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Helena Štorchová2

1 Institute of Botany, The Czech Academy of Sciences, Průhonice, Czech Republic, 2 Institute of

Experimental Botany, The Czech Academy of Sciences, Praha, Czech Republic

* martina.janouskova@ibot.cas.cz

Abstract

Inoculation with arbuscular mycorrhizal fungi (AMF) may improve plant performance at dis-

turbed sites, but inoculation may also suppress root colonization by native AMF and

decrease the diversity of the root-colonizing AMF community. This has been shown for the

roots of directly inoculated plants, but little is known about the stability of inoculation effects,

and to which degree the inoculant and the inoculation-induced changes in AMF community

composition spread into newly emerging seedlings that were not in direct contact with the

introduced propagules. We addressed this topic in a greenhouse experiment based on the

soil and native AMF community of a post-mining site. Plants were cultivated in compart-

mented pots with substrate containing the native AMF community, where AMF extraradical

mycelium radiating from directly inoculated plants was allowed to inoculate neighboring

plants. The abundances of the inoculated isolate and of native AMF taxa were monitored in

the roots of the directly inoculated plants and the neighboring plants by quantitative real-

time PCR. As expected, inoculation suppressed root colonization of the directly inoculated

plants by other AMF taxa of the native AMF community and also by native genotypes of the

same species as used for inoculation. In the neighboring plants, high abundance of the inoc-

ulant and the suppression of native AMF were maintained. Thus, we demonstrate that inoc-

ulation effects on native AMF propagate into plants that were not in direct contact with the

introduced inoculum, and are therefore likely to persist at the site of inoculation.

Introduction

By forming symbiotic association with the majority of terrestrial plants, arbuscular mycor-

rhizal fungi (AMF) significantly contribute to plant productivity in most ecosystems. They

supply their host plants with hardly accessible nutrients, especially with phosphorus, and

receive, in return, photosynthetically fixed carbon. In natural conditions, roots of one plant

usually become colonized by many AMF species, and the plant’s benefits from the symbiosis

depend not only on abiotic factors such as soil fertility [1], but also on the infectivity, diversity
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and composition of the root-colonizing AMF community. For example, AMF communities of

high species diversity enhance plant growth more than those of low species diversity [2]. Also,

locally adapted AMF communities may be more efficient in providing plant benefits than

non-adapted AMF [3–5].

Infectivity and diversity of AMF communities is often reduced in disturbed habitats such as

agroecosystems or post-mining sites [6–9]. Adding AMF propagules into soils or pre-inocula-

tion of planted seedlings with AMF has been therefore recommended as a technology to sup-

port plant establishment and growth at these sites [10–12]. It is assumed that inoculation

effects may be either positive, if the native AMF community is not sufficiently abundant or

diverse to provide the maximal mycorrhizal benefits, or negligible, if the native AMF commu-

nity is sufficient. This assumption, however, disregards potential negative side effects of inocu-

lation due to the inoculants’ interactions with native AMF communities.

Inoculation mostly introduces AMF genotypes that are not present at the site of inocula-

tion, and sometimes even originate from different ecosystems or geographical regions [13].

Naturalization and spread of introduced organisms is an important topic of current biology as

it may negatively affect biodiversity and ecosystem functioning [14]. Such concerns were also

expressed in relation to AMF inoculations, but remain largely hypothetic due to our insuffi-

cient knowledge on AMF biogeography, population and community ecology [15]. Inoculation

may substantially decrease the diversity of the root-colonizing AMF community by suppress-

ing root colonization by native AMF [10, 16–19]. This suggests low resistance of native AMF

communities against the biotic disturbance by introduction of new AMF genotypes. However,

only little information is available about inoculation effects exceeding the immediate impact of

propagule additions. Inoculated AMF were shown to persist in the roots of the inoculated

plants two years post inoculation [10, 20–21]. We ignore, however, whether they are able to

spread into root systems of newly emerging seedlings that were not in direct contact with the

introduced propagules. Furthermore, we know very little about the resilience of AMF commu-

nities following inoculation-induced changes. Effects of inoculation on AMF abundances may

disappear within the life cycle of a plant [22], which indicates that inoculation-induced

changes in AMF diversity or community composition may be only transient, consistently with

the suggestion that plants may actively promote the diversity of their symbionts [23]. On the

other hand, AMF community richness may remain severely reduced throughout the whole

vegetation season, and only partly restore even two years post inoculation [10]. Further time-

course studies and studies employing quantitative molecular tools are therefore needed to

describe the abundance dynamics of inoculated isolates and dynamics of AMF communities

post inoculation.

Assessing the establishment of inoculants and effects on native AMF is also complicated by

considerable genetic and functional diversity encountered within AMF species [24–27]. Inocu-

lation is usually performed with wide-spread species of Glomeraceae family such as Rhizopha-
gus irregularis or Funneliformis mosseae [13], which are regularly present at the target sites.

Inoculation then introduces new intraspecific genotypes that can possess different traits than

the conspecific natives. Species-level markers document abundance of the inoculated species

[28], but do not provide information about the proportion of the inoculated and native geno-

types. This information, however, is essential for a complete picture of inoculation effects.

