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Abstract

Background: Multiple sclerosis (MS) is a chronic CNS autoimmune disease characterized by inflammation,
demyelination, and neuronal degeneration, where myelin-specific CD4 T cells play critical roles in the
formation of acute MS lesions and disease progression. The suppression of IL-7Ra expression and the
upregulation of inhibitory receptors (PD-1, etc) are essential parts of the cell-intrinsic immunosuppressive
program regulating T effector functions to prevent autoimmunity. However, little is known on the factors
regulating IL-7Ra/PD-1 balance in myelin-specific CD4 T effector/memory cells during the development of
CNS autoimmunity.

Methods: We analyzed the roles of the transcription factor T-bet in regulating the expression of IL.-7Ra and inhibitory
receptors in myelin-specific CD4 T cells. Furthermore, we compared the effects of different inflammatory cytokines that
are crucial for Th1 and Th17 development in regulating the IL-7Ra/PD-1 balance.

Results: We discovered that T-bet suppresses the expression of inhibitory receptors (PD-1 and LAG-3) and
promotes IL-7Ra expression in myelin-specific CD4 T cells in vitro and in vivo. As a result, T-bet skews IL-7Ra/
PD-1 balance towards IL-7Ra and promotes enhanced effector function. Furthermore, IL-12 enhances IL-7Ra
expression in a T-bet independent manner in myelin-specific Th1 cells. Meanwhile, IL-6, the cytokine inducing
highly encephalitogenic Th17 differentiation, suppresses PD-1 while upregulating IL-7Ra, skewing IL-7Ra/PD-1 balance
towards IL-7Ra, and promoting enhanced effector function. Moreover, blocking IL-7 signaling in myelin-specific CD4 T
cells by all-7Ra significantly delays experimental autoimmune encephalomyelitis (EAE) onset and reduces
disease severity.

Conclusions: T-bet is a major transcription factor regulating IL-7Ra/PD-1 balance in myelin-specific CD4 T
cells during EAE development, and there is a positive correlation between several major determinants promoting T cell
encephalitogenicity (T-bet, IL-6, IL-12) and an IL-7Ra/PD-1 balance skewed towards IL-7Ra. Furthermore, IL-7 signaling
inhibits PD-1 expression in myelin-specific CD4 T cells and blocking IL-7 signaling suppresses T cell encephalitogenicity.
Therefore, interference with inhibitory pathways and IL-7Ra expression may suppress the encephalitogenic potential of
myelin-specific CD4 T cells and have therapeutic benefits for MS patients.
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Background

Multiple sclerosis (MS) is the leading cause of neuro-
logic disability in the US in young adults after trauma;
thus, most patients suffer from the effects of MS for
most of their adult life. Experimental autoimmune
encephalomyelitis (EAE) is a T cell mediated auto-
immune disease of the central nervous system (CNS),
which has served as an animal model for MS for several
decades. The formation of acute inflammatory MS
lesions is mediated by myelin-specific, autoreactive T
cells [1]. Previous EAE studies have shown that both
IFNy producing Thl cells and IL-17 producing Th17
cells can be highly encephalitogenic effector T cells,
although they have distinct cytokine profiles [2—6]. How-
ever, both IFNy and IL-17 deficient mice are still suscep-
tible to EAE induction [7, 8], suggesting that molecules
other than the signature cytokines may contribute to the
regulation of the effector function and encephalitogeni-
city of myelin-specific Thl and Th17 cells.

The inhibitory receptors are important immune check-
points that negatively regulate immune responses to pre-
vent tissue damage and autoimmunity. The roles of
inhibitory receptors in the regulation of T cell effector
function have been well-established in T cell exhaustion,
which was identified during chronic viral infection and
observed in tumor microenvironment. The axis of PD-1
and its ligand is a central regulator of T cell exhaustion,
although multiple inhibitory receptors, including Lag-3,
CTLA-4, Tim3, CD244/2B4, CD160, TIGIT, are involved
[9, 10]. Blockade of the PD-1 pathway partially re-
versed T cell exhaustion and reduced viral or tumor
load [11-13], which indicated that dysfunctional T
cells could be modulated by manipulating the PD-1
pathway, with implications for the treatment of dis-
eases including chronic infections and cancer. As a
result, anti-PD-1 therapy has been developed and
shown remarkable success for treating human cancer.
Meanwhile, in the context of autoimmunity, recent
studies have identified the antagonistic effects of IL-
7Ra and the inhibitory receptor PD-1 on effector T
cells as essential parts of the cell-intrinsic immuno-
regulatory program of T cell effector function. The
IL-7Ra expression on T effector/memory cells serves
as an on-switch of T effector cell function, while the
expression of the inhibitory receptor PD-1 serves as
an off-switch to suppress the effector function of T
cells, which plays an important role in the pathogen-
esis of autoimmune diabetes [14, 15]. Although both
IL-7Ra [16-21] and the inhibitory receptor PD-1
[22-24] have been implicated in MS/EAE pathogen-
esis, it is not clear whether the key cytokines and/or
transcription factors that are critical for T cell ence-
phalitogenicity regulate IL-7Ra/PD-1 balance of
myelin-specific CD4 T effector/memory cells during
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EAE development. Therefore, in this study, we first
analyzed the roles of the transcription factor T-bet in
the regulation of the expression of IL-7Ra and inhibi-
tory receptors in myelin-specific CD4 T cells in vitro and
in vivo. Furthermore, we compared the effects of different
inflammatory cytokines that are crucial for Thl and Th17
development in regulating the IL-7Ra/PD-1 balance in
vitro and in vivo.

