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Introduction
Gene regulatory network inference (GRNI) algorithms are 
essential in order to interpret large-scale microarray datasets, 
which allows an understanding of the working mechanism 
of an organism genome wide. To characterize these GRNI 
algorithms in detail by evaluating their network inference 
performances over different aspects, various network-based 
measures were recently introduced.1,2 Using these new 
ensemble-based measures, the differences in the abilities of 
various GRNI algorithms have been revealed from the highest 
resolution at the edge level to the lowest resolution at the global 
level.1 These analyses helped to gain a better understanding 
of the available inference algorithms. Assessing GRNI algo-
rithms with respect to network-based metrics became recently 
popular, and is introduced in Refs. 1 and 2. Therefore, a 
software package providing an easy-to-use implementation 

of these network-based measures would be helpful for fur-
ther promoting their application. For this reason, we present 
an R software package implementation of the network-based 
measures introduced in Refs. 1 and 2. The software package 
is developed in the software platform most commonly used 
by the bioinformatics community, R, which is freely avail-
able at the web site http://www.R-project.org. We named our 
package netmes as an abbreviation of “network measures”. The 
package can be downloaded from the R-Forge web site http://
netmes.r-forge.r-project.org/.

Local network-based measures provide researchers with 
means to investigate the robustness and weakness of an infer-
ence algorithm. There are several studies that investigated the 
most appropriate approaches to infer gene networks. Some 
of them propose new inference methods, whereas others 
are comparative studies.3–5 In these studies, one method  
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is observed as preferable to others in particular cases and 
conditions. However, so far, there is no commonly accepted 
inference method showing the best performance among all the 
conditions. As the underlying networks of the large-scale real 
biological datasets are mostly unknown, ie we have restricted 
information about them, the evaluations of the inference 
approaches are commonly performed using small-scale real 
datasets or moderate-scale synthetic datasets.6,7 Moreover, as 
the datasets involve pathological conditions, evaluations of the 
methods become more difficult.

We propose to investigate local characteristics of net-
work structures, which affect the correlation patterns between 
genes, to overcome the above problems and to facilitate the 
evaluation of existing inference methods. Hence, existing 
inference methods could be investigated in a more fair and 
network-specific manner. In the literature, global measures 
such as the F-score8 and the area under the receiver operating 
characteristic (AUROC) curve9 are utilized to evaluate the 
inference performances of the methods. As mentioned above, 
we propose to use several local network-based measures in 
addition to a global metric, eg an F-score.

Global metrics integrate the overall inference perfor-
mance and provide one output to the researchers. As such, 
they do not provide precise information of how the global 
metric is affected by a structural component, ie an individual 
edge or an individual motif (eg, three-node motif), in the net-
work. Instead, local measures can provide such details. Hence, 
they allow the assessment of the characteristics of the infer-
ence method and are more problem oriented than the global 
ones.

In the following, ensemble datasets are used to illustrate 
the results of local network-based measures. For this, the 
underlying networks (true network) of the ensemble datasets 
are the same, but their expression values are different. Each 
synthetic expression dataset is obtained using different kinetic 
equation parameters in SynTReN.10

The network specific measures utilized in this study are 
number of three-node (gene) motifs; mean true reconstruction 
rate of each three-node motif; mean true positive rates (TPRs) 
for each edge; and Ds, the degrees of edges around each gene 
(node). Information regarding these measures is given in detail 
in the following section.

A detailed definition of this package with examples for 
each function can be found in the following sections of this 
study. We developed netmes as a command line package that 
allows great flexibility and also adaptability for integration 
with different related software packages such as minet.8,11 
Most of the figures in Refs. 1 and 2 can be generated by simi-
lar datasets using netmes.

The organization of the paper is as follows: the measures 
and their implemented methods included in the software 
package are explained in Section 2, an example of the usage of 
the methods is given in Section 3, and finally, a conclusion is 
given in Section 4.

Methods
An example of the usage of the software package netmes is 
given in the following section. We briefly define the local 
network-based measures and mention important points and 
functions of the package.

As it is the nature of the network-based measures, netmes 
requires an ensemble of gene expression datasets instead of just 
a single dataset, belonging to the same underlying structure of 
a gene network. Although small datasets can be used for gen-
erating the results of metrics of the netmes package in principle, 
larger datasets allow for a more robust assessment. For instance, 
in Refs. 1 and 2, the number of datasets of each network under 
consideration was 300. This number corresponds to the size 
of the ensemble (E). To use the real biological datasets that 
belong to the Dialogue for Reverse Engineering Assessments 
and Methods (DREAM) project,12,13 these datasets should be 
resampled for one underlying network. Hence, there should be 
an ensemble of the gene expression datasets that have the same 
underlying network. It is not applicable to use the netmes with 
only one expression dataset for one true network.