In order to gain deeper insight into possible longer-term effects of inoculation into soils

containing native AMF, we designed a greenhouse experiment addressing two questions: i) Is

an inoculant able to spread into root systems of neighboring plants that were not in direct con-

tact with the originally added inoculum? ii) How does inoculation affect the abundances of

native AMF in the roots of the directly inoculated plants and their neighbors? The experiment

was based on soil from a post-mining site and its native AMF community, i.e. on a typical
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target system for inoculations. It encompassed two host plants belonging to different func-

tional groups in order to assess the role of host-specific factors, and two modes of inoculation

—pre-inoculation of seedlings and inoculation in-situ by placing the inoculant’s propagules

into soil. In addition to evaluating the AMF communities in roots, we measured the biomass

of the experimental plants in order to evaluate possible changes in the plant-growth promoting

effects of the AMF communities. We expected that immediate inoculation effects would be

more pronounced after pre-inoculation due to priority effects [29–30] and hypothesized that

the inoculant would spread into adjacent root systems, but its abundance and the impact on

native AMF would decrease in comparison with the directly inoculated root systems.

Materials and methods

Experimental system

The experiment was based on the soil-fungi system of the coal mine spoil bank Merkur near

Chomutov, North Bohemia, Czech Republic. The site was selected as a representative of a sys-

tem where inoculation with AMF has been tested within the reclamation process [20, 31]. The

site does not belong to any protected area nor was the study concerned with protected species.

Access to the site and substrate collection were permitted by Severočeské doly a.s. company

responsible for the reclamation of the state-owned land. Grey Miocene Clay forming the sur-

face of the spoil bank was collected from an about 10-year-old site after removal of ruderal veg-

etation, and homogenized with sand in the ratio of 4:1 (v:v). The chemical parameters of the

collected clay substrate were described by [31], the mixture with sand had the following main

parameters: pH(H2O) 7.5, Corg 1.15%, N 0.06%, Olsen-P (0.5 M NaHCO3 extractable) 2.93 mg

kg-1.

Inoculation was performed with an isolate of Rhizophagus irregularis (Błaszk, Wubet,

Renker & Buscot) C. Walker & Schuessler (2010) termed ‘Chomutov’. This isolate originated

from a different part of the spoil bank than the substrate used for the experimental cultivation,

and had been kept in culture for about three years prior to the establishment of the experiment.

It was selected, because it could be distinguished from the native R. irregularis population of

the cultivation substrate by specific primers in the large subunit of mitochondrial ribosomal

DNA (mtLSU, see subchapter ’Design and optimization of qPCR assays’ for details). At the

same time, it was expected to be adapted to the conditions of the substrate.

The experiment was performed with two host plant species: medic (Medicago sativa L. cv.

Vlasta) and reed canarygrass (Phalaris arundinacea L. cv. Palaton S). Both taxa were tested for

agricultural reclamation of spoil banks [31] and represent two plant functional groups (legume

and grass).

Design and optimization of qPCR assays

The native AMF community was characterized according to partial sequences of the large sub-

unit of nuclear ribosomal DNA (nrLSU) as described in detail in S1 Text. This DNA region

was selected due to available primers for universal amplification of all glomeromycotan taxa

[32] and because it enables the design of primers for the specific amplification of species-level

clades [33]. The population of the native R. irregularis clade was characterized according to

partial sequences of mitochondrial ribosomal DNA (mtLSU) as detailed in S1 Text. In contrast

to nrLSU, mtLSU haplotypes of R. irregularis enable to distinguish intraspecific genotypes of

this species [34–35], but on the other hand, the lack of sequence information for most of the

other glomeromycotan taxa makes this region unsuitable for the characterization of the whole

AMF community. Thus, the effects of inoculation were followed using two primer sets: 1)

Effects of inoculation on arbuscular mycorrhizal fungal communities
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primers based in the nrLSU targeting species-level clades of the AMF community; 2) primers

based in the mtLSU discriminating between the inoculant and conspecific native genotypes.

Phylogenetic analyses of the nrLSU of the native AMF community revealed five clades (S1

Fig), three of which corresponded to the species Rhizophagus irregularis (Błaszk, Wubet,

Renker & Buscot) C. Walker & Schuessler (2010), Funneliformis mosseae (T.H. Nicolson &

Gerd.) C. Walker & Schuessler 2010 and Claroideoglomus claroideum (N. C. Schenck & G. S.

Sm.) C. Walker & Schuessler (2010). Primers designed previously to discriminate isolates of

these three species [22, 35] were tested using plasmid standards and root samples and quanti-

fied reliably these clades of the native community. Additionally, primers were designed to spe-

cifically amplify genotypes of the other two clades of the native community, the ‘uncultured

Glomeraceae’ clade and Diversispora celata clade C. Walker, Gamper & Schuessler (2009)

based on the complete sequence alignment using Primer 3 Plus [36]. The preparation of plas-

mid standards, qPCR and the estimate of amplification efficiencies generally followed previ-

ously described steps [35]. Details on annealing temperatures, primer concentrations,

amplicon lengths and the estimated amplification efficiencies for each used qPCR assay are

summarized in S1 Table.

Alignments of the R. irregularis mtLSU sequences revealed three haplotypes (S2 Fig) that

could not be completely distinguished by specific primers. However, all of them were ampli-

fied by the primer combination GI-PH5-mtLSU-219F and GI-PH5-mtLSU-327R designed to

discriminate the R. irregularis isolate PH5 from isolate ‘Chomutov’ in a previous study [35].

The latter isolate, used as inoculant in this study, was therefore amplified with the same primer

combination as in the previous study [35] after confirming that no cross-amplification

occurred with genotypes of the native AMF community of the spoil bank soil using plasmid

standards and DNA extracts from roots. Details on the used qPCR assay are summarized in S2

Table.