Methods

Animals

B6/WT and B6/T-bet”’ mice were purchased from the
Jackson Laboratory and bred in a specific pathogen-free
animal facility at the Ohio State University (OSU) Wexner
Medical Center. B10.PL mice transgenic for the MBP
Acl-11-specific TCR chains Va2.3 or V8.2 [25] were also
bred in a specific pathogen-free animal facility at the OSU
Wexner Medical Center. All animal protocols were ap-
proved by the OSU Institutional Animal Care and Use
Committee.

In vitro culture of splenocytes from TCR transgenic mice
Splenocytes were prepared from naive 5-10-week-old
Va2.3/VB8.2 TCR transgenic mice and cultured in
24-well plates at 2 x 10° cells/well with irradiated B10.PL
splenocytes (6 x 10° cells/well). Cells were activated with
MBP Acl-11 (2 pg/ml) and different combination of cyto-
kines or neutralizing antibodies for cytokines to differenti-
ate effector T helper cells. Cytokines and antibody
concentrations were as follows: 0.5 ng/ml IL-12, 25 ng/ml
IL-6, 1 ng/ml TGEP1, 2 pg/ml anti-IFNy, 1 pg/ml anti-IL-
12, 2 pg/ml anti-IL-4, and 0.35 pg/ml anti-TGEp [6].

EAE induction

Immunization

The 8-10-week-old B6/W'T, B6/T-bet™’”, or B6/T-bet '~
mice were s.c. injected over four sites in the flank with
200 ug MOG 35-55 (CSBio Company Inc.) in an emul-
sion with CFA (Difco); 200 ng pertussis toxin (List) per
mouse in PBS was injected i.p. at the time of
immunization and 48 h later.

Adoptive transfer
Splenocytes were isolated from naive 5-10-week-old
Va2.3/VB8.2 TCR transgenic mice and activated with
2 pg/ml of MBP Acl-11 with or without rmlIL-7
(10 ng/ml) or oIL-7Ra (0.5 pg/ml) in 24-well plates at
2% 10° cells/well with irradiated B10.PL splenocytes (6 x
10° cells/well). After 72 h, the cells were washed with PBS
and 8x10° cells/mouse were injected ip. into naive
B10.PL mice.

The mice were evaluated daily for clinical signs of
EAE. Mice were scored on scale of 0 to 6: 0, no clinical
disease; 1, limp/flaccid tail; 2, moderate hind limb
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weakness; 3, severe hind limb weakness; 4, complete
hind limb paralysis; 5, quadriplegia or premoribund
state; and 6, death.

ELISA

ELISA was performed to detect the expression of IL-17
and IFNy in supernatant. Purified anti-mouse IL-17 pri-
mary antibody (BD Biosciences) was diluted in 0.1 M
NaHCO; (pH 8.2) at 2 pg/ml while purified anti-mouse
IFNy primary antibody was diluted in 0.1 M NaHCOj;
(pH 9.5) at 2 ug/ml. Immunolon II plates (Dynatech La-
boratories) were coated with 50 pl of primary antibodies
per well and incubated overnight at 4 °C. The plates
were washed twice with PBS/0.05% Tween 20. The
plates were blocked with 200 pl of 1% BSA in PBS per
well for 2 h. The plates were washed twice with PBS/
0.05% Tween 20, and 100 pl of supernatants were added
in duplicate. The plates were incubated over-night at 4 °C
and washed four times with PBS/0.05% Tween 20.
Biotinylated rat anti-mouse secondary antibody (BD Bio-
sciences) were diluted in PBS/1% BSA, 100 ul of 1 pg/ml
biotinylated antibody was added to each well, and plates
were incubated at room temperature for 1 h. The plates
were washed six times with PBS/0.05%Tween 20, and
100 pl avidin-peroxidase was added at 2.5 pg/ml and incu-
bated for 30 min. The plates were washed eight times
with PBS/0.05% Tween 20, and 100 pul ABTS sub-
strate containing 0.03% H,O, (for IL-17) or TMB
substrate (for IFNy) was added to each well. The
plate was monitored for 10-20 min for color develop-
ment and read at A 405. A standard curve was gener-
ated from cytokine standard, and the cytokine
concentration in the samples was calculated.

