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Abstract
MALDI mass spectrometry imaging (MALDI-MSI) is a widely used technique to map the spatial distribution of molecules in
sectioned tissue. The technique is based on the systematic generation and analysis of ions from small sample volumes, each
representing a single pixel of the investigated sample surface. Subsequently, mass spectrometric images for any recorded ion
species can be generated by displaying the signal intensity at the coordinate of origin for each of these pixels. Although easily
equalized, these recorded signal intensities, however, are not necessarily a good measure for the underlying amount of analyte
and care has to be taken in the interpretation of MALDI-MSI data. Physical and chemical properties that define the analyte
molecules’ adjacencies in the tissue largely influence the local extraction and ionization efficiencies, possibly leading to strong
variations in signal intensity response. Here, we inspect the validity of signal intensity distributions recorded from murine
cerebellum as a measure for the underlying molar distributions. Based on segmentation derived from MALDI-MSI measure-
ments, laser microdissection (LMD) was used to cut out regions of interest with a homogenous signal intensity. The molar
concentration of six exemplary selected membrane lipids from different lipid classes in these tissue regions was determined using
quantitative nano-HPLC-ESI-MS. Comparison of molar concentrations and signal intensity revealed strong deviations between
underlying concentration and the distribution suggested by MSI data. Determined signal intensity response factors strongly
depend on tissue type and lipid species.
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Introduction

Combining the analytical benefits of mass spectrometric anal-
ysis with spatial information, mass spectrometry imaging
(MSI) has evolved into an important analytical tool in a wide

field of application ranging from quality control in process
management to the analysis of tissue samples in the life sci-
ences [1, 2]. Common to all MSI techniques, ions are produced
from a defined spot or pixel on the sample surface and are
analyzed by mass spectrometry. Subsequently, MS data are
combined with their spatial origin in order to visualize the
spatial distribution of signal intensities for each measured m/z
value. Matrix-assisted laser desorption/ionization- mass spec-
trometry (MALDI-MS) represents one of the most popular
methods for MSI of intact biomolecules [3]. Here, the sample
is covered with a homogenous layer of a chemical matrix by
spraying or sublimation/recrystallization [4, 5]. During appli-
cation of this matrix, analyte molecules are extracted into the
layer of matrix coating and co-crystalize within. Upon irradia-
tion with ns-long pulses of UV laser light, the crystal lattice
rapidly disintegrates, co-desorbing and ionizing imbedded an-
alyte molecules. While the ionization process in MALDI is still
under discussion, it is widely accepted that only a very small
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fraction of desorbed molecules is ionized [6–13]. Ion yields
strongly depend on the chemical properties of the matrix and
the analyte itself but also on the overall composition of the
sample [12, 14, 15]. For glycerophospholipids (GPL), for ex-
ample, it has been shown that the presence of small quantities
of phosphatidylcholine (PC) can effectively quench ion yields
for other GPL classes like phosphatidylethanolamine (PE) [15,
16]. This phenomenon is often called ion suppression effect
(ISE) and can be observed for a wide variety of analyte classes
[17–20]. Best viewed as a collective term for a group of effects
rather than the result of a single defined mechanism, ISE may
depend on physical-chemical properties of the matrix and the
interplay of suppressed and suppressing analyte. Also, matrix
preparation protocol as well as the “chemical background” of
the sample may influence ISE [14, 21]. While in the analysis of
extracted analyte upstream separation techniques like high per-
formance liquid chromatography (HPLC) can be used to re-
duce sample complexity and omit ISE, MALDI-MSI inherent-
ly handles unseparated samples. In order to reduce ISE for the
targeted analysis of certain heavily suppressed analyte classes,
on tissue enzymatic digestion to deplete suppressing substances
and on tissue derivatization to increase sensitivity for a certain
analyte class have been successfully employed [22–24]. In a
different approach, laser-induced postionization in a fine vacu-
um MALDI ion source (MALDI-2) has shown promising first
results pointing towards a reduction in ISE in the analysis of
membrane lipids [15, 25–27]. In this technique, a second laser
pulse hits the evolving plume 10 μs after the initial MALDI
event ca. 500 μm above the sample surface. Induced by
resonance-enhanced two-photon ionization of matrix mole-
cules, a reaction cascade within the plume leads to an efficient
postionization for a large number of lipid classes. Interestingly,
lipid classes strongly suffering from ISE benefit the most from
the boost in signal intensity provided by MALDI-2 in the form
of additional protonated ions. In MALDI, analyte species are
usually detected carrying a single charge formed by adduct
formation with a proton or alkali metal cation in positive ion
mode and the subtraction of a proton in negative ion mode.
Especially for GPL and other membrane lipids, often detected
as sodiated or potassiated species, ion formation is therefore
also dependent on the local salt composition [28, 29]. Apart
from ionization efficiencies, also the physical and chemical
properties of the underlying tissue can influence signal intensity
by affecting analyte extraction into the matrix [30–32].