Cultivation experiment

Inoculum of R. irregularis ’Chomutov’ was prepared by mixing, homogenizing and air-drying

substrate from four seven-month-old cultures of the isolate in a mixture of zeolite and sand

(1:1) and medic (Medicago sativa) as host plant. The cultures were checked microscopically for

the presence of spores and absence of contamination. The infectivity of the inoculum and the

non-sterile experimental substrate (AMF substrate) were determined by the most probable

number test before the experiment as previously described [22] with medic as host plant. The

inoculum had an inoculation potential of 55 infective propagules (IP) ml-1 substrate, while the

inoculation potential of the spoil bank substrate was only 5 IP ml-1.

Plants of both species were germinated in autoclaved sand and pre-cultivated in seedling

trays for three weeks in a 1:1 mixture of autoclaved zeolite and sand. One third of the seedlings

of each species was inoculated with R. irregularis ’Chomutov’ during this pre-cultivation stage

by amending the pre-cultivation substrate with inoculum to 30% (v:v) while the other two

thirds of the seedlings were left without inoculation. Before the planting of the experiment,

roots of five randomly selected inoculated seedlings per plant species were stained with trypan

blue and confirmed, using a stereomicroscope, to have at least 30% of their roots colonized

with the AMF. Further five randomly selected inoculated and non-inoculated seedlings per

species were washed, dried at 65˚C and weighted to document possible effects of the inocula-

tion on seedling growth.

The experiment was established in plastic pots (12 × 12 × 9 cm), each divided into two

equal compartments (6 × 12 × 9 cm) by a nylon mesh with mesh diameter 42 μm to exclude

root competition but enable the spread of extraradical mycelium (ERM) between the

Effects of inoculation on arbuscular mycorrhizal fungal communities
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compartments. Both compartments were filled with the mixture of spoil bank substrate and

sand specified in ’Experimental system’. This substrate either contained its native AMF com-

munity (’AMF substrate’) or was sterilized by γ irradiation (’control substrate’) and both com-

partments contained the same substrate variant. These two substrate treatments were

factorially combined with the two host plant species (M. sativa, P. arundinacea), and within

each combination of plant and substrate, three inoculation treatments were established as

follows.

One seedling, further termed the donor (D) plant, was planted at the start of the experiment

into one of the two compartments, while the second compartment remained empty at the start

of the experiment. One inoculation treatment (pre-inoculation) was established with the seed-

lings inoculated during the pre-cultivation stage as described above. In the second inoculation

treatment (in-situ), seedlings pre-grown in sterile substrate received inoculation with R. irregu-
laris ’Chomutov’ directly at planting with inoculum mixed into the cultivation substrate of the

planted compartment to 4% (v:v). The third inoculation treatment (non-inoculated) was estab-

lished with seedlings pre-grown in sterile substrate and without additional inoculation. In

order to decrease differences in microbial conditions among the experimental treatments, the

planted compartments were irrigated with 10 ml of bacterial filtrate obtained by passing a sus-

pension from the AMF substrate and the inoculum through filter paper (Whatman No.1).

Each combination of substrate, plant and inoculation treatment was established in 12 repli-

cates (except for the non-inoculated treatments in control substrate, which were established in

six replicates only). After six weeks of cultivation, the second compartments of six pots per

treatment were planted with a second plant of the same species, termed the neighboring (N)

plant, without any additional inoculation. The other six pots per treatment were harvested to

evaluate the growth and AMF community of the six-week-old D plants. The pots with both

compartments planted were harvested after further six weeks of cultivation, i.e. when the D

plants were 12 weeks old and the N plants six weeks old (Fig 1). Thus, each combination of the

three factors plant species, substrate and inoculation treatment comprised three ’stages’: the

six-week-old D plants, twelve-week-old D plants and six week old N plants. The only exception

was the non-inoculated treatment in control substrate, which was established in six replicates

only and did not include six-week-old D plants (see Fig 1).

The experiment was cultivated in a glasshouse under supplemental light (12 hours, metalha-

lide lamps, 400 W) and fertilized once in two weeks with 50 ml of P2N3 nutrient solution per

plant [37]. In some replicate pots, the N plants did not properly establish in the experimental

system and died back. These replicate pots were completely excluded from the harvest and fur-

ther evaluations with the consequence that replicate numbers were reduced in some treat-

ments as specified in S12 Table.

Harvest and data collection

Each root system was washed, weighed and cut into 1 cm segments. A subsample of 100 mg

fresh weight was flash frozen in liquid N and stored at -80˚C. Another part was used for micro-

scopic determination of root colonization after staining with 0.05% trypan blue in lactoglycerol

[38]. The remaining roots and shoots were dried at 65˚C for 24 h and used for the determina-

tion of shoot and root dry weights. Percentage of root colonization by AMF was determined as

frequency of AMF structures in root segments corresponding in length to the diameter of the

microscopic field (×100 magnification; Olympus BX60).

Genomic DNA was extracted from the deep-frozen samples using the DNeasy Plant Mini

Kit (Qiagen) according to the manufacturer’s instructions. DNA extracts from root samples

were quantified spectrophotometrically, and 10 ng of total genomic DNA were used as a

Effects of inoculation on arbuscular mycorrhizal fungal communities
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template in qPCR as previously described [36]. All harvested root systems per treatment and

harvest were analyzed. All target sequences were quantified in the root samples from the AMF

substrate. The abundances of the AMF taxa were calculated as copy numbers per ng of tem-

plate DNA.

Data analysis and statistics

Variation in root colonization was statistically analyzed for each substrate separately using

three-way ANOVA with the factors plant species, inoculation and stage after arcsine transfor-

mation of the data. The non-inoculated treatment in control substrate with overall zero root

colonization was excluded from the analysis.

