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Objective: Moringa oleifera possesses multiple biological effects and the 4-[(4′-
O-acetyl-α-L- rhamnosyloxy) benzyl] isothiocyanate accounts for them. Based on
the original isothiocyanate molecule we obtained a semisynthetic derivative, named
4-[(2′,3′,4′-O-triacetyl-α-L-rhamnosyloxy) N-benzyl] hydrazine carbothioamide (MC-H)
which was safe and effective in a temporomandibular joint (TMJ) inflammatory
hypernociception in rats. Therefore, considering that there is still a gap in the knowledge
concerning the mechanisms of action through which the MC-H effects are mediated,
this study aimed to investigate the involvement of the adhesion molecules (ICAM-
1, CD55), the pathways heme oxygenase-1 (HO-1) and NO/cGMP/PKG/K+ATP, and
the central opioid receptors in the efficacy of the MC-H in a pre-clinical study
of TMJ pain.

Methods: Molecular docking studies were performed to test the binding performance
of MC-H against the ten targets of interest (ICAM-1, CD55, HO-1, iNOS, soluble
cGMP, cGMP-dependent protein kinase (PKG), K+ATP channel, mu (µ), kappa (κ), and
delta (δ) opioid receptors). In in vivo studies, male Wistar rats were treated with MC-H
1 µg/kg before TMJ formalin injection and nociception was evaluated. Periarticular
tissues were removed to assess ICAM-1 and CD55 protein levels by Western blotting.
To investigate the role of HO-1 and NO/cGMP/PKG/K+ATP pathways, the inhibitors
ZnPP-IX, aminoguanidine, ODQ, KT5823, or glibenclamide were used. To study the
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involvement of opioid receptors, rats were pre-treated (15 min) with an
intrathecal injection of non-selective inhibitor naloxone or with CTOP, naltrindole, or
norbinaltorphimine.

Results: All interactions presented acceptable binding energy values (below
−6.0 kcal/mol) which suggest MC-H might strongly bind to its molecular targets. MC-
H reduced the protein levels of ICAM-1 and CD55 in periarticular tissues. ZnPP-IX,
naloxone, CTOP, and naltrindole reversed the antinociceptive effect of MC-H.

Conclusion: MC-H demonstrated antinociceptive and anti-inflammatory effects
peripherally by the activation of the HO-1 pathway, as well as through inhibition of the
protein levels of adhesion molecules, and centrally by µ and δ opioid receptors.

Keywords: Moringa oleifera, temporomandibular joint, nociception, formalin, opioid receptors

GRAPHICAL ABSTRACT | Semisynthetic derivative from Moringa oleifera on temporomandibular joint pain.

INTRODUCTION

Temporomandibular disorders (TMD) comprise a series of
conditions involving the temporomandibular joint (TMJ),
masticatory muscles, and other related orofacial tissues, resulting
in painful symptoms (Greene, 2010). Between 3 and 7% of the
population seeks treatment for pain and dysfunction of the TMJ
or related structures, affecting people aged 20-40 years and more
often women (Pantoja et al., 2019; Valesan et al., 2021). TMD
presents multifactorial etiology and evidence from the literature
suggest that inflammation appears to be a common trigger for
their onset and maintenance (Sessle, 2011, 2021; Slade et al.,

2016; Costa et al., 2017). Furthermore, it has been suggested that
peripheral and central neural mechanisms are involved in the
orofacial inflammatory pain states (Sessle, 2011, 2021; Chichorro
et al., 2017). Additionally, psychosocial components may also
contribute to these conditions (Cairns, 2010; De La Torre Canales
et al., 2018; Canales et al., 2019; Ettlin et al., 2021).