We provided five datasets of the network shown in Figure 1 
to demonstrate all the network measures of netmes; this allows us 
to obtain similar figures as in Refs. 1 and 2. The example data-
sets including biological noise were generated by SynTReN.10 
As an exemplary GRNI algorithm, we used relevance networks 
(RelNet)14 and stored the inferred adjacency matrix in the same 
folder as the example datasets as mim.exp in each folder.

The ensemble inference performance approach to evalu-
ate GRNI algorithms and also the details of the network-
based metrics can be found in Refs. 1 and 2, and for reasons of 
brevity, we shortly define them in this study.

The first network-based measure evaluates the inferabil-
ity of the three-gene motifs that involve the different directed 
edge types. Inferring and examining the three-gene motifs 
is important because the three-gene motifs are the most cru-
cial fundamental components of large networks.15 Moreover, 
mean true reconstruction rate of each motif using TPR and 
true negative rate (TNR) of each gene in that motif can also 
be extracted using netmes as given in the study.2

Another metric, namely mean TPR of an edge, is 
obtained by dividing the number of times that edge was truly 
inferred among the datasets by the number of datasets (E) in 
the ensemble.

The next metric, namely Ds (degrees of the edges), pro-
vides the categorization of the edges and investigates the 
impacts of activator (ac) (positive effect) and repressor (re) 
(negative effect) edges on the TPRs. We demonstrate the 
impacts of the ac (red bars) and re (blue bars) edges on the 
TPR of the edges in Figure 3(a) and (b) for synthetic and real 
biological datasets, respectively.

In addition to the above local, network-based metrics,  
a global metric, namely F-score, is also implemented in netmes. 
F-score metric is obtained by using precision (p) and recall (r) 
measures as given in the following equation:
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where TP, FP, and FN, respectively, denote true positive, false 
positive, and false negative. TP is the number of edges that 
are inferred by the inference algorithm and actually exist in  
the underlying network. FP is the number of edges inferred by 
the inference method, but do not actually exist in the under-
lying network. Finally, the FN edges actually existed in the 
underlying network, but they could not be inferred by the 
inference algorithm.

The definitions of the functions that allow us to obtain 
the mentioned network-based measures are given below.

•	 The function TPRall provides one of the network-based 
metrics that assesses the influence of ac and re edges on 
the inference performance. TPR means true positive rate 
and TP denotes number of ac and re edges that are truly 
inferred by the GRNI algorithm.

•	 The function plotDs provides a measure that assesses the 
influence of the in-degree and the out-degree (Ds) of an 
edge on the inferability.

•	 The functions motifcount3 and plotMotifs find motifs and 
provide a measure that evaluates the influence of three-
node motif types on the inferability.

•	 The function visnet allows the visualization of networks 
with respect to their inferability of each edge by classify-
ing the edges into four colors, namely black, blue, green, 
and red, showing the best to the worst inferability of each 

edge, respectively. In-degree and out-degree values can 
also be labeled on the edges of this network.

In addition to the functions given above, there are two 
main functions, namely evalnetworks and evalnetworksNames. 
They involve all the measures’ implemented functions in which 
all the calculations are performed. If the network under con-
sideration is a synthetic network and nodes have numbers as 
names, then evalnetworks is used as it is designed to read from 
the .sif file of the output of SynTReN.10 If the network under 
consideration is a real biological network and nodes have real 
gene names, then evalnetworksNames should be used, as it 
reads from the .sif file in a different manner.

Examples and a Demonstration of the Package’s 
Usage
To make it easier to understand netmes, we provide a detailed 
example in this section. Moreover, a detailed explanation of 
the datasets is also available along with a step-by-step usage 
of each function including their outputs. To learn the usage of 
netmes and employ it efficiently, one should read the previous 
section and also have the two main papers1,2 in hand to see the 
real applications of each function of the package.