Variation in shoot biomass was assessed for each plant species and stage separately; one-

way ANOVA followed by Tukey’s test was used to test for differences between each combina-

tion of substrate and inoculation treatment.

The abundance (= mtLSU copy numbers) of the inoculant was statistically analyzed using

four-way-ANOVA with the factors substrate, plant species, inoculation and stage. The non-

inoculated treatment was excluded from the analysis. Proportion of the inoculant at the total

R. irregularis population in AMF substrate, which was calculated as the sum of mtLSU copy

numbers of the inoculant and the native genotypes, was analyzed by three-way-ANOVA with

Fig 1. Schematic presentation of the core experimental arrangement. At the start of the experiment (0

wks), the seedlings were either pre-inoculated (a), inoculated with propagules mixed into the cultivation

substrate (b) or left without inoculation (c). After six weeks of cultivation (6 wks), six replicates of each

treatment were harvested to obtain six-week-old donor plants (D6), the remaining six replicates were planted

with a second seedling without any additional inoculum addition. After further six weeks of cultivation (12 wks),

the harvest of the remaining replicates rendered 12-week old donor plants (D12) and six-week old neighboring

plants (N6). This core arrangement was established four times: with two plant species (M. sativa and P.

arundinacea), each either in substrate containing its native AMF community or in sterilized control substrate.

The asterisk denotes replicates that were not established in the sterilized control substrate.

https://doi.org/10.1371/journal.pone.0181525.g001
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the factors plant species, inoculation and stage after arcsine transformation of the data. The

same approach was used to assess the variability in the abundance (= mtLSU copy numbers) of

the native R. irregularis population, but including also the non-inoculated treatment into the

analysis.

The composition of the AMF community in AMF substrate was assessed based on nrLSU

copy numbers of the species-level clades without distinguishing between the inoculant and

native genotypes within the R. irregularis clade. As all samples contained the same four AMF

taxa, the composition of the AMF community was described by Pielou’s evenness index. The

index was calculated based on Shannon’s diversity index as J’ = H’/H’max, where H’ is Shan-

non’s diversity index and H’max = ln (4). The variability in J’ and in the abundance of each

taxon was evaluated by three-way ANOVA with the factors plant species, inoculation and

plant stage. The abundances of the other AMF taxa than R. irregularis were also summed to

’abundance of the non-inoculated taxa’, which was analyzed in the same way.

The ANOVAs were calculated in STATISTICA (version 12, StatSoft, Inc., USA). When nec-

essary, the abundance data were square-root or logarithmically transformed to fulfill the

assumption of ANOVA on homogeneity of variance (tested by Levene’s test). Multiple com-

parisons were performed using Tukey’s test.

Additionally, AMF community composition was analyzed by multivariate analyses in

CANOCO [39] (version 5.0). Redundancy Analysis (RDA) was performed with non-trans-

formed data ’centered and standardized by species’. The significance of the effects was tested

using a Monte Carlo test with 499 permutations.

Accession numbers

Representative sequences of partial nrLSU of the native AMF taxa were submitted to GenBank

under the accession numbers KC537331–360. Partial mtLSU sequences of native R. irregularis
haplotypes were submitted under the accession numbers KC537361–363.

Results

Root colonization by AMF

In AMF substrate, root colonization ranged between 52% and 83% (average value per treat-

ment, S3 Table) and was significantly higher in P. arundinacea than in M. sativa. Root coloni-

zation was also affected by the factor stage and the interaction of stage and inoculation (S4

Table) in AMF substrate, but there were no significant differences among the inoculation

treatments within each stage.

No root colonization was found in the non-inoculated plants in control substrate. The inoc-

ulated plants in control substrate had overall higher root colonization than plants growing in

AMF substrate (F(1,168) = 19.619, P < 0.001). Similarly as in AMF substrate, root colonization

was significantly higher in P. arundinacea than in M. sativa, and affected by the factor stage

and the interaction of stage and plant species; inoculation had no effect, i.e. the pre-inoculated

and in-situ inoculated plants did not significantly differ in root colonization (S4 Table).

Establishment of the inoculant and response of native R. irregularis

genotypes

The abundance of the inoculant R. irregularis Chomutov, determined as mtLSU copy num-

bers, was significantly higher in control substrate than in AMF substrate; the significant inter-

action of the factors substrate and plant species reflects that the difference was more

Effects of inoculation on arbuscular mycorrhizal fungal communities
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pronounced in P. arundinacea than in M. sativa (S5 and S7 Tables). Inoculation or stage had

no effect on the abundance of the inoculant (S5 Table).

In the inoculated treatments in AMF substrate, the proportion of the inoculant at the total

R. irregularis population ranged between 76 and 92% (average per treatment). The proportion

was significantly higher in M. sativa than in P. arundinacea and varied among the stages

depending on the form of inoculation (Fig 2, S6 Table). After in-situ inoculation, the propor-

tion was significantly higher in 12-week-old than in six-week-old D plants, but it did not differ

between 6-week-old D and N plants.

The abundance of the native R. irregularis genotypes was significantly affected by inocula-

tion, stage and the interaction of both factors (S6 Table). In-situ inoculation and pre-inocula-

tion significantly decreased their abundance throughout the experiment as compared to the

non-inoculated treatment; the interaction consisted in the varying size of the effect (Fig 3, S7

Table).