Intracellular staining and flow cytometric analysis

Flow cytometric analysis was performed to evaluate
the expression of surface markers and T-bet in CD4
T cells, as previously described [6]. Briefly, spleno-
cytes were activated with antigen or «CD3/CD28 for
48 to 72 h. Cells were then collected, washed, and re-
suspended in staining buffer (1% BSA in PBS). The
cells were incubated with mAbs to the cell-surface
markers for 30 min at 4 °C. After washing twice with
staining buffer, cells were fixed and permeabilized using
Cytofix/Cytoperm solution for 20 min at 4 °C. Cells were
stained for intracellular cytokines and T-bet for 30 min at
4 °C. The 80,000—100,000 live cell events were acquired
on a FACSCanto (BD Biosciences) and analyzed using
FlowJo software (Tree Star, Inc.). PerCP-anti-CD4 and
Pacific Blue-anti-CD44 were purchased from BD Biosci-
ences. PE-anti-PD-1, PE-Cy7-anti-IL-7Ra, and Pacific
Blue-anti-T-bet were purchased from Biolegend Biotech-
nology, Inc.
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Statistical analysis

GraphPad software (GraphPad Prism Software, Inc.,
San Diego, CA, USA) was utilized for statistical ana-
lysis. A statistically significant difference in EAE
clinical scores was considered to be P<0.05, as deter-
mined by Mann—Whitney U test. The Mann—Whitney
U test is non-parametric, and therefore accounts for
the fact that EAE scores are ordinal and not interval-
scaled. ELISA and quantitated flow data comparisons
were performed using two-tailed unpaired student’s t
tests. Differences with P<0.05 were considered
significant.

Results
T-bet suppresses the expression of inhibitory receptors in
myelin-specific CD4 T cells during EAE development
T-bet is a transcription factor that regulates Thl differ-
entiation and is critical for the encephalitogenicity of
Thl cells and EAE development [26-31]. A previous
study in a chronic infection model showed that T-bet re-
presses PD-1 expression on CD8 T cells and sustains
viral-specific CD8 T cell responses [32]. However, it is
not clear if T-bet regulates PD-1 expression in myelin-
specific CD4 T cells during EAE development. Further-
more, LAG-3, another inhibitory co-receptor, has been
shown to act synergistically with PD-1 to prevent auto-
immunity. Therefore, we determined the expression of
inhibitory receptors (PD-1 and LAG-3) on myelin-
specific CD4 T cells when T-bet is deficient. Splenocytes
from naive MBP-specific TCR transgenic mice that were
T-bet”* (TCR-WT) or T-bet”’~ (TCR-T-bet’”) were
activated with MBP Acl-11 for 72 h, followed by resting
for 4 days, and reactivation with MBP Acl-11 for
2 days. At the end of primary stimulation, PD-1 and
LAG-3 expressing myelin-specific effector CD4 T cells
were significantly higher in T-bet”’~ group compared
to WT group (Fig. 1a). Moreover, there were more CD4 T
cells co-expressing PD-1 and LAG-3 in T-bet”~ group
compared to WT group (Fig. 1a). Almost all LAG-3 ex-
pressing CD4 T effector cells express PD-1, suggesting the
potentially synergic effects of these inhibitory receptors.
After resting for 4 days, PD-1 expressing cells were
still significantly higher in T-bet”’~ myelin-specific
CD4"CD44" T effector cells (Fig. 1b upper panels),
while LAG-3 expression was compatible between two
groups (Fig. 1b lower panels). Secondary stimulation
with MBP Acl-11 resulted in significantly higher PD-
1 expression in T-bet”’~ myelin-specific CD4 T ef-
fector cells compared to WT CD4 T effector cells
(Fig. 1c), suggesting that T-bet negatively regulates
PD-1 expression in myelin-specific effector CD4 T
cells.