GPLs and other membrane lipids are among the prime
targets of MALDI-MSI. As key constituents of cellular mem-
branes, they are ubiquitous to most biological tissue and their
singly charged m/z values lay in a range easily accessible by
most MS analyzers. Inherent to their amphipathic character,
most membrane lipids comprise a hydrophilic head-group and
a lipophilic tail. With at least six different head groups regu-
larly found in the membranes of mammals for GPLs alone and
their lipophilic tail varying in length of its acyl chains as well

their degree and position of unsaturation, lipid composition in
most tissue samples is highly complex. This complexity leads
to the occurrence of isobaric species and renders a complete
identification of lipid species impossible if based on accurate
mass alone [33, 34]. Although further structural elucidation is
possible by different tandem MS strategies coupled to MSI,
often in combination with chemical derivatization [34–39],
annotation of membrane lipids is therefore often reduced to
the description of the head group and the total number of
carbons as well as the number of C–C double bonds in the
acyl chains (e.g., PC(40:6)) [40]. Next to isobaric species
rooted in variations in the acyl chains, also differences in ion
type can produce near-isobaric interference. A prominent ex-
ample to this end can be found in [PC(40:1) + Na]+ and
[PC(40:4) + H]+ or any other combination with the same dif-
ference in chain length and number of double bonds produc-
ing ion species varying by only 2.408 mDa.

In MALDI-MSI, results are most often presented as
color-coded maps displaying measured signal intensity at
each pixel. While it is alluring to equalize these intensity
distributions of a certain m/z value with the underlying
concentration of a certain compound putatively assigned
by accurate mass, great care has to be taken interpreting
MSI data. Signal intensity for a certain m/z value recorded
at a certain pixel is not solely determined by the underlying
content of a single molecular species but influenced by
parameters like the ones described above. These effects
may change drastically at different areas of the investigated
sample causing misleading artifacts in the visualization
[32, 41]. Uncorrected MS images may therefore not depict
the spatial distribution of a specific molecular species but
are often distorted by secondary factors, greatly hampering
their quantitative but also qualitative interpretation. To ad-
dress this issue, different solutions for quantification have
been proposed [42, 43]. In a targeted approach, different
research groups have used isotopically labeled standards
that are homogenously deposited on top or underneath
the tissue section [44–47]. Because targeted analyte as well
as matched standard experience the same micro-conditions
at each pixel, signal intensity from the standard can be used
for normalization. Extraction from the tissue however is in
this case not ideally reproduced for the standard. In another
targeted approach for the analysis of exogenous analytes,
different researchers introduced tissue-type-specific ex-
traction coefficients [48–50]. This was determined by pro-
ducing homogenates of each subtype of tissue spiked with
different concentrations of the target analyte. Cryosections
of these homogenates were analyzed to determine tissue
extraction coefficients. While laborious, both approaches
allowed for quantitative MALDI-MSI of the respective tar-
get substance. For untargeted MALDI-MSI of endogenous
compounds like GPLs, however, reliable quantification
strategies are still largely missing.
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In order to identify and assess the severity of possible pit-
falls in the interpretation of signal intensity maps of GPLs, we
here present a workflow that allows quantifying lipid content
in tissue areas as identified by MALDI-MSI. By using laser
microdissection (LMD) on the same sample after MALDI-
MSI analysis similar to published work flows for proteins
and lipids [51–54], lipid extracts were produced for selected
areas and analyzed by quantitative nano-HPLC-nano-ESI-
MS. Comparison of quantitative data and MS images allowed
assessing the value of the signal intensity maps from a quan-
titative point of view. A total of six lipid species from different
GPL classes (PC(34:1), PC(38:4), PC(40:6), PE(34:1),
phosphatidylglycerol(34:1) (PG(34:1))) and one sulfatide
((3′-sulfo)Galβ1-1Cer(d18:1/24:1)) were analyzed. White
matter of the arbor vitae and graymatter of the molecular layer
from murine cerebellum were chosen as representative tissue
regions.