Effect of inoculation on the species-composition of the AMF community

The Diversispora celata clade could not be detected by the specific qPCR system in any of the

experimental samples. The remaining four species-level clades were found in all root samples

from AMF substrate so that the species richness of the root-colonizing AMF community was

unaffected by inoculation. However, inoculation significantly affected the evenness index J’ of

the community, the effect depended on stage and plant species (S8 Table). Specifically, pre-

inoculation and in-situ inoculation decreased J’, as compared to the non-inoculated treatment,

in the D plants of both plant species, while J’ was unaffected by inoculation in the N plants of

M. sativa (Fig 4A) and significantly decreased by pre-inoculation in the N plants of P. arundi-
nacea (Fig 4B).

The effect of inoculation on community evenness J’ was mainly due to more pronounced

dominance of R. irregularis in the inoculated treatments. Inoculation generally increased the

Fig 2. Proportion of inoculated R. irregularis Chomutov at the R. irregularis population. Triangles and

circles refer to the pre-inoculated and in-situ inoculated treatment, respectively. D6 and D12 are directly

inoculated donor plants harvested after six or 12 weeks of cultivation, respectively; N6 are six-week-old

neighboring plants. Data are pooled for the two plant species M. sativa and P. arundinacea, each symbol

represents the mean of 9–12 replicates (± SD), for exact replicate numbers see S12 Table. Means

significantly different at P < 0.05 according to Tukey’s test are marked by different letters.

https://doi.org/10.1371/journal.pone.0181525.g002
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abundance of R. irregularis and decreased the sum of abundances of the other AMF taxa. The

effect of inoculation, however, depended on plant stage and, in the case of the other AMF taxa,

also on plant species (S8 Table). To summarize comparisons among inoculation treatments

performed for each stage separately (Fig 5), inoculation mostly affected the abundance of R.

irregularis and the non-inoculated taxa in D plants and mostly had no effect in N plants. The

abundances of each of the non-inoculated AMF taxa, F. mosseae, C. claroideum and the uncul-

tured Glomeraceae clade, and their responses to the experimental factors are given in S9 and

S10 Tables.

The variation in AMF community composition data was explained by the three experimen-

tal factors by 24.5% (pseudo F = 7.4, P = 0.002). Inoculation accounted for the highest propor-

tion of the explained variation (15.6%), followed by stage (6%) and plant species (4%). RDA

with the factor plant species as covariate confirmed, in separate models, significant effects of

inoculation (pseudo F = 10.9, P = 0.002), stage (pseudo F = 4.8, P = 0.004) and interaction of

the two factors (pseudo F = 4.1, P = 0.002). Model including both factors and their interaction

(pseudo F = 6.6, P = 0.002), with plant species as covariate, revealed close association of R. irre-
gularis with the pre-inoculated treatment and similarity of the AMF communities after pre-

inoculation in all three stages (Fig 6). In contrast to the pre-inoculated treatment, the composi-

tion of AMF communities without inoculation was variable in the three plant stages, with rela-

tively high abundance of F. mosseae in six-week old D plants and the uncultured Glomeraceae

clade in 12-week old D plants.

Plant growth

At the time of their planting into the experiment, the pre-inoculated seedlings of P. arundina-
cea were significantly smaller than the non-inoculated seedlings (t = -2.97, P = 0.02, S11

Table). The same trend, marginally non-significant, was observed in M. sativa (t = -2.20,

P = 0.06, S11 Table). In the experiment, M. sativa had the smallest biomass when non-

Fig 3. Abundance of native R. irregularis genotypes and the inoculant R. irregularis Chomutov. Black

boxes and empty boxes show copy numbers of mitochondrial ribosomal DNA of the native genotypes and the

inoculant, respectively, in the roots of plants cultivated without inoculation (NI), inoculated in-situ (in-situ) or

preinoculated (pre) with R. irregularis ’Chomutov’. D6 and D12 are directly inoculated donor plants harvested

after six or 12 weeks of cultivation, respectively; N6 are six-week-old neighboring plants. Data are pooled for

the two plant species M. sativa and P. arundinacea, each box is the mean of 9–12 replicates (± SD), for exact

replicate numbers see S12 Table. Letters refer to the black boxes, means significantly different at P < 0.05

according to Tukey’s test are marked by different letters.

https://doi.org/10.1371/journal.pone.0181525.g003
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mycorrhizal, i.e. in the non-inoculated treatment in control substrate (Table 1). Six-week old

D plants of M. sativa were significantly smaller after in-situ inoculation than after pre-inocula-

tion or with native AMF only. Twelve-week old D plants of M. sativa had the highest biomass

when grown pre-inoculated in control substrate, and the biomass of N plants did not differ

among the experimental treatments except for the smallest biomass of the non-mycorrhizal

plants. P. arundinacea plants grew better in control substrate than in AMF substrate (Table 1).

The biomass of D plants was unaffected by inoculation treatment in either substrate, N plants

had the highest biomass when non-mycorrhizal (non-inoculated in control substrate) or when

pre-inoculated in control substrate.

Fig 4. Pielou’s evenness index J’ of the arbuscular mycorrhizal fungal communities. Roots of (A) M.

sativa and (B) P. arundinacea, each either without inoculation (empty circles), inoculated in-situ (full circles) or

pre-inoculated (full triangles) with R. irregularis. D6 and D12 are directly inoculated donor plants harvested

after six or 12 weeks, respectively; N6 are six-week old neighboring plants. Each symbol represents the mean

of 4–6 replicates (± SD), for exact replicate numbers see S12 Table. Means significantly different at P < 0.05

according to Tukey’s test are marked by different letters.

https://doi.org/10.1371/journal.pone.0181525.g004
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Discussion

This study presents, for the first time, experimental evidence for inoculation effects exceeding

the directly inoculated plants. We found that

1. The inoculant spread into the root systems of neighboring plants;

2. The suppression of native AMF by inoculation, observed in the directly inoculated plants,

was maintained in the neighboring plants.