To further confirm the negative regulation of PD-1
expression by T-bet, we analyzed PD-1 expression in
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Fig. 1 T-bet suppresses the expression of inhibitory receptors in myelin-specific CD4 T cells. a Splenocytes from naive TCR-WT and TCR-T-bet = mice
were activated with MBP Ac1-11 for 72 h. b The activated cells were then rested for 4 days and ¢ reactivated with MBP Ac1-11 for 2 days. The expression
of PD-1 and LAG-3 was determined by flow cytometry. One to two mice from each group were analyzed in each independent experiment, and flow
data are representative of three independent experiments. The percentage of PD-1 and/or LAG-3 expressing cells in T-bet™”~ group was normalized

to that in WT group, and group means were calculated and compared. d-e Splenocytes from naive TCR-WT mice were transfected with siR-NS or
siR-T-bet for 18 h, then activated with MBP Ac1-11 for 3 days. PD-1 expression was determined by flow cytometry while T-bet expression was determined
by intracellular staining. Flow data are representative of three independent experiments. The percentage of PD-1 expressing cells in siR-T-bet treated
cells was normalized to that in siR-NS treated cells, @ and group means were calculated and compared. f-g Naive WT/B6, T-bet™~/B6, and T-bet 7 ~/B6
mice were immunized with MOG 35-55. The draining lymph node cells were isolated on day 8 after immunization and stimulated with MOG 35-55 for
3 days. The expression of PD-1 and LAG-3 was determined by flow cytometry. One to three mice from each group were analyzed in each independent
experiment and flow data are representative of three independent experiments. The percentage of PD-1 or LAG-3 expressing cells in T-bet ™~ group
was normalized to those in WT group, and group means were calculated and compared. Cells were gated on CD4" CD44™ cells. All error bars denote

myelin-specific CD4 T cells when T-bet expression was
inhibited by a siRNA specific for T-bet [6, 29, 33]. As
shown in Fig. 1d—e, suppression of T-bet by siRNA
leads to significantly increased expression of PD-1 in
myelin-specific CD4 T cells transfected with T-bet
siRNA (siR-T-bet), confirming that T-bet negatively
regulates PD-1 expression in myelin-specific CD4 T
cells differentiated in vitro. Next, we determined PD-
1 expression in T-bet deficient myelin-specific CD4 T
cells during EAE development in vivo. Naive WT/B6,
T-bet*’~/B6, and T-bet”’"/B6 littermate mice were im-
munized with MOG 35-55/CFA. The draining lymph

node cells were isolated on day 8 after immunization
and activated in vitro with MOG 35-55 for 3 days. As
shown in Fig. 1f-g, PD-1 expression inversely corre-
lated with T-bet expression (Fig. 1f upper panels),
with the highest PD-1 expressing CD4 T cells in the
T-bet’~ group, which were significantly higher than
those in WT group (Fig. 1g). Similar pattern was ob-
served with LAG-3 expression level (Fig. 1f lower
panels and g), indicating that T-bet negatively regu-
lates the expression of inhibitory receptors in
myelin-specific CD4 T cells during EAE development
in vivo.
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T-bet enhances IL-7Ra expression in myelin-specific CD4
T cells

As recent studies have shown that the IL-7Ra/PD-1
balance is important for the effector function of CD4 T
cells, we determined if T-bet regulates IL-7Ra expres-
sion. Splenocytes from naive TCR-WT and TCR-T-bet '~
mice were activated with MBP Ac1-11 for 72 h, followed
by 4 days of rest and reactivation with MBP Acl-11 for
2 days. At the end of primary stimulation, IL-7Ra
expressing cells were significantly lower in T-bet™’~
myelin-specific CD4" CD44" T effector cells compared
to WT group (Fig. 2a). After 4 days of rest, the T-bet™’~
myelin-specific CD4"CD44" T effector cells showed in-
creased IL-7Ra expression, which is the inverse of the
activated T cells. The IL-7Ra expression in T-bet™’~
myelin-specific CD4"CD44" T effector cells was sig-
nificantly higher than that in WT CD4'CD44" T cells
after rest (Fig. 2b), However, after antigen restimulation,
T-bet™’~ myelin-specific CD4*CD44" T effector cells and
WT CD4*CD44" T effector cells showed comparable
IL-7Ra expression (Fig. 2c), but T-bet”’~ myelin-specific
CD4 T effector cells expressed significantly higher
PD-1 than WT CD4 T effector cells (Fig. 1c).
Together, these data indicate that T-bet is a major
transcription factor regulating IL-7Ra/PD-1 balance in
myelin-specific CD4 T cells in vitro and in vivo. T-bet
enhances IL-7Ra expression while suppressing the ex-
pression of the inhibitory receptors. As a result, T-bet
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expression leads to enhanced effector function of
myelin-specific CD4 T cells by skewing the IL-7Ra/
PD-1 balance towards IL-7Ra. When T-bet is defi-
cient, the expression of inhibitory receptors in
myelin-specific CD4 T effector cells is upregulated
and IL-7Ra expression is downregulated, leading to
impaired effector function.