Materials and methods

Chemicals and reagents

All solvents were purchased from Carl Roth (Karlsruhe,
Germany). All other chemicals were purchase from Sigma-
Aldrich (Merck, Darmstadt, Germany), if not declared
otherwise.

Workflow

Figure 1 depicts a schematic general workflow used for com-
parative MS imaging and quantitative HPLC-MS analysis.
After sample preparation and MALDI-MSI analysis, regions
of interest (ROI) are identified based on MSI results and dis-
sected using LMD. Lipids from dissected tissue regions are
extracted and analyzed using quantitative nano-HILICHPLC-
ESI-MS.

Sample preparation for MALDI-MSI

Mouse brain samples originated from 11- to 13-week-old fe-
male C57BI/6 mice. The brains were extracted and flash fro-
zen in liquid nitrogen directly after sacrifice and stored at −
80 °C until use. Cryosectioning at − 20 °C was performed
using a Jung Frigocut 2800-E cryotome (Leica, Wetzlar,
Germany). The sections were transferred via thaw mounting
to common microscopy glass slides (Superfrost, Thermo
Fisher Scientific, Darmstadt, Germany) or special membrane
slides with a polyethylene naphthalate (PEN) membrane for
later LMD (P.A.L.M. Microlaser Technologies, Bernried,
Germany). All sections in this study are consecutive cuts from
the same mouse brain with 8 μm thickness for H&E staining
and 20 μm for MALDI-MSI and later HPLC-MS

experiments. 2,5-Dihydroxyacetophenone (DHAP) was used
as a MALDI matrix. A total of 20 mg/mL of DHAP was
dissolved in acetonitrile/water/methanol (75/20/5; v/v/v) with
0.1% formic acid for later spray coating of the sample. Matrix
solution was sprayed onto the tissue with an ultrasonic sprayer
(SimCoat with AccuMist nozzle, Sono-Tek, Milton, NY,
USA). The sprayer was operated in serpentine mode. One
cycle was made up of respective sets of horizontal and vertical
passes. Line spacing was 1.8 mm and velocity was 30 mm/s.
Flow rate of the solution was 0.05mL/min. Matrix application
was finished after ten cycles.

MALDI-MSI measurements

A Q Exactive plus Orbitrap Mass Spectrometer (Thermo
Fisher Scientific, Bremen, Germany) was used for all mea-
surements (MALDI-MSI, MALDI-2-MSI, and HPLC-nESI-
MS). The usual MS inlet was replaced with a MALDI/ESI
injector (Spectroglyph LLC, Kennewick, WA, USA) to per-
form MALDI and ESI experiments on the same instrument
[55]. The injector was modified to enable laser postionization
(MALDI-2) as described before [35]. A frequency-tripled ac-
tively Q-switched Nd:YLF laser (Explorer ICT-349-120-E,
Spectra-Physics; emission wavelength = 349 nm, pulse
width = 7 ns; pulse repetition rate adjustable from 1 Hz to
5 kHz) was used as the MALDI laser. For postionization, a
frequency-quadrupled, mode-locked Nd:YAG laser (PL2231-
100-SH-FHPRETRIG, Ekspla, Vilnius, Lithuania) with a
wavelength of 266 nm and a pulse duration of 28 ps was used.
The MALDI laser was focused to produce ablation marks of
10–15 μm. Three consecutive sections intended for subse-
quent LMD and extraction were each measured with 30 μm
pixel size and a mass spectrometric resolution of 70,000 atm/z
200 in positive ion mode. To ensure optimal image quality,
MALDI as well as MALDI-2-MSI data intended for subse-
quent comparative analysis were collected with 20 μm pixel
size and a mass spectrometric resolution of 280,000 at m/z
200. For this, two subsequent sections to the ones used for
LMD mounted on glass slides were analyzed in positive and
in negative mode, respectively. Raw data was processed to the
vendor neutral .imzML format with Image Insight
(Spectroglyph LLC) and further analyzed using SCiLS Lab
(SCiLS, Bremen, Germany). Segmentation was performed
with weak denoising. For mass spectra, refer to Figs. S1 and
S2 of the Electronic Supplementary Material (ESM).