Fig 5. Abundance of each taxon within the arbuscular mycorrhizal fungal communities. (A) Roots of M.

sativa, (B) roots or P. arundinacea, each either without inoculation (NI), inoculated in-situ (in-situ) or pre-

inoculated (pre) with R. irregularis. Boxes show copy numbers of nuclear ribosomal DNA, empty boxes refer

to R. irregularis, the other, non-inoculated taxa are distinguished by colors (F. mosseae—blue, C. claroideum

—green, uncultured Glomeraceae—yellow). D6 and D12 are directly inoculated donor plants harvested after

six or 12 weeks, respectively; N6 are six-week old neighboring plants. Boxes are means of 4–6 replicates, for

exact replicate numbers see S12 Table. Vertical lines show SD for the abundance of R. irregularis or the sum

of abundances of the non-inoculated AMF taxa. Asterisks refer to the same values as the SD and indicate,

within D6, D12 or N6, significant difference from the non-inoculated treatment at P < 0.05 according to

Dunnett’s test.

https://doi.org/10.1371/journal.pone.0181525.g005
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Establishment of the inoculant

Establishment of inoculated AMF in the roots of directly inoculated plants, observed in accor-

dance with many previous studies, e.g. [10, 17, 20, 28], indicates that the inoculant successfully

competed with native AMF in primary infection, intraradical spread and the formation of sec-

ondary infection units. This is facilitated by the inoculant’s priority, either directly achieved by

pre-inoculation or supported by high inoculum doses [23, 40], and does not necessarily mean

establishment of a stable population of the inoculant at the site of inoculation. However, prop-

agation of the inoculant into neigboring root systems, as documented in our experiment,

requires also competitiveness in the spread of ERM and formation of infective propagules in

soil. During these later stages of the symbiosis, the highly abundant inoculant may lose its

competitiveness e.g. due to sanctioning by the host plant through preferential allocation of car-

bon to other AMF [41]. The comparable abundance of the inoculant in the directly inoculated

plants and their neighbors of our experiment, however, do not indicate such a mechanism.

Inoculation did not introduce a new species in our experiment, as R. irregularis was also

part of the native community. However, it introduced a new intraspecific genotype, which

Fig 6. Redundancy analysis of the arbuscular mycorrhizal fungal communities. The model (pseudo

F = 6.6, P = 0.002) included the experimental factors inoculation and stage and their interaction; plant species

was added as covariate. It accounted for 36.8% of the variability in the data (22.7% is explained by the first

axis and 11.2% by the second axis). Black arrows represent taxa of the arbuscular mycorrhizal fungal

communities (RI—R. irregularis, FM—F. mosseae, CC—Claroideoglomus claroideum, UN—uncultured

Glomeraceae), black circles are inoculation treatments (NI—non-inoculated, ins—inoculated in-situ, pre—

pre-inoculated), black squares are stages (D6–6-week-old donor plants, D12–12-week-old donor plants, N6

—neighboring plants), triangles in colors are combinations of inoculation and stage.

https://doi.org/10.1371/journal.pone.0181525.g006
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may ecologically and functionally have differed from the native genotypes [24, 42–43] and

may have remained a separate genetic entity in case of vegetative incompatibility with the

native genotypes [44–45]. The naturalization of an introduced organism occurs when it crosses

the barrier of reproduction [46], and we argue that due to the obligate biotrophy of AMF, their

successful reproduction is demonstrated by the ability to infect plants that were not in direct

contact with the introduced propagules. In this respect, our experiment demonstrated natural-

ization of an AMF inoculant and establishment of a stable population, albeit in the artificial

conditions of pot cultivation. Moreover, the documented horizontal spread by below-ground

hyphal growth constitutes a vector of AMF dispersal [47]. Thus, the ability to infect neighbor-

ing plants by ERM indicates also dispersion potential, at least at small-scale level.

Inoculation effects on native AMF

Concordantly with our results, inoculation was previously shown to increase the abundance of

the inoculated AMF species and to reduce or even completely eliminate root colonization by

other AMF species [10, 17–18, 28]. No complete exclusion of native AMF in the inoculated

treatments of our experiment should be attributed to the employed detection system: The

characterization of the AMF community was performed by Sanger sequencing of clones and

certainly missed some low abundant taxa [48], which may also partly explain the relatively low

diversity of the native community. However, the sensitivity of qPCR for low abundant taxa is

even lower, as indicated by the failure to detect the D. celata clade. Thus, the employed

approach concentrated on the relative abundances of the more abundant AMF community

members, which may be expected to have larger impact on the functioning of the symbiosis.

Table 1. Shoot dry weights of M. sativa and P. arundinacea.