In the folder of the source package (with the extension tar.gz)  
netmes, we provide an EXAMPLE.txt file that can be copied 
and pasted to run all the important functions of netmes.  
It will give a quick run of all the functions. To be able to use the 
netmes, the dependent package minet 3.1.1 must be installed. 
For earlier versions of minet, one needs to follow the instruc-
tions in EXAMPLE.txt. We placed example datasets and 
their true networks in the data folder of netmes for running the 
example simulations. The outputs of the functions can be seen 
step-by-step in Figures 2–5, respectively, for a quick demon-
stration of the abilities of netmes for a given synthetic network. 
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Figure 1. An example of synthetic network we provide together with ensemble datasets for demonstrating the usage of netmes.
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The true network of these datasets is a directed acyclic graph 
(DAG)-like network consisting of 100 nodes (genes). SynTReN 
was used to generate the datasets from the network, which gen-
erated expression data in steady-state conditions using dynamic 
equations in Michaelis–Menten and Hill enzyme kinetics with 
100 samples. For using different datasets, formats and names 
of the datasets and files should be adjusted, exactly in the same 

way as the ones in the folder data. Or alternatively, names 
of the files and datasets can be changed appropriately in the 
source files in the folder of the R package. Therefore, one needs 
to be thorough in the naming and formatting of the dataset so 
that netmes can find the desired data files.

Section 3.1 involves the definitions of the datasets. Sec-
tion 3.2 explains the usage of the functions with examples.
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Figure 2. (A) F-scores obtained for the synthetic network. (B) F-scores obtained for a real biological sub-network of E. coli. (C) I0 threshold values of MI 
values of the edges for the synthetic network. (D) I0 threshold values of MI values of the edges for the real biological network. (E) Average MI values of the 
edges in the synthetic network. (F) Average MI values of the edges in the real biological network.
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Usage of the datasets. netmes is designed to run with the 
datasets in the format of the data files that are automatically 
generated as a result of the expression data generator software 
application SynTReN.10 Also, each of the ensemble datasets 
must be saved in a different folder, and the names of these 
folders are given as integer numbers from 1 to N, where N 
is the number of datasets that will be used for the ensemble 
analysis. This means that N is the size of the ensemble. It 
is noteworthy to point out that each of the datasets has the 
same underlying network and consequently, allows an ensem-
ble analysis of inference performance of a GRNI algorithm 
on this network. The name of each dataset in the num-
bered folders must be nn100_nbgr0_hop0.3_bionoise0.05_ 
expnoise0.0_corrnois0.0_neighAdd_maxExpr1_dataset.txt. This 
is the standard output file name by SynTReN. If desired, this 
name can be changed by modifying the functions in netmes; 

however, we designed our package to work conveniently with 
SynTReN because it can be considered as a gold standard data 
generator package for simulation purposes. The resulting data 
files are tab delimited and their structure is matrix like, where 
the columns correspond to samples and the rows to genes. The 
first row of the matrix from column 2 to S  +  1, where S is  
the sample size, contains the list of names of each sample. The 
first column of the matrix from row 2 to G + 1, where G is the 
number of genes, contains the list of names of each gene. If 
the underlying network of the dataset is a biological network 
(no synthetic network), then only the gene names are in the 
first column. If the network is a synthetic network, such as 
a DAG, then the gene names become numbers of the form 
gene_number (eg gene_098).

The second file that must be in the numbered data fold-
ers along with the datasets is the corresponding mutual 
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Figure 4. Total in-degree and out-degree of edges (Ds) in the (A) synthetic and (B) real biological networks.
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information (MI) matrix, which is also a tab-delimited file. 
For the example datasets, we obtained it by using the R pack-
age minet11 and application of the RelNet14 GRNI algorithm. 
The name of the MI matrix is mim.exp, and the first row of 
the file contains the names of the genes. The first column goes 
from the second row till the end and also contains the names 
of the genes, and the rest are the MI values among the genes, 
where the MI values lead to a square matrix. The diagonal of 
this matrix is set to zero.

The third file is for representing the true network connec-
tions, and it is saved with the extension .sif as a standard input 
file format to SynTReN. Its name and folder can be named arbi-
trarily as it can be referred to by a variable, ie infile = “./netmes/ 
data/networkDAG.sif.” However, the format of the file must be 
such that each row has three elements: the first one is the gene 
name, the second one is the interaction type (ac for activator 
and re for repressor), and the third one is again a gene name. 
“cpxAR ac rotA” or “gene_006 re gene_097” is an example. All 
pairwise interactions in a network are written as rows in this 
file. We direct the reader to see the example files in the data 
folder of netmes. To run simulations, we provided five different 
datasets for a quick but informative overview. In Refs. 1 and 2, 
the number of datasets was 300 for a thorough analysis of the 
inference performances of GRNI algorithms. Moreover, the 
biological network is a sub-network from the transcriptional 
regulatory network of Escherichia coli16,17 and no synthetic net-
work in our demonstration.