Laser microdissection

LMD was performed on an Axiovert 200 M inverse micro-
scope (Zeiss, Oberkochen, Germany) equipped with a LMD
unit (P.A.L.M. Microlaser Technologies). PALM Robo
(P.A.L.M. Microlaser Technologies) software was used to op-
erate the system. ROIs were identified with the SCiLS Lab
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segmentation tool, which merges pixel with similar mass
spectra. Regional coordinates were scaled and transferred to
the PALM Robo software. For details, see supplementary
methods in the ESM. LMD was performed without washing
steps and with the matrix layer intact. After LMD, released
regions of PEN membrane with attached tissue and matrix
layer were mechanically transferred into a HPLC vial for lipid
extraction.

Lipid extraction and HPLC quantification

LMD, lipid extraction, and quantification were performed in-
dependently on three consecutive tissue sections. Each extract
was measured in three technical replicates. The SPLASH®
LIPIDOMIX® Mass Spec Standard (Avanti Polar Lipids,
Alabaster, AL, USA) and (3′-sulfo)Galβ1-1Cer(d18:1/
18:0d3) (Matreya, State College, PA, USA) were used as in-
ternal standards (IS) for HPLC quantification both prepared in
separate solutions. Quantification was done by external cali-
bration with internal standard. PC(16:0/18:1), PC(18:0/20:4),
PC(18:0/22:6), PE(16:0/18:1), PG(16:0/18:1) (Avanti Polar
Lipids), and (3′-sulfo)Galβ1-1Cer(d18:1/24:1) (Matreya)
were diluted and combined to a stock solution with 1 × 10−4

mol/L of each compound. Nine lipid concentrations were used
to construct the calibration curve. Respective calibration solu-
tions were directly diluted from the stock (see ESMTable S1).
Calibration mixtures were constructed by evaporating 5 μL
solution of each IS in a glass vial and dissolving it in 20 μL of
the respective calibration solution. Concentrations with high
deviations in triple determination were excluded (see ESM

Table S2). Before the extraction of lipids, 5 μL of each IS
solution was added to the pieces of tissue regions produced
by LMD. A mixture of methyl tert-butyl ether and methanol
(MTBE/MeOH; 75/25; v/v) was used as an extracting agent
for a solid/liquid extraction [56]. The tissue was extracted with
300 μL of the extracting agent for 15 min in an ultrasonic
bath. The supernatant was filtered using syringe filters
(0.2 μm PTFE membrane, VWR, Darmstadt, Germany).
This step was repeated 2 times. The resulting extract was
evaporated to dryness. To transfer the dried extract to HPLC
vial micro inserts, it was vortexed with 100 μL of extraction
agent three times. The transferred extract was again evaporat-
ed to dryness, dissolved in 20 μL of chloroform, and stored at
− 20 °C until further use.

HPLC separation was done with an Ultimate 3000 nano-
HPLC system (Thermo Fisher Scientific) and a HILIC Diol
column (3 μm, 150 mm × 75 μm; Fortis Technologies,
Neston, UK). Eluent A was acetonitrile (ACN). Eluent B
was an ammonium acetate buffer (60 mM) in water/ACN
(90/10; v/v) set to pH 4with acetic acid. The gradient is shown
in Table 1. For HPLC-MS coupling, a home build nano-ESI
source, employing PicoTip™ emitters (coated silica, 15 ±
1 μm tip; New Objective, Woburn, MA, USA), was mounted
to the MALDI/ESI injector. Xcalibur (Thermo Fisher
Scientific) and Chromeleon software (Thermo Fisher
Scientific) were used to control the Orbitrap and HPLC.
HPLC-MS measurements were performed in negative ion
mode with a resolution of 70,000 in a mass range from m/z
500 to 1500. Ionization voltage was set to − 2 kV. Pierce
Negative Ion Calibration Solution (Thermo Fisher Scientific)

Sample 

preparation

MALDI-2-MSI

Segmentation

LMD

Extraction

HPLC-MS

Fig. 1 Schematic workflow for
comparative MALDI and
MALDI-2-MSI and quantitative
HPLC-ESI-MS

6878 Eiersbrock F. et al.



was used for mass calibration. AGC target was set to 1E6 and
maximum inlet time to 200ms. Data evaluationwas donewith
Xcalibur and Excel (Microsoft, Redmond, WA, USA). Peak
chromatographic areas of the deprotonated ion species for the
targeted sulfatide, PE, and PG and the acetate adduct for PC as
well as their respective IS were evaluated for quantification.