Factors Experimental Stage

Plant Substrate Inoculation D6 D12 N6

M. sativa Control NI n.d. 0.88 (0.38) c 0.13 (0.05) b

in-situ 0.30 (0.08) b 2.01 (0.30) b 0.43 (0.11) a

pre 0.76 (0.09) a 2.71 (0.37) a 0.50 (0.16) a

AMF NI 0.93 (0.12) a 1.95 (0.39) b 0.49 (0.08) a

in-situ 0.42 (0.07) b 1.64 (0.27) b 0.55 (0.19) a

pre 0.75(0.11) a 1.81 (0.16) b 0.56 (0.09) a

df 4 5 5

F-value 41.2 *** 17.3 *** 8.4 ***

P. arundinacea Control NI n.d. 2.74 (0.40) a 1.18 (0.19) a

in-situ 0.86 (0.22) ab 2.76 (0.29) a 0.38 (0.09) b

pre 1.16 (0.20) a 2.80 (0.18) a 0.89 (0.32) a

AMF NI 0.46 (0.21) c 1.08 (0.41) b 0.46 (0.20) b

in-situ 0.56 (0.18) bc 0.70 (0.20) b 0.36 (0.19) b

pre 0.41 (0.11) c 0.97 (0.22) b 0.30 (0.16) b

df 4 5 5

F-value 14.1 *** 52.3 *** 13.7 ***

The plants were grown in substrate with native AMF community (AMF) or sterilized control substrate (Control), non-inoculated (NI), inoculated in-situ (in-

situ) or pre-inoculated (pre) with R. irregularis ‘Chomutov’. D6 and D12 are directly inoculated donor plants harvested after six or 12 weeks of cultivation,

respectively; N6 are six-week-old neighboring plants. Values are g of shoot dry biomass, means of 4–6 replicates (SD), for exact replicate numbers see S12

Table. F-values are given according to one-way ANOVA with substrate × inoculation combination as factor.

*** P < 0.001. Means within column significantly different at P < 0.05 according to Tukey’s test are marked by different letters; n.d. not determined.

https://doi.org/10.1371/journal.pone.0181525.t001
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Overdominance of one species occurs also in natural AMF communities and seems revers-

ible by stochastic effects [49–50]. However, we cannot exclude that overdominance induced by

inoculation may be permanent or even progressive and negatively impact on the functional

parameters of the AMF community [51]. In our experiment, the inoculated and non-inocu-

lated AMF communities became more similar in the neighboring plants than in the directly

inoculated plants. However, this was rather due to shifts in the non-inoculated community

than to changes in the inoculated communities that remained similar across the three stages.

Therefore, we did not find any convincing evidence for short-term resilience in the AMF com-

munity composition after inoculation. This may be attributed to the specific conditions of the

experiment: The tendency to increasing dominance of R. irregularis in the non-inoculated

treatment indicates that this species was favored by the cultivation conditions and the effect of

inoculation partly anticipated a trend that occurred also in the non-inoculated community.

On the other hand, the presumably suitable conditions may also have progressively favored

the inoculant alongside with progressive suppression of the other species, which was neither

the case. The effect of inoculation was stable in the investigated time-frame, the AMF commu-

nities of the inoculated treatments were similar in the directly inoculated plants and in their

neighbors.

A previous study suggesting short-term resilience of AMF communities after inoculation

differed from the presented experiment in having inoculated the same intraspecific genotypes

as already present in soil [22]. New genotypes may introduce new traits into a species’ popula-

tion and thus alter the population dynamics and the species’ competitiveness within the AMF

community. Additionally, genetically different conspecific isolates compete among each other

[52], which is consistent with the abundance decline of native R. irregularis genotypes in the

inoculated treatments of our experiment. Cultivated isolates of R. irregularis usually contain

only one mtLSU haplotype [53–54], while mtLSU diversity is considerably higher at field sites

[34, 55], probably due to cultivation-related bottlenecks and biases [34]. Consistently, we

found only one mtLSU haplotype in the inoculated R. irregularis isolate, which had been long-

term maintained in culture, and three haplotypes in the root-colonizing native population.

Inoculation thus, on one hand, increased the genotype richness of the R. irregularis population

by introducing a new genotype, but on the other hand probably also decreased its evenness by

suppressing the genetically more diverse native population. Thus, the effects of inoculation

were analogous at the interspecific and intraspecific level. However, we must be aware that

intraspecific interactions are more diverse than interspecific interactions including also possi-

ble anastomosis formation and genetic exchange between genotypes [44–45]. Understanding

them more in detail would require screening the populations with multilocus markers [56].

Yet, mtLSU haplotypes also represent functionally relevant categories and, in contrast to mul-

tilocus screenings, can be directly detected and quantified in experimental samples [34–35].

The pattern of inoculation effects was largely consistent between the two plant species and

two modes of inoculation At community level, however, pre-inoculation tended to suppress

the native AMF more than inoculation in situ (Fig 6). Different impact of the two modes of

inoculation was anticipated due to previously documented suppression of colonization in

roots already colonized by another AMF species [29–30, 57]. Interestingly, the differences

between the pre-inoculated and in-situ inoculated AMF community persisted also in the

neighboring plants. This indicates that priority effects are maintained also at the level of ERM

infectivity, possibly by ensuring better excess to carbohydrates from the host plant [29, 57].

The selected system and the experimental approach strongly suggest that the native AMF

community was composed of disturbance-tolerant ruderal AMF, which is also consistent with

the phylogenetic placement of all the detected clades in Glomerales order [58]. It can be

assumed that competition between the inoculant and the native community was more intense
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than if they were phylogenetically and functionally more distinct [2, 59]. However, ruderal sys-

tems such as early successional areas and fields are typical target sites of AMF inoculations,

and inoculation is typically performed with easily cultivable, i.e. fast growing isolates originat-

ing from similar conditions as the target system [13]. For this reason, we may assume that the

intensity of competition and shifts in AMF community composition encountered in our study

are representative for systems where inoculation is usually performed.