The TMD therapy is related to the diagnosis of each type of
disfunction, and it is recommended that it initially includes less
invasive and conservative approaches such as manual therapy,
needling, oral splinting, exercises, acupuncture, and other
physiotherapeutic techniques (Wieckiewicz et al., 2015; Dinsdale
et al., 2022). Moreover, non-steroidal anti-inflammatory drugs
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(NSAIDs) are among the most commonly used medications
to treat TMD pain (Kulkarni et al., 2020; Montinaro et al.,
2022). However, evidence of the effectiveness of these drugs in
the treatment of TMDs is very limited and continued use of
NSAIDs is associated with several undesirable side-effects such
as renal and gastrointestinal complications, raising the necessity
of the development of new molecules to treat TMJ pain and
inflammation (Cairns, 2010; Fine, 2013; Kulkarni et al., 2020).

Moringa oleifera Lam. is a tropical species whose components
are largely used for medicinal purposes, among which anti-
inflammatory activity has been reported (De Almeida et al.,
2017; dos Santos et al., 2018). Among the different classes
of metabolites isolated from the plant, thiocarbamates and
isothiocyanates stand out for their biological activities (De
Almeida et al., 2017). Our research group obtained seven semi-
synthetic compounds from 4-(4′-O-acetyl-α-L-rhamnosyloxy)
benzylisothiocyanate (MC-1), a secondary metabolite extracted
from M. oleifera flowers. All derivatives and the natural
product were tested for their toxicity and revealed only three
semi-synthetic compounds, including N-[(2′,3′,4′-O-triacetyl-
α-L-rhamnosyloxy)benzyl] hydrazinecarbothioamide (MC-H),
as non-toxic at the survival rate test, biochemical, and histological
analysis (dos Santos et al., 2018). Additionally, these three
derivatives reduced the formalin-induced TMJ inflammatory
hypernociception, while MC-H also decreased the serotonin-
induced TMJ inflammation, motivating us to investigate its
mechanisms of anti-nociceptive action.

Therefore, considering that there is still a gap in the knowledge
concerning the mechanisms of action through which the MC-
H effects are mediated, as well as given the recognized role of
adhesion molecules (Ribeiro et al., 2020), regulatory systems
such as heme oxygenase-1 (HO-1) (Chaves et al., 2018) and
nitric oxide (NO) pathways (Chaves et al., 2011; Coura et al.,
2017), and opioid analgesia during TMJ hypernociception
(Silva Quinteiro et al., 2014), this study aimed to investigate
the involvement of ICAM-1, CD55, the pathways HO-1 and
NO/cGMP/PKG/K+ATP, and central opioid receptors in the
biological effects of the MC-H in a pre-clinical study of
temporomandibular joint pain.

MATERIALS AND METHODS

Semi-Synthesis of N-[(2′,3′,4′-O-
triacetyl-α-L-rhamnosyloxy) benzyl]
hydrazine carbothioamide (MC-H)
The compound N-[(2′,3′,4′-O-triacetyl-α-L-rhamnosyloxy)
benzyl] hydrazine carbothioamide (MC-H) was obtained and
characterized according to already described by our group
(dos Santos et al., 2018).

Chemicals Solutions
This study used the following chemical solutions. Formalin
(1.5%) was prepared from stock formulation (an aqueous
solution of 37% of formaldehyde; Sigma Chemicals, Perth,
Australia) further diluted in 0.9% NaCl (saline). Indomethacin