Absolute amounts of lipid as determined by quantitative
HPLC were normalized to the volume of their tissue region
of origin. Volume was calculated by multiplying the section
thickness of 20 μm of fresh frozen tissue with the values for
respective surface areas as generated by the software of the
LMD system. For clarity, lipid concentrations in solution are
described as mol/L while concentrations in fresh frozen tissue
are presented with the unit nmol/mm3 throughout the manu-
script. For an exemplary chromatogram, mass spectra and
calibration curves refer to Figs. S3 and S4 of the ESM.

Hematoxylin and eosin stain

Mayer’s hemalum solution (Merck, Darmstadt, Germany)
was applied for 1 min and rinsed of with tap water. Eosin Y
solution (0.5%, aqueous; Merck, Darmstadt, Germany) was
applied for 1 min and briefly rinsed with tap water. After
drying, the slides were observed with the microscope and
scanned with a slide scanner (reflecta, Eutingen, Germany).

Results

MALDI-imaging

MALDI-2-MSI measurements dedicated for subsequent
LMD and l ip id ext rac t ion were performed with
undersampling conditions, using a pixel size of 30 μm and
an ablated area of only about 15 μm in diameter. While lim-
iting the total amount of lipids removed or altered by laser
irradiation, this allowed for the recording of MS images with
reasonable mass spectrometric sensitivity and spatial resolu-
tion and enabled a subsequent segmentation of the imaging
data using SCiLS (Fig. 2b and c). Next to measurements per-
formed with undersampling on PEN slides, consecutive sec-
tions mounted on regular glass slides were investigated using

MALDI and MALDI-2 with a pixel size of 20 μm and an
ablated area of 15 μm in diameter (Figs. 3 and 4). While the
increase in pixel density allows for a more detailed represen-
tation of tissue features, comparison of the respective mass
spectra revealed no artifacts caused by the underlying PEN
membrane (Fig. 2a). All targeted lipid species could be iden-
tified in either one or both measured polarities as one or more
ion species. As described before, protonated ion species of
usually suppressed lipid classes such as [PE(34:1) + H]+ ben-
efit greatly from the application of laser postionization and are
detected with a significantly enhanced signal to noise (s/n)
using MALDI-2 [27]. In positive mode, PG(34:1), PE(34:1),
PC(34:1), PC(38:4), and PC(40:6) were detected as protonat-
ed ions, sodium adducts, and potassium adducts in MALDI
and MALDI-2 with at least 5 ppm mass accuracy (see ESM
Table S3 for details). The same applies to the deprotonated
ions of PG(34:1) and PE(34:1) and the sulfatide in negative
mode. All targetedm/z values were checked for isobaric inter-
ferences in a 5-ppm-wide window by analyzing the respective
ion chromatograms from HILIC-separated lipids for addition-
al peaks. Apart from possible isotopomers within the same
lipid class, no sizeable interferences with a contribution of
more than 5% could be identified for any targeted lipid. As
stated by different authors, normalization to the total ion count
(TIC) is not suitable to reduce the observed signal intensity
bias [57–59] (see ESM Fig. S5 for normalized a normalized
image). While image quality increases with respect to contrast
and feature recognition, inhomogeneous distribution of abun-
dant and/or highly responsive species like the sulfatides in
negative ion mode dominates the TIC and leads to the intro-
duction of an additional layer of complexity rather than a
reduction thereof. Therefore, all images represent raw signal
intensity data without any type of normalization.

Lipid extraction and HPLC-nESI-MS

Comparison of MS-based segmentation results with histolog-
ical features revealed by H&E stain and microscopy,
displaying a good correlation of the main segments with the
arbor vitae of the white matter (WM) as well as the granular
layer (GL) and molecular layer (ML) of the gray matter.
Because of the thin and branched structure of the GL, located
in between WM and ML, LMD was not able to confidently
and reproducibly dissect and extract this part of the cerebel-
lum. Therefore, only WM and ML were chosen for further
analysis (Figs. 2, 3, and 4). After addition of standard and
lipid extraction, quantitative analysis of all target lipids was
successful from both sample areas (Table 2). Measured lipid
concentrations are comparable with absolute concentration
values reported for whole rat brain; Choi et al. also reported
in the table for comparison [60]. To visualize the lipid content
in both areas and for better comparability, images depicting
the molecular content in WM and ML were constructed in

Table 1 Composition
and gradient of eluent
used in nano-HPLC-ESI-
MS

t/min B/%

− 30 5

2 5

27 30

35 100

49 100

59 5
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analogy to MSI data with the color scale normalized to the
higher concentration (Figs. 3a and 4a).

