V to 6 V with step 
of 0.5 V, gap of 50 µm (d) consecutive increasing writing voltage pulses from 2.5 V to 5.9 V with step of 0.2 V and 
1 V reading pulses, the width of the writing and reading pulses is 10 s and 1 s, respectively, device gap is 50 µm 
(e) consecutive writing voltage pulses of 4 V and 1.5 V reading pulses, the width of the writing and reading 
pulses is 0.5 s and 0.2 s, respectively, device gap is 50 µm (f) consecutive writing voltage pulses of 4 V and 1.5 V 
reading pulses, the width of the writing and reading pulses is 0.5 s and 0.2 s, respectively, device gap is 80 µm.
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simulating the computation stages of the Convolutional Neural Network (CNN) deep learning approach through 
MR crossbars was investigated in41 and42. Although CNN structure was postulated by Fukushima in 198043, it was 
difficult to be implemented due to its complicated training algorithms. This was overcome by the simplified algo-
rithm proposed by LeCun et al. in the 1990s44. CNN structure consists mainly of the training (learning) stage and 
the inference (classification) stage45. The features extraction in CNN is performed by the convoltution layes and is 
considered the most computing intensive step. During the training stage, the weights of the CNN are calculated 
and the final values are used for the classification phase.

In this context, the non-volatility and highly analog behavior demonstrated by NeuroMem enable the device 
to act as an electronic synapse in CNN45–48. To eleborate, once the neural network is trained, NeuroMem cross-
bar can hold the synaptic weights in the clasification (inference) stage and perform dot-product operations. 
Depending on the target application, suitable mapping (conversion) algorithm is used to relate the final weights 
calculated during trainig stage to NeuroMem conductance range. As shown in Fig. 5(c–f), the width and ampli-
tude of the applied voltage pulses control the number and the level of the conductances acheived in NeuroMem. 
The demonstration of utilizing NeuroMem crossbars for fully connected neural network to achieve classification 
of three-types of classes is detailed in the following section.

Artificial Neural Network (ANN): Case Study. In order to demonstrate the potential of the NeuroMem 
device specially its analog memory characteristics which is important for many application, a NeuroMem-based 
ANN has been fabricated (shown in Fig. 6) and tested using Iris dataset49. The ANN consists of four input neu-
rons, three hidden neurons and three output neurons as illustrated in Fig. 7 and used to c lassify the iris flower 
(Fig. 8(a)) based on its petal and sepal length and width into either Setosa, Versicolour, or Virginica classes. The 
main operation in any ANN heavily relies on the vector matrix multiplication (VMM) between the inputs and 
the network weights as in Eq. (1), which causes a bottleneck specially for resource-constrained edge computing 
devices. Such operations can be accelerated by utilizing the MR-based in-memory computing paradigm, where 
computations and storage are performed in the same memory cell50. The fabricated ANN consists of two layers: 
the first one produces intermediate results by multiplying and adding the input values with the hidden weights. 
The other layer is between the intermediate outputs that act as inputs to the output neurons.
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ANN training is performed offline using MATLAB R2017a. Once the classification accuracy reached 96.67%, 
the training phase stops. After that, the fixed weights are mapped into MR conductance values, using the algo-
rithm reported in51, that are within the RON and ROFF range of NeuroMem. As NeuroMem has analog memory 
characteristics, the mapped conductance values are written to NeuroMem crossbars to perform the inference 

Figure 6.  A macrograph of the fabricated NeuroMem-based ANN: (a) before, and (b) after cutting and 
conneting the crossbar to the electrical board. Figure inset shows the structure of one planar NeuroMem device 
pointed to one example location on the crossbar (Drawing Software: Microsoft Powerpoint 2016).
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phase for Iris classification. The input, which is basically the sepal and petal length and width, is converted into 
normalized voltage amplitude to the terminals of the crossbar. Moreover, in order to mitigate the sneak path 
occuring through computation, a virtual ground must be connected to each bitline50.

ANN weights can have both positive and negative polarities. Negative representation of any arbitrary value of 
conductance is a challenge. One of the solutions proposed in the literature is to shift all weights by the minimum 
value as in52. The minimum and maximum resistance range exhibited by NeuroMem and used in the mapping 
algorithm is 110–900 Ω. At the end of the VMM operation, all the output results are shifted back by the following 
operation:
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To get the same output results as in Eq. (1), the contribution of wmin is removed by

Figure 7.  Graph representation of the perceptron with four input nodes, three hidden neurons, and three 
output classes. Not shown in the figure is the bias which has a value of 1 as an input and a weight connected to 
each hidden and output node.

Figure 8.  ANN architecture for Iris flower classification where (a) is the iris input that consists of the sepal and 
petal length and width in cm, (b,c) show the first and second layers of fabricated MR crossbars to accelerate the 
VMM of the classification task during inference phase. (HN represents the hidden neurons and ON represents 
the output neuron.).
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where OUTi is the output calculated from multiplying and adding the inputs by the weights. The biases are repre-
sented by −w w13 15 and multiplied by 1.