Functional impact of inoculation

Comparing the growth of non-mycorrhizal plants (i.e. non-inoculated plants in control sub-

strate) and mycorrhizal plants (in all the other treatments) suggests that the two selected plants

species differed in their response to mycorrhiza. The positive mycorrhizal growth response of

M. sativa is consistent with some previous studies, e.g. [22, 60, 61], but its magnitude should

not be overinterpreted in view of other possible microbial factors, which may have contrib-

uted. Despite the addition of microbial filtrates, rhizobial population was probably initially less

abundant in the non-inoculated control substrate than in the other treatments, which may

have influenced M. sativa growth along with mycorrhiza. In contrast to M. sativa, P. arundina-
cea growth throughout the experiment indicates accumulation of pathogens in the experimen-

tal system, which was especially harmful to the later planted N seedlings. Nevertheless, these

considerations on the overall response to mycorrhiza in the two plant species do not discard

comparisons of plant growth among the different inoculation treatments in AMF substrate.

There, the microbial community was dominated by the microorganisms introduced with the

original spoil bank soil, which constituted 80% of the cultivation substrate.

Positive effects of inoculation are usually related to higher root colonization [62]. Hence, it

is not surprising that inoculation did not enhance plant growth in the AMF substrate, where

the native AMF community alone ensured high root colonization levels. In contrast, growth of

M. sativa was reduced by inoculation in-situ in comparison to both the non-inoculated and

pre-inoculated treatment. It has been suggested that inoculation in-situ may suppress plant

growth by increasing competition among the root-colonizing AMF [22]. In the roots of pre-

inoculated plants, fungal competition may be less intense as further root colonization of

already mycorrhized plants is regulated prior to AMF-root contact, via signals in root exudates

[63]. However, in-situ inoculated M. sativa plants produced less biomass than pre-inoculated

plants also in the control treatment with no native AMF. This suggests, alternatively, that the

inoculant imposed high initial carbon costs on the host plant prior to starting supplying it with

nutrients [64–65], which is consistent with the effect of pre-inoculation on seedling growth in

the pre-cultivation stage. Altogether, plant growth did not indicate any inoculation-induced

changes in the symbiotic efficiency of the AMF community, reported in some previous studies

[17, 66]. However, our data suggest that pre-inoculation is more suitable to immediately pro-

mote plant growth than inoculation in-situ, possibly also because it suppresses interactions

among the inoculant and native AMF during the root colonization process.

Conclusions and outlooks

Propagation of inoculants and inoculation effects exceeding directly inoculated plants had

been previously assumed both in relation to desired long-term improvement of symbiotic

AMF communities [13, 67] and to possible negative consequences of inoculations [15], but a

direct proof was missing. Our work represents the first experimental evidence for the spread of

inoculated AMF and inoculation effects beyond the directly inoculated plants.

The main result was that root colonization by native AMF was similarly suppressed in the

neighboring plants as in the directly inoculated plants. This was largely independent of host
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plant and inoculation procedure. Effects of inoculation on AMF diversity and mycorrhiza func-

tion, however, also depend on the inoculant’s identity [10, 17, 19], which had not been manipu-

lated in our experiment. Further studies should therefore focus this factor in order to confirm

to which degree the findings depend on the inoculant’s taxonomic identity and/or functional

traits. The employed cultivation system is suitable for such a screening as it enables the elimina-

tion of interfering factors such as space heterogeneity of native AMF communities and climatic

fluctuations. On the other hand, our experiment has not supported the idea of short-term post-

inoculation resilience of AMF communities, and therefore shifts attention to long-term dynam-

ics, which should be preferentially targeted in field conditions. Both directions must be followed

in order to further improve our understanding of inoculation effects, which is critically needed

for assessing the potential benefits and drawbacks of AMF inoculations.
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Resources: DP KK HŠ.
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References
1. Hoeksema JD, Chaudhary VB, Gehring CA, Johnson NC, Karst J, Koide RT, et al. A meta-analysis of

context-dependency in plant response to inoculation with mycorrhizal fungi. Ecology Letters. 2010; 13

(3):394–407. https://doi.org/10.1111/j.1461-0248.2009.01430.x PMID: 20100237

2. Maherali H, Klironomos JN. Influence of Phylogeny on fungal community assembly and ecosystem

functioning. Science. 2007; 316(5832):1746–8. https://doi.org/10.1126/science.1143082 PMID:

17588930

3. Middleton EL, Richardson S, Koziol L, Palmer CE, Yermakov Z, Henning JA, et al. Locally adapted

arbuscular mycorrhizal fungi improve vigor and resistance to herbivory of native prairie plant species.

Ecosphere. 2015; 6(12). 276 https://doi.org/10.1890/es15-00152.1

4. Johnson NC, Wilson GWT, Bowker MA, Wilson JA, Miller RM. Resource limitation is a driver of local

adaptation in mycorrhizal symbioses. Proceedings of the National Academy of Sciences of the United

States of America. 2010; 107(5):2093–8. https://doi.org/10.1073/pnas.0906710107 PMID: 20133855

5. Ji BM, Gehring CA, Wilson GWT, Miller RM, Flores-Renteria L, Johnson NC. Patterns of diversity and

adaptation in Glomeromycota from three prairie grasslands. Molecular Ecology. 2013; 22(9):2573–87.

https://doi.org/10.1111/mec.12268 PMID: 23458035

6. Johnson NC. Responses of Salsola kali and Panicum virgatum to mycorrhizal fungi, phosphorus and

soil organic matter: implications for reclamation. J Appl Ecol. 1998; 35(1):86–94. https://doi.org/10.

1046/j.1365-2664.1998.00277.x
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