IL-12 promotes IL-7Ra expression in a T-bet independent
manner

As IL-12 plays a critical role in regulating Th1 differenti-
ation and CD4 T effector function, we examined if IL-12
regulates the expression of inhibitory receptors and IL-
7Ra in myelin-specific Thl cells and whether the effect
is dependent on T-bet. Exogenous IL-12 does not alter
the expression of inhibitory receptors (PD-1 or LAG-3)
(Fig. 2d—e upper panels) but leads to a significant in-
crease of IL-7Ra expressing myelin-specific CD4"CD44"
T effector cells in both WT group (Fig. 2d lower panels)
and T-bet”’~ group (Fig. 2e lower panels), suggesting
that IL-12 enhances IL-7Ra expression in myelin-
specific CD4 T cells in a T-bet independent manner.
After antigen restimulation, IL-7Ra expression among
the cells treated or not treated with IL-12 in primary
stimulation is at similar low level compared to primary
stimulation (Fig. 2f—g). These data suggest that IL-12
not only regulates IL-7Ra/PD-1 balance through
inducing T-bet expression but also promotes IL-7Ra
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Fig. 2 Regulation of IL-7Ra expression in myelin-specific CD4 T cells by T-bet and IL-12. a—c Splenocytes from naive TCR-WT and TCR-T-bet ™~
mice were activated with MBP Ac1-11 for 72 h (a). The activated cells were then rested for 4 days (b) and reactivated with MBP Ac1-11 for 2 days
(0). IL-7Ra expression was determined by flow cytometry. One to two mice from each group were analyzed in each independent experiment and
flow data are representative of three independent experiments. The percentage of IL-7Ra expressing cells in T-bet™~ group was normalized to
that in WT group, and group means were calculated and compared. d-g Splenocytes from naive TCR-WT mice (d) or TCR-T-bet /™ mice (e) were
activated with MBP Ac1-11 in the absence or presence of IL-12 for 72 h. The activated cells were then rested for 4 days and reactivated with MBP
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expression in myelin-specific CD4 T cells in a T-bet in-
dependent manner.

Expression of inhibitory receptors and IL-7Ra in
myelin-specific Th17 cells

Previous studies have shown that myelin-specific Th17
cells are highly encephalitogenic in EAE, in addition to
Thl cells. We and others have demonstrated that Th17
cells differentiated with IL-6 in the absence of Thl and
Th2 signaling are highly encephalitogenic, while Th17
cells differentiated with IL-6 and TGEFp1 are not enceph-
alitogenic following adoptive transfer [6, 34, 35]. There-
fore, we analyzed the expression of PD-1 and IL-17Ra
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encephalitogenicity. Splenocytes from naive TCR trans-
genic mice were activated with MBP Acl-11 (Th neu-
tral), MBP Acl-11 plus IL-6 (encephalitogenic Th17) or
MBP Acl-11 plus IL-6, and TGFP1 (non-encephalito-
genic Th17) for 3 days. The encephalitogenic Th17 cells
differentiated with IL-6 have a significantly higher IL-
7Ra expressing population (Fig. 3a lower panels and c)
and a significantly lower PD-1 expressing population
(Fig. 3a upper panels and b) compared to non-
encephalitogenic Th17 cells differentiated with IL-6 and
TGEPL, suggesting that in addition to IL-12, IL-6 pro-
motes IL-7Ra expression and suppresses PD-1 expres-
sion in myelin-specific Th17 cells. Thus, IL-6 appears to
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from each group were analyzed in each independent experiment and flow data are representative of three independent experiments. All error

bars denote s.e.m. *P < 0.05
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enhanced effector function of encephalitogenic Th17
cells. In contrast, the combination of IL-6 and TGFf1
led to enhanced PD-1 expression (Fig. 3a—b) and skewed
IL-7Ra/PD-1 balance towards PD-1, which may contrib-
ute to the lack of encephalitogenicity of TGFB/IL-6 in-
duced Th17 cells. Together, these data indicate that IL-6
is also a major regulator of IL-7RB/PD-1 balance in
myelin-specific CD4 T cells.