Signal intensity response in MALDI-MSI in positive ion
mode

Figure 3 shows the signal intensity distribution forMALDI (right
hemisphere) and MALDI-2 MSI (left hemisphere) compared
with the underlying molar concentration in WM and ML as
measured by quantitative HPLC-nESI-MS on the example of
PC(34:1). Hotspot removal was applied as provided by SCiLS
and signal intensity scales are normalized to the maximum value
of each image. While all three ion species show similar intensity
distribution in MALDI andMALDI-2, respectively, clear differ-
ences can be discerned between the two ionization modalities.
Direct comparison of signal intensity distributions forMALDI as
well as MALDI-2 (Fig. 3b–d) with the visualization of the un-
derlying concentration in the tissue (Fig. 3a) reveals large dis-
crepancies for both modalities. This can also be observed for
almost all investigated lipids, where in most cases, the signal
intensity distribution suggests an inverse of the actual molar
distribution of the respective lipid species. To further analyze
these effects, signal intensities of all accessible ion species for
each target lipid in the WM and ML were summed and normal-
ized to the size of the region by utilizing the mean intensity
values provided by SCiLS for the respective ROI (ESM
Tables S4 and S5). These average signal intensity values were
normalized to the underlying molar concentration as revealed by
the quantitative measurement. This results in a signal response
value (“signal intensity per mol”) depicted in Fig. 5. For all
investigated lipids, the comparison of the two regions reveals a
sizably stronger response factor onML compared with theWM.
A more pronounced bias towards ML is detected in MALDI-2
compared with conventional MALDI. Comparison between the
two ionization methods also reveals an increase of the response

for PE and PG from both tissue types as well as PC on the ML
withMALDI-2, while response from the investigated PC species
from WM was largely unchanged between the two methods.

Signal intensity response in MALDI-MSI in negative
ion mode

Analogous to the positive ion mode, experiments were also
evaluated for MALDI and MALDI-2 images recorded in the
negative ion mode. Here, only deprotonated lipid species of
PE(34:1) and PG(34:1) and the sulfatide were detected and
analyzed. Again, MALDI and MALDI-2 produce somewhat
different signal intensity distributions (Fig. 4), and again dis-
crepancies between these distributions and the underlyingmo-
lar concentrations become apparent for most investigated lipid
species with the exception of the sulfatide (ESM Fig. S6). In
analogy to the positive ion mode, signal response factors were
calculated and are displayed in Fig. 6. Similar to the positive
ion mode, a strong intensity bias towards the ML over the
WM is revealed for the investigated PE and PG species. In
contrast, the sulfatide shows a slightly increased response
from the WM. Comparing MALDI and MALDI-2, again PG
and PE show an increased response with postionization for
both tissue types while the response for sulfatide decreases.
A similar decrease in signal intensity on peaks, dominating
spectra in regular MALDI upon the use of MALDI-2 on
Orbitrap instruments has been described before and is not
observed in qTOF-type instruments [26].

Discussion and conclusions

Comparative data fromMALDI-MSI and quantitative HPLC-
nESI-MS suggest a strong dependence of signal intensity re-
sponse on the type of tissue. As described above, in both
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Fig. 2 MALDI-2-MSI of mouse
cerebellum. a Comparison of
average spectra acquired from
comparable tissue sections of
mouse cerebellum mounted on
regular glass slide (top) and PEN
slide material (bottom) in positive
ion mode. b Exemplary MALDI-
2-MS image of m/z 792.55 (pre-
sumably [PE(40:6) + H]+) record-
ed in undersampling mode
(square pixel size 30 μm; round
ablationmark 15μm in diameter).
c Result of segmentation per-
formed with SCiLS lab software.
d Optical image of H&E-stained
section (located 40 μm behind
section used in b)
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a
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ML
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intensity / a.u.