In MR crossbar hardware implementation presented in Fig. 8(b,c), this operation can be translated into adding 
a fourth column of MR devices to hold the minimum weight value, hence a 5 × 4 and a 4 × 4 crossbar sizes are 
fabricated. Then each output is subtracted from the fourth column and after that it is passed through the acti-
vation function ReLU. The output results serve as input to the output layer, as illustrated in Fig. 8(c). Moreover, 
other VMM operations take place, then the results are shifted back and passed through the sigmoid function to 
produce the final output which is the class of the input sample. The classification accuracy with the ideal mapped 
conductance values is 96.67%, compared to 93.33% achieved using the fabricated NeuroMem-based ANN. To 
further confirm the high retention of NeuroMem, the resistance states of the devices fabricated in the two cross-
bars used to demonstrate the inference application were measured two months after writing the weights values on 
them. The devices showed to hold and remember the last states written to them.

A critical parameter in analog computation is the accuracy of analog tuning of the MR conductance value. 
Tables 1 and 2 demonstrate the absolute percentage of the deviation of the physical programmed conductance 
from the ideal shifted weight value obtained from MATLAB. For example, 0% in Table 1 HN1(1) means we were 
able to write the ideal value in conductance with very high accuracy. While a 9% as in Table 2 Constant Term(1), 
indicates a +/- deviation from the true value. It was observed that classification accuracy is more sensitive to pro-
gramming errors in high conductance values since they allow higher currents to contribute to the multiply and 
add output results per neuron (column). It is worth mentioning that the conductance writing errors shown in the 
tables can be further reduced by careful optimization and tuning of the writing voltage pulses used to change the 
conductivity of the NeuroMem devices.

Conclusion
In conclusion, this work presented novel planar MR device, NeuroMem, that consists of Au/prGO/Au. 
NeuroMem exhibited unique behavior with over twenty different resistance states being generated with the appli-
cation of consecutive voltage sweeps. After each new writing process, NeuroMem preserved its last state and 
required a higher voltage amplitude to move to the next level. The use of symmetrical electrodes aided the unipo-
lar switching behavior of the device. Thus, operating NeuroMem did not depend on the voltage polarity, instead, 
the writing operation depended on the applied voltage magnitude and its previous state. Moreover, the prGO 
layer deposited between the metal electrodes exceled the analog switching characteristic of NeuroMem with its 
irreversibility feature. In this work, NeuroMem-based crossbars were fabricated and shown to act as electronic 
synapse in ANN. The devices were successfully utilized to perform inference (classification) in fully connected 
network. NeuroMem is considered a progressive step towards the deployment of flexible electronics in AI systems 
to perform efficient computing especially at the edge devices53. The main aim of this work is to report on a novel 
analog RRAM device that can be utilized to perform inference for AI applications. After this concept has been 
proved and demonstrated, the next step is to scale and optimize the device/crossbar dimensions to be compatible 
with real world application. This can be achieved by diminishing the device geometry. Moreover, the stacked 
structure can be investigated and utilized if more efficient area can be achieved.

HN1 HN2 HN3 Constant Term

0% 0% 9% 1%

6% 1% 5% 0%

2% 8% 1% 8%

13% 1% 0% 2%

5% 5% 6% 3%

Table 1.  Hidden Layer (HN) (Fig. 8b) Error Matrix showing the Absolute Deviation of the Physical 
Programmed Conductance Values and the Ideal Mapped Neural Network Values per Device.

ON1 ON2 ON3 Constant Term

10% 3% 2% 9%

11% 1% 5% 4%

0% 1% 0% 2%

0% 7% 1% 3%

Table 2.  Output Layer (ON) (Fig. 8c) Error Matrix showing the Absolute Deviation of the Physical 
Programmed Conductance Values and the Ideal Mapped Neural Network Values per Device.

https://doi.org/10.1038/s41598-020-66413-y


9Scientific Reports |         (2020) 10:9473  | https://doi.org/10.1038/s41598-020-66413-y

www.nature.com/scientificreportswww.nature.com/scientificreports/

Experimental Section
NueroMem is fabricated on COC substrate using standard microfabrication techniques. The process layout of the 
fabrication process is shown in Fig. 9. A clean COC wafer is sonicated in Isopropanol and distilled water baths, 
dehydrated using compressed Nitrogen, baked, and then a thin layer of gold is deposited and patterned by wet 
chemical etching technique (steps 1–4). To achieve this, a sputter is used to initially depositing the gold film on 
the COC wafer and then a thin layer of 1813 positive photoresist is deposited on top of the gold film using a spin 
coater. The photoresist layer is patterned using a photolithography system (Dilase KLOE 650) and then developed 
using a proper developer (steps 2 and 3). The exposed gold film is then etched away using gold etchant leaving the 
gold regions of the film that are masked by the photoresist layer (step 4). Then, the photoresist layer is stripped-off 
using acetone. After that, a layer of GO is deposited and patterned on top of the gold film using plasma-enhanced 
liftoff approach54. A photoresist layer is initially patterned on top of the gold patterned layer (step 5), the substrate 
is then treated with plasma and a thin film of GO is deposited using a spin coater (step 6). The substrate is then 
baked on a hot plate (step 7), and then the photoresist layer is removed using liftoff process. The final step in the 
fabrication process is the reduction of the patterned GO f ilm into prGO. This is achieved chemically by immers-
ing the COC substrate in Hydroiodic acid (step 8). The fabricated NeuroMem devices are schematically shown 
in step 9 of Fig. 9.
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