Although IL-6 is the key cytokine inducing the differen-
tiation of encephalitogenic Th17 cells, IL-23 is important
for the maintenance of encephalitogenic myelin-specific
Th17 cells in EAE development [5, 36]; however, IL-23
does not exert its function on naive CD4 T cells, which do
not express IL-23R at a significant level. Therefore, we
analyzed the effects of IL-23 on IL-7Ra/PD-1 balance in
effector myelin-specific CD4 T cells from EAE mice.
Draining LN cells from MOG-immunized WT/B6 or T-
bet’"/B6 mice were activated with MOG 35-55 in the
presence or absence of IL-23. Although it increased IL-17
production significantly (Fig. 3f), the addition of IL-23
does not alter the expression of PD-1 or IL-7Ra in acti-
vated WT (Fig. 3d) or T-bet”’~ CD4 T effector cells
(Fig. 3e); suggesting that IL-23 is not major regulator of
IL-7Ra/PD-1 balance in myelin-specific CD4 T cells.

To further confirm the effects of IL-23 on IL-7Ra/PD-1
balance, the splenocytes from myelin-specific TCR trans-
genic mice that developed spontaneous EAE were acti-
vated in vitro with MBP Ac1-11, MBP Ac1-11 plus IL-12,
or MBP Acl-11 plus IL-23 for 3 days. As expected, the
addition of IL-23 led to a significant increase of IL-17 pro-
duction, while IL-12 led to a significant increase of IFNy
secretion (Fig. 4a). However, IL-23 did not affect the ex-
pression of inhibitory receptors (PD-1 or LAG-3) (Fig. 4b
upper panels) or IL-7Ra (Fig. 4b lower panels) in effector/
memory CD4 T cells after antigen stimulation, while IL-12
significantly enhanced IL-7Ra expression and suppressed
LAG-3 expression in myelin-specific CD4 T effector/
memory cells from spontaneous EAE mice (Fig. 4b).

After resting and a 2nd round of stimulation, the cells
activated with MBP Acl-11 only during 1st round
stimulation produced large amounts of IFNy and IL-17
during secondary stimulation regardless of the addition
of IL-12 or IL-23 during 2nd round stimulation
(Additional file 1: Figure S1A). However, the cells acti-
vated with IL-12 during 1st round stimulation produced
high levels of IFNy but lower levels of IL-17. Interest-
ingly, the cells activated with IL-23 during the 1st round
of stimulation produced large amounts of IFNy and IL-
17, regardless of the addition of IL-12 or IL-23 during
secondary stimulation (Additional file 1: Figure S1A),
confirming the plasticity of the cytokine phenotype of
Th17 cells. Flow cytometric data showed that the
addition of IL-23 during the 2nd round of stimulation
does not alter the expression of inhibitory receptors in
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all three groups (Additional file 1: Figure S1b-d).
Although it does not alter the expression of IL-7Ra or
inhibitory receptors (PD-1, LAG-3), IL-23 treated ef-
fector/memory cells appear to survive better after resting
and 2nd round stimulation. After 2nd round stimulation
with MBP Acl-11, the cells cultured with MBP Acl-11
plus IL-23 during the 1st round of stimulation had a sig-
nificantly higher CD44" population compared to the
cells cultured with MBP Acl-11 or MBP Acl1-11 plus IL-
12 during 1st round stimulation (Fig. 4c), suggesting that
IL-23 promotes memory responses while IL-12 leads to
terminal differentiation with poor memory potential.
Taking together, our data suggest that IL-6 and IL-23,
although both are important for Th17 development,
have distinct regulation of IL-7Ra/PD-1 balance.

IL-7 signaling inhibits PD-1 expression in myelin-specific
CD4 T cells

To determine whether IL-7 signaling regulates PD-1 ex-
pression in myelin-specific CD4 T cells, splenocytes from
naive TCR V[8.2 transgenic mice, which have a high fre-
quency of myelin-specific T cells and allow for evaluation
of a myelin-specific response in a diverse T cell population,
were activated with MBP Acl-11 in the presence or
absence of different concentrations of IL-7 for 6 days. As
shown in Fig. 5a-b, the addition of IL-7 inhibits PD-1
expression in myelin-specific CD4 T cells in a dose
dependent manner, with a significant suppression at the
concentrations of 1 ng/ml, 10 ng/ml, and 50 ng/ml, sug-
gesting that IL-7 signaling inhibits PD-1 expression in
myelin-specific CD4 T cells. Furthermore, to determine
whether manipulating the IL-7Ra/PD-1 balance alters T
cell encephalitogenicity of myelin-specific CD4 T cells,
splenocytes from naive TCRaf transgenic mice were
activated with MBP Acl-11, MBP Acl-11 plus IL-7,
or MBP Acl-11 plus oIL-7Ra for 3 days, followed by
adoptive transfer into naive B10.PL recipient mice.
Our data showed that blocking IL-7 signaling in
myelin-specific CD4 T cells by alL-7Ra significantly
delays EAE onset and reduces disease severity (Fig. 5¢
and Table 1), although it does not alter IL-17 or IFNy
production significantly (Fig. 5d).