(Indo), a non-steroidal anti-inflammatory drug used as a
positive control; zinc protoporphyrin-IX (ZnPP-IX), a specific
HO-1 inhibitor; aminoguanidine, a selective iNOS inhibitor;
glibenclamide, an ATP-sensitive potassium channels blocker;
naloxone, a non-selective opioid antagonist; Phe-Cys-Tyr-
d-Trp-Orn-Thr-Pen-Thr-NH2 (CTOP), a µ-opioid receptor
antagonist; naltrindole hydrochloride, a δ-opioid receptor
antagonist; and norbinaltorphimine (Nor-BNI), a κ-opioid
receptor antagonist. 1H-(1,2,4)-oxadiazole(4,2-a) quinoxaline-1-
one (ODQ; an inhibitor of soluble guanylate cyclase enzyme)
was obtained from Tocris Cookson, Ballwin, MO, United States.
Indole [2,3-a] pyrrolo[3,4-c] carbazole aglycone (KT5823; an
inhibitor of protein kinase G) was obtained from Calbiochem
(San Diego, CA). 1H-(1,2,4) -oxadiazole (4,2-a) quinoxaline-
1-one (ODQ) zinc protoporphyrin-IX and KT5823 were
dissolved in dimethyl sulfoxide (DMSO) (Sigma, St. Louis,
MO, United States) and resuspended in saline to minimize the
final concentration of DMSO (max. 0.5%). The glibenclamide
was dissolved in 2% Tween 80 and resuspended in saline.
Morphine sulfate (Dimorf R©) was purchased from Cristália
(Itapira, SP, Brazil).

Computational Simulations of the
MC-H - Receptor Interactions
The molecular structure of MC-H was 3D-modeled using
software Avogadro 1.1.2 (Hanwell et al., 2012) and geometrically
optimized by using the density functional theory (DFT) with
correlation functional B3LYP and base 6-31G(d) from software
GAMESS (Barca et al., 2020). The protein structures of ICAM-
1 (PDB: 1IC1), CD55 (PDB: 1OK2), HO-1 (PDB: 1N3O), iNOS
(PDB: 3NQS), soluble cGMP (PDB: 3OD0), cGMP-dependent
protein kinase (PKG) (PDB: 6C0T), K+ATP channel (PDB: 6C3P),
as well as of mu (µ) (PDB: 4DK1), kappa (k) (PDB: 4DJH)
and delta (δ) (PDB: 6PT3) opioid receptors were obtained
from Protein Data Bank1. All structures were resolved by X-ray
diffraction at a resolution of 1.20 – 3.10 Å. The docking positions
were based on the native ligand for each molecular target using
Web Server Computed Atlas of Surface Topography of proteins –
CASTp2. For molecular docking simulations AutoDock Tools
(ADT) v4.2 was used to prepare targets and ligands (Pettersen
et al., 2021) and AutoDock Vina 1.1.2 for calculations (Trott
and Olson, 2010). Binding affinity and residue interactions
were used to determine the best molecular interactions. The
results were visualized by ADT, Discovery Studio v4.5 (BIOVIA,
Dassault Systèmes, BIOVIA Workbook), and UCSF Chimera X
(Pettersen et al., 2021).

Animals
Male Wistar rats (180-240 g), provided by the Animal Care Unit
of the Federal University of Ceará (UFC - Fortaleza, Brazil), were
randomly housed in appropriate plastic cages at 23 ± 2◦C with
a 12-h light-dark cycle (light from 06:00 AM to 6:00 PM), and
access to water and food ad libitum. In order to avoid any bias
from the fluctuation of estrogen during the menstrual cycle, male

1https://www.rcsb.org/
2http://sts.bioe.uic.edu/castp/calculation.html
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rats were used in this sequence of experiment. Rats were allotted
to groups of five animals (n = 5) and handled with special care
to avoid environmental disturbances. The study was conducted
under the International Association for the Study of Pain (IASP)
guidelines on the use of laboratory animals for investigations of
experimental pain in conscious animals (Zimmermann, 1983).
The local ethics committee approved all the experiments under
registration number 03/2015.