Usage of the methods. We run all the functions of net-
mes with the example datasets in the folder data of the pack-
age. Practicing the examples and supporting them with a real 
application will help for a better understanding and usage of 
netmes.

To indicate an R command line, we place symbol R. at 
the beginning of a line and change the background of each 
command line to gray. We start by demonstrating the func-
tionality of netmes for a synthetic network. For this reason, one 
needs to use the function evalnetworks, whereas evalnetwork-
sNames is used for biological networks, as mentioned above.

We assign the number of different datasets for the syn-
thetic network:

R . E = 5

The path of the .sif file that includes the true network is 
pointed to a variable:

R . infile = “./netmes/data/networkDAG.sif ”

The folder path of the datasets, which are in the num-
bered folders, is assigned to a variable:

R . infilepath = “./netmes/data/syn/”

The true network matrix is formed from the .sif interac-
tion map file and set to a variable:

R . net = readNet(infile, infilepath)

Now the initialization process is finished, and we can run 
the core function evalnetworks to estimate the F-scores for 
each dataset and also other related metrics that can be seen in 
the value of this function in R or in the vignette file under the 
inst folder in netmes:

R . res = evalnetworks(E, net, infilepath)

Here care must be taken to make sure that the dependent 
package minet is the version 3.1.1 as mentioned above, because 
otherwise an error message appears. If an earlier version of 
minet is installed, then it is needed to change expression 
fs[ind] to fs[ind, ] in the functions evalnetworks and evalnet-
worksNames in the R folder of the netmes package. This will 
also require you to repack the netmes folder by the command  
“R CMD build netmes” in the command line of a terminal.

We now have the ensemble values in the variable res and 
can plot these. Figure 2(a) shows the boxplot for the F-scores 
obtained from the example datasets of the synthetic DAG-
like network. Accordingly, Figure 2(b) shows the F-scores for 
a small real biological network. Figure 2(a) is an example that 
is similar to the real application in Figure 1.B in Ref. 1 and the 
middle Figure 2 in Ref. 2. In Refs. 1 and 2, real application 
means that real biological gene expression datasets are used in 
the experiments.

Figure  2(c) shows the boxplot for the optimal thresh-
old MI values, I0, which were obtained from maximizing 
the F-score for each of the dataset. Real applications of this 
example are Figure 1.A in Ref. 1 and the top Figure 2 in Ref. 
2. Also, the boxplot showing the optimal I0 threshold value 
for the real biological datasets is given in Figure 2(d).

Figure 2(e) shows a boxplot of the average MI values in 
the network per edge as described in Equation (3). This is also 
shown in Equation (2) in the study:2

	

( )
( )

avgMI in NETWORK

MI | in NETWORK

ij

E

ij
k

i j

k i j
E

→

= →∑1 	
(3)

where E is the number of expression datasets that have the 
same underlying network in the ensemble of the datasets, as 
mentioned above.

& $\#m$ & 109 & 16 & 94 & 2 & 0 \\

& $\bar{p}$ & 0.682 & 0.396 & 0.642 & 0.333 & 0.000 \\

& $\sigma(\bar{p})$ & 0.176 & 0.094 & 0.167 & 0.070 & 0.000 \\ 

& $\bar{I}$ & 0.879 & 0.077 & 0.930 & 0.762 & 0.000 \\

& $\sigma(\bar{I}$ & 0.564 & 0.114 & 0.563 & 0.224 & 0.000 \\

Figure 5. Automatically generated latex table for three-node motifs.
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Figure  2(e) corresponds to the results shown in the 
bottom Figure 2 in Ref. 2 and Figure 1.C in Ref. 1. Average 
MI values of the edges obtained from the real biological data-
sets are illustrated in Figure 2(f).

Boxplots in Figure  2(a)–(f) are obtained by using the 
default boxplot function (ie the modified boxplot) in R. The 
smallest datum above the “1st quartile −  1.5 ×  IQR” corre-
sponds to the lower whisker; the greatest datum below the “3rd 
quartile + 1.5 × IQR” denotes the upper whisker where IQR is 
the interquartile range that is obtained by subtracting the 1st 
quartile from the 3rd quartile. Any data points under the 1st 
quartile − 1.5 × IQR and above the 3rd quartile + 1.5 × IQR 
are denoted by circles in Figure 2.