Discussion

IFNy producing Thl cells and IL-17 producing Th17
cells are highly encephalitogenic in the EAE model of
MS, although they have distinct signature cytokine
profiles, prompting us to hypothesize that molecules
other than the signature cytokines regulate the
effector function and contribute to the encephalito-
genicity of both myelin-specific Thl and Th17 cells.
IL-7Ra and the inhibitory receptor PD-1 are essential
parts of the cell-intrinsic immunoregulatory program
regulating CD4 T effector function. Although both
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IL-7Ra and PD-1 have been implicated in the patho-
genesis of MS/EAE, the factors regulating their ex-
pression in myelin-specific CD4 T cells during EAE
development are not well-elucidated. This study aims
to determine if the key factors regulating T cell ence-
phalitogenicity of myelin-specific Thl and Th17 cells,
including transcription factor T-bet and cytokines (IL-
12, IL-6, and IL-23), may exert their function through
regulating IL-7Ra/PD-1 balance in myelin-specific
CD4 T cells during EAE development.

T-bet is the key transcription factor regulating the dif-
ferentiation of Thl cells. T-bet deficient mice were ori-
ginally shown to be resistant to EAE induction by active
immunization [31], but later studies showed that T-bet
deficient mice are still susceptible to EAE induction and
T-bet is essential for Thl-mediated, but not Thl7-
mediated, CNS autoimmune disease [27, 37]. Although
these results from genetically engineered mice appear to
contradict each other, other studies support an import-
ant role of T-bet in EAE [28-30] and MS [38, 39] as a
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Table 1 Blockade of IL-7 receptor signaling decreases T cell encephalitogenicity

Conditions Number of mice Incidence of EAE (%) Mean day of onset Mean peak clinical Mean peak clinical
of EAE mice score of all mice score of EAE mice

Ag only 11 7/11 (64%) 9 1.64° 257

Ag + IL-7 Il 9/11 (82%) 10 2.18° 267

Ag + alL-7Ra 12 4/12 (33%) 115 058> P 1.75

#Mean peak clinical score of all mice: Ag + alL-7Ra vs Ag only (P < 0.05)
PMean peak clinical score of all mice: Ag + alL-7Ra vs Ag + IL-7 (P < 0.05)
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potential therapeutic target. Our data showed that T-bet
is a major regulator of IL-7Ra/PD-1 balance in myelin-
specific CD4 T effector/memory cells differentiated in
vitro and during EAE development in vivo. T-bet sup-
presses the expression of inhibitory receptors, which is
similar to what was observed in CD8 T cells during
chronic infection [32]. Meanwhile, T-bet enhances IL-
7Ra expression in myelin-specific CD4 T cells. IL-7Ra
expression in myelin-specific CD4 T cells is dysregulated
when T-bet is deficient. Upon antigen encounter,
myelin-specific CD4 T cells from WT mice upregulate
IL-7Ra, but myelin-specific CD4 T cells from T-bet
deficient mice fail to upregulate IL-7Ra after primary
stimulation. After CD4 T cells are rested for 4 days, IL-
7Ra expression is downregulated in myelin-specific CD4
T cells from WT mice but is upregulated in T-bet
deficient myelin-specific CD4 T cells. After antigen
restimulation, IL-7Ra expression is similar between
two groups while T-bet deficient myelin-specific CD4
T cells have notably higher PD-1 expression.
Altogether, our data suggest that T-bet is a key tran-
scription factor regulating IL-7Ra/PD-1 balance in
myelin-specific CD4 T cells.