+H+

+K+

+Na+

PC(34:1)
Fig. 3 Comparison of positive ion mode MALDI and MALDI-2-MSI
signal intensity maps with underlying molecular content on the example
of PC(34:1). a Schematic depiction of the molar distribution of PC(34:1)
in the white matter (WM) andmolecular layer (ML) based on quantitative
nano-HPLC-ESI-MS analysis after laser microdissection and solid-liquid
extraction. b–d Signal intensity distribution of [PC(34:1) + H]+ (b),
[PC(34:1) + Na]+ (c), and [PC(34:1) + K]+ (d) measured from glass slide
with DHAP as a matrix in positive ion mode at 20 μm pixel size using
conventional MALDI (right) and MALDI-2 (left)

a

b

100 %

0 %

ML
WM

MALDI-2 | MALDI

intensity / a.u.PE(34:1)

-H+

Fig. 4 Comparison of negative ion mode MALDI and MALDI-2-MSI
signal intensity maps with underlying molecular content on the example
of PE(34:1). a Schematic depiction of the molar distribution of PE(34:1)
in the white matter (WM) andmolecular layer (ML) based on quantitative
nano-HPLC-ESI-MS analysis after laser microdissection and solid-liquid
extraction. b Signal intensity distribution of [PE(34:1)-H]− measured
from glass slide with DHAP as a matrix in negative ion mode at 20 μm
pixel size using conventional MALDI (right) and MALDI-2 (left)

Table 2 Molar concentration of different lipids in white matter and
molecular layer as determined by quantitative nano-HPLC-ESI-MS and
standard deviation (SD) from triple determination and comparison to
values presented by Choi et al. in [60]; Sulfatide: (3′’-sulfo)Galβ1-
1Cer(d18:1/24:1)

White matter Molecular layer Choi et al. whole brain*

Mean SD Mean SD

Sulfatide 10.2 1.4 0.37 0.181 n/a

PG(34:1) 0.41 0.031 0.43 0.042 0.016

PE(34:1) 1.46 0.1 0.46 0.086 0.53

PC(34:1) 9.07 0.9 7.00 1.30 10.06

PC(38:4) 1.17 0.03 1.20 0.02 2.13

PC(40:6) 1.25 0.07 2.14 0.09 1.12

All values given in nmol/mm3

*Homogenate from whole rat brain; original values presented as
nmol/mg, volume calculated with approx. density of 1 kg/L
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polarities and for all investigated lipid classes with the excep-
tion of sulfatide, stronger signal intensity responses were re-
corded from the ML compared with the WM with respect to
the underlying molecular concentration. This bias could de-
rive from a number of effects described to impact ion signal
intensities in MALDI-MSI.

Local salt concentration

In the MALDI-MSI analysis of untreated fresh frozen tis-
sue samples in positive ion mode, sodium and potassium
adducts provide the most common carrier of charge [28].
The formation of these adducts can be shifted towards one
or the other, as well as other alkali metal cations by treat-
ment with solutions of the respective acetate or proton-
ation by the use of ammonium acetate [29]. Differences in
local salt concentration between different types of tissue
could, therefore, in principle induce tissue-type-specific
ionization efficiencies. The effects observed here, howev-
er, are independent of the ion species. A local shift in salt
concentration was therefore ruled out as the main reason
for the observed bias in signal intensity response.

Ion suppression effects

As described in the introduction, ISE are often observed
in MALDI-MS of complex mixtures. In the context of
membrane lipids, PC has been reported to heavily sup-
press all other GPL classes in the positive ion mode
[16]. Recently published results by Boskamp and
Soltwisch describe additional ISE between other GPL
classes and also point out an inverse ion promotion effect,
where the presence of a second GPL boosts ion signal
intensity [15]. A variation of strongly suppressing or pro-
moting molecular species between different types of tissue
could therefore be the root cause of the observed bias in
intensity response. Different indications, however, oppose
the involvement of these effects. First, an ISE-induced
bias would be expected to strongly influence heavily sup-
pressed lipid classes like PE while other classes like PC
should be largely unaffected. Second, ISE and promotion
effects are particularly different between positive and neg-
ative ion mode [15]. As evident in Figs. 5 and 6, the bias
is, however, similarly observed for different lipid classes
and in both polarities. Additionally, MALDI-2 has been
reported to attenuate ISE, especially for strongly sup-
pressed lipid classes such as PE in both polarities [27].
In contrary, a stronger bias has been observed when using
MALDI-2 compared with regular MALDI. For these rea-
sons, ISE can be eliminated as the main reason for the
observed effects.
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Fig. 5 Signal intensity response from tissue in positive ion mode for
different lipids. Values represent the average MALDI (a) or MALDI-2-
MSI (b) signal intensity derived from the molecular concentration
(nmol/mm3 of fresh frozen tissue) present in the tissue region for white
matter (WM, red) and molecular layer (ML, blue). Average signal inten-
sities derived from the sum of protonated, sodiated, and potassiated ion
species
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Fig. 6 Signal intensity response from tissue in negative ion mode for
different lipids. Values represent the average MALDI (a) or MALDI-2-
MSI (b) signal intensity derived from the molecular concentration
(nmol/mm3 of fresh frozen tissue) present in the tissue region for white
matter (WM, red) and molecular layer (ML, blue). Average signal inten-
sities derived from deprotonated ion species. Sulfatide: (3′-sulfo)Galβ1-
1Cer(d18:1/24:1)
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Analyte extraction and matrix morphology