Induction of Temporomandibular Joint
Hypernociception by Formalin
The testing procedures took place between 9:00 AM and 5:00
PM in a controlled quiet room maintained at 23 ± 2◦C
(Rosland, 1991). Before the experiments, to provide an
acclimatization process to experimental manipulation, each rat
was briefly handled each day for 7 days (Macedo et al., 2016).
Rats were individually placed into a mirrored-wood chamber
(30 cm × 30 cm × 30 cm) with glass at the front side for
15 min to minimize stress. Each animal received 50 µl of
formalin (1.5%) or saline (0.9%) (Sham group) into the left
TMJ after brief anesthesia with isoflurane (3%, 30 s). The TMJ
injection was performed with a 30-gauge needle connected to
a 50-µL Hamilton syringe according to the method previously
described (Roveroni et al., 2001). Subsequently, rats regained
consciousness after approximately 30 s and then they were
placed back in the test chamber for a 45-min observation period.
A trained examiner evaluated the nociceptive responses which
were the cumulative total number of seconds that the animal
spent rubbing the orofacial region asymmetrically with the
ipsilateral fore or hind paw and the number of head flinches. All
experiments used double-blind masking in which the person who
injected the solutions was not the same person who assessed the
behavioral responses (Roveroni et al., 2001; Clemente et al., 2004).
Previously, our research group showed that MC-H (1 µg/kg; po)
was the most efficient dose in the experimental model of TMJ
hypernociception (dos Santos et al., 2018). Thus, to elucidate the
mechanism of action of this semisynthetic derivative, this dose
was used in the following assays.

Effects of the MC-H on the Levels of
Intercellular Adhesion Molecule (ICAM-1)
and Decay-Accelerating Factor (CD55)
on Formalin-Induced TMJ
Hypernociception
To evaluate ICAM-1 and CD55 protein levels in the TMJ
periarticular tissues, rats were divided into three groups (n = 5):
sham (treated with oral saline and after 1 h received intra-
articular saline injection), MC-H (1 µg/kg treatment and 1 h after
intra-articular 1.5% formalin injection) and formalin (treated
with oral saline and 1 h after intra-articular 1.5% formalin
injection). TMJ periarticular tissue samples were macerated in
a polytron homogenizer R© (Thomas Scientific). The product of
this process was mixed in 500 µl of RIPA buffer (25 mM Tris-
HCl pH 7.6; 150 mM NaCl; 5 mM EDTA; 1% NP-40; 1%
Triton-X-100; 1% sodium deoxycholate; 0.1% SDS) and protease
inhibitors. The samples were then vortexed for 30 seconds,

this process was repeated 2 more times every 10 minutes and
then the samples were centrifuged (17 min, 4◦C, 13000 rpm).
After discarding the pellet, the total proteins were dosed by
the bicinchoninic acid method and performed as described
by the manufacturer (Thermo Scientific, United States). For
the western blotting procedure, equal amounts of proteins
(20 µg) from the TMJ periarticular tissue were treated with
sample buffer (BioRad, United States 65.8 mM Tris-HCl, pH
6.8, 26.3% glycerol, 2.1% SDS, 0.01% bromophenol blue) and
β-mercaptoethanol (BioRad, United States), vortexing for 10 s,
heating in the water bath (95◦C, 5 min). Thereafter, samples were
centrifuged (10000 rpm, 4◦C, 30 s) and then vertical protein
electrophoresis on a 10%-polyacrylamide gel (SDS-PAGE) was
performed at 60 V for the first 15 min and 120 V for the
remaining time, in which running buffer (25 mM Tris; 192 mM
glycine; 1% SDS) was used. Transferal of the gel proteins
to PVDF membranes (BioRad, United States, polyvinylidene
fluoride) was performed by electrophoresis at 100 V for two
hours in the transfer buffer (25 mM Tris, 192 mM glycine,
20% methanol). After this step, membranes were blocked
to avoid non-specific binding with 5% BSA (Sigma-Aldrich,
United States) diluted in Tris-HCl buffer supplemented with
Tween 20 (TBST-20 mM Tris pH 7.5, 150 mM NaCl, 0.1%
Tween 20). The samples were then incubated overnight at
4◦C under constant stirring with anti-ICAM-1 (Abcam, 1:100),
anti-CD55 (Santa Cruz Biotechnology, 1:100), or anti-α-tubulin
antibodies (Millipore, EP1123