After the identification of Th17 cells as another enceph-
alitogenic CD4 T helper population in addition to Thl
cells in EAE, the search for the potential therapeutic tar-
gets that convey the encephalitogenicity to myelin-specific
CD4 T cells becomes even more complicated. Although
IFNy producing Thl and IL-17 producing Th17 cells are
both encephalitogenic, they have distinct cytokine profile,
which raises the question whether encephalitogenic CD4
T cells exert their function mainly through the production
of signature cytokines. Both IFNy and IL-17 deficient mice
are still susceptible to EAE induction [7, 8]. On a related
note, we previously showed that myelin-specific Th17 cells
induced with IL-6 in the absence of Thl and Th2 signal-
ing are highly encephalitogenic following adoptive transfer
while myelin-specific Th17 cells induced with the combin-
ation of TGFB and IL-6, although producing large
amounts of IL-17, are not encephalitogenic [6, 40]. These
data clearly argue that there are molecules other than the
signature cytokines responsible for the encephalitogenicity
of myelin-specific CD4 T cells, although the detailed
mechanisms are still unclear. IL-12 and IL-6 are two crit-
ical cytokines for the differentiation of encephalitogenic
Thl and Thl7 differentiation, respectively. Our data
showed that IL-12 and IL-6 have similar effects in regulat-
ing IL-7Ra/PD-1 balance by skewing the balance towards
IL-7Ra in both Thl and Th17 cells. On the other hand,
TGFB1/IL-6 induced non-encephalitogenic Th17 cells
have an IL-7Ra/PD-1 balance skewed towards PD-1.
These data suggest that IL-7Ra/PD-1 balance is a com-
mon mechanism shared by both Th1 and encephalitogenic
Th17 cells to regulate effector function. Therefore, it may
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be possible to target both Thl and Th17 cells by manipu-
lating IL-7Ra/PD-1 balance.

Targeting PD-1/PD-L1 pathway for therapeutic purposes
has been explored in cancer and chronic viral infection
[41]. Contrary to autoimmunity, tumor cells upregulate
PD-L1 which binds its receptors (PD-1, etc.) on T effector
cells, thus paralyzing T cells, suppressing tumor immunity,
and allowing the tumor to evade immune attack. There-
fore, anti-PD therapy has been developed and tested in
clinical trials and these trials have shown remarkable suc-
cess for treating human cancer, especially solid tumors.
The FDA recently approved two PD-1 monoclonal anti-
bodies to treat human cancers. Additionally, multiple
monoclonal antibodies to either PD-1 or PD-L1 are
under active development in clinical trials [42, 43].
Similarly, in the scenario of chronic viral infection,
after prolonged exposure to antigen and inflamma-
tion, exhausted T cells express high levels of PD-1
and other inhibitory receptors, resulting loss of robust
effector function [9]. Preclinical data have shown that
targeting PD-1/PD-L1 pathway can improve T cell
responses and viral clearance [10, 42].

In the context of autoimmunity, our data demonstrate
that several major determinants of T cell encephalitogeni-
city, including T-bet, IL-12, and IL-6, skew IL-7Ra/PD-1
balance towards IL-7Ra, favoring an encephalitogenic
phenotype of myelin-specific CD4 T cells with enhanced
effector function. Our data show that IL-7 signaling inhibits
PD-1 expression in myelin-specific CD4 T cells and block-
ade of IL-7R signaling on myelin-specific CD4 T cells sig-
nificantly decreased the encephalitogenic potential of those
cells. Therefore, skewing IL-7Ra/PD-1 balance towards
PD-1 by either stimulating PD-1/PD-L1 pathway or sup-
pressing IL-7Ra signaling may have therapeutic potential
for the treatment of autoimmune diseases, including MS.

Conclusions

In this study, we characterized the factors regulating IL-
7Ra/PD-1 balance in myelin-specific CD4 T effector/
memory cells during EAE development. We have shown
that T-bet is a major transcription factor regulating IL-
7Ra/PD-1 balance in myelin-specific CD4 T cells, and
there is a positive correlation between several major deter-
minants promoting T cell encephalitogenicity (T-bet, IL-6,
IL-12) and an IL-7Ra/PD-1 balance skewed towards IL-
7Ra, suggesting that those major determinants critical to
T cell encephalitogenicity may exert their function
through regulation of IL-7Ra/PD-1 balance. Additionally,
IL-7 signaling inhibits PD-1 expression in myelin-specific
CD4 T cells and blocking IL-7 signaling suppresses T cell
encephalitogenicity. Therefore, interference with inhibi-
tory pathways and IL-7Ra expression may suppress the
encephalitogenic potential of myelin-specific CD4 T cells
and have therapeutic benefits for MS patients.
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Additional file

Additional file 1: Figure S1. Splenocytes from TCR-WT mice who
developed spontaneous EAE were activated with MBP Ac1-11, MBP
Ac1-11 plus IL-12, or MBP Ac1-11 plus IL-23 for 72 h. The cells were then
rested for 4 days and restimulated with MBP Ac1-11, MBP Ac1-11 plus
IL-12, or MBP Ac1-11 plus IL-23 for 2 days. (A) IL-17 and IFNy in supernatant
after the 2nd round of stimulation were determined by ELISA. (8-D) PD-1,
LAG-3, or IL-7Ra expression in myelin-specific CD4 T cells after the 2nd
round of stimulation were determined by flow cytometry. The cells were
gated on CD44" CD4™ T effector cells. Data are representative of three
independent experiments. (PDF 308 kb)
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