So far, we have performed some global ensemble anal-
ysis of the network. We continue with local network-based 
measures. To plot the inferability of each edge, we created the 
function visnet, where each edge is classified into four col-
ors, black, blue, green, and red, showing the best to the worst 
inferable edges, respectively:

R . Sm = sumdeg(net)

R . visnet(net, c(“no”), res$rmat, Sm)

The visualization format can be changed in the output 
GUI, and we observed the best representation by using the 
Fruchterman and Reingold graphical layout. The color and the 
size of the nodes and edges can also be changed in the output 
figure. These changes can be saved as an .eps file. An example 
of this function is illustrated in Figure 1  in this paper, and 
figures of real applications can be found in Figure 5 in Ref. 1 
or Figures 5–7 in Ref. 2.

We will now plot the effect of ac and re edges on the TPR 
of edges in the network, as shown Figure 2 in Ref. 2. We used 
the color red for ac edges and blue for re edges. We used the 
function TPRall to compute the TPR of ac and re edges first:

R . TPRs = TPRall(res)

From this, we can obtain the boxplot of the results for a 
visual inspection of them. An example of it can also be seen in 
Figure 3(a) that is obtained by

R . postscript(file = “TPRall_syn.eps”, horiz = FALSE, 
paper = “ letter”)

R . hist(TPRs$TPReALL, 5, ylim = c(0,50), xlim = c(0,1), 
col = “blue”, main = “”, ylab = “”, xlab = “TPR”, cex.lab = 1.7, 
cex.axis = 1.6)

R . hist(TPRs$TPReALLac, 5, ylim = c(0,50), xlim = c(0,1), 
add = TRUE, col = ”red”)

R . dev.off()

For the real biological network, the effect of ac and re 
edges on the TPR values is given in Figure 3(b). Again, red is 
used for ac edges and blue is used for re edges.

Another network-based measure calculates the variable 
Ds, which is the sum of the out-degree of node i plus the  
in-degree of node j that shows the effect of the neighbor 
edges on the inferability of each edge in the network, similar 
to Figure  3  in Ref. 1. An example of this can be seen in 
Figure 4(a), generated with the following function that results 
also in a saved figure with the name Ds.eps:

R . Ds = plotDs(TPRs$TPReALL, Sm, fig = TRUE)

Also, for the real biological network, TPR with respect 
to the sum of in-degree and out-degree neighbors of each edge 
is given in Figure 4(b).

We now use the function motif_count3 to search for the 
inferability of three-node motifs, which are given in Figure 1 
of the supplementary file:2

R . res2 = motifcount3(net, res$rmat, res$aveMImat)

The obtained results can be automatically converted into 
a table in the latex format by

R . plotMotifs(res2)

The resulting latex text is shown in Figure 5.
If the network under consideration is a biological net-

work, then it will have a slightly different .sif file and to per-
form a similar analysis, the function evalnetworksNames needs 
to be used instead of evalnetworks. Evaluation figures for a real 
biological dataset of E. coli bacterium, similar to the previous 
figures for the synthetic network, can be obtained by running 
the scripts in the EXAMPLE.txt file in the netmes folder of the 
source package (with the extension tar.gz). Figures 2(b), (d), 
(f), 3(b), and 4(b) illustrate the F-scores, optimal I0 threshold 
values of MI scores, average MI values of the edges in the 
network, TPR values, and Ds measures of these small real bio-
logical ensemble datasets, respectively.

The inferred network obtained from RelNet for the real 
biological datasets is given in Figure 6.

Conclusion
In this study, we introduced the R software package netmes, 
aiming to facilitate the usage of network-based metrics for 
ensemble datasets.

A large variety of global and local network-based metrics 
can be used to evaluate the inference performances of GRNI 
algorithms when using an ensemble of gene expression data-
sets. In this paper, we show only some of these.

One of our measures evaluates three-gene motifs, which 
are the building blocks of many large-scale biological networks. 
Another metric, Ds, considers the direction of the edges in the 
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given network and categorizes the edges according to their 
types (ie whether they are ac or re edges). Hence, this measure 
allows us to observe the impacts of ac and re edges on TPR. 
Another metric illustrates the mean TPR of each edge among 
the gene pairs. Finally, an edge-level evaluation provides us 
with the highest resolution achievable.

By using the proposed local measures, inference algo-
rithms can be evaluated in a network-specific manner.
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