Incorporation of analyte into matrix crystals or at least a close co-
localization of matrix and analyte is largely accepted as an impor-
tant prerequisite for a successful MALDI experiment. While in
“classical” MALDI, this is usually achieved by mixing analyte
and matrix in bulk solution; in MALDI-MSI, spatial distribution
of analyte within the sample has to be contained during matrix
application. As described above, matrix is most commonly ap-
plied by iterative spraying of matrix solution and micro-
extraction within the applied droplets or, alternatively, by
sublimation/recrystallization protocols. In case of spraying, the
degree of extraction strongly depends on the type and amount of
employed solvent as well as physical and chemical properties of
the tissue [32]. For sublimation, 3-dimensional analysis of the
matrix layer revealed a diffusion of lipids into the matrix layer that
strongly depends on the local composition of analyte [31]. Next to
extraction and incorporation of analyte, also the size and shape of
matrix micro-crystals are influenced by the underlying tissue type
for both types of application. Wiegelmann et al., e.g., describe
strong variations in matrix morphology on WM and gray matter
(GM) of mouse cerebellum [30]. In this particular case, the phys-
ical and chemical structure of WM and GM significantly differs.
WM is rich in myelin that is densely folded and wrapped around
nerve axons. It may therefore be speculated that extraction of
membrane lipids from this tissue type into the matrix layer is
significantly hampered by its structure. Boggs et al. furthermore
suggest that sulfatides, among other glycolipids, abundantly dec-
orate the outer layer of myelin bundles [61]. This may lead to an
increased extraction into the matrix on WM regions and explain
the distinctly different intensity response exhibited for this partic-
ular lipid. These results stand in contrast to reports on imaging
techniques based on liquid extraction like nano-desorption
electrospray ionization (nanoDESI) or pressurized liquid extrac-
tion surface analysis (PLESA) where no dependence of extraction
efficiency on brain tissue type has been described in quantitative
analysis [62, 63]. For MALDI-MSI, however, different studies
have reported an influence of tissue type and preparation on the
signal response for different types of lipids [18, 30, 32, 64], while
others have reported a general correlation of signal intensity in
MALDI-MSI with underlying molar concentrations [53, 54].

For the reasons stated above, we conclude that changes in
analyte extraction and/or matrix morphology induced by the
physical and chemical properties of the underlying tissue type
are the main root cause for the observed bias in signal intensity
response in murine brain. While factors like ion suppression
and salt concentration could be counteracted by the use of
external standard applied on top or underneath the tissue sec-
tion, adverse effects caused by extraction from tissue can only
partly be accommodated using this strategy [32, 45].
Furthermore, the use of a specific exogenous standard may
limit the analysis to a small number of targeted analyte spe-
cies. Omitting the use of external standard, Hankin and

Murphy successfully demonstrated how normalization strate-
gies based on an abundant endogenous PC species can be used
to correct for tissue-type-specific signal response [54]. This
strategy however may be limited by the availability of an
abundant and homogenously distributed endogenous lipid
throughout the complete tissue section and is limited to the
respective class of phospholipid.

The results demonstrate that great care has to be taken in
the interpretation of MALDI(-2)-MSI data and illustrate the
need for robust and generally applicable quantification strate-
gies. While laborious, MALDI-MSI-guided LMD with sub-
sequent extraction and quantitative analysis may in the future
allow to define reliable tissue-type-specific signal response
factors for each class of lipids. Ultimately, this may enable a
tissue-type-specific normalization without the use of exoge-
nous standards that is guided by histological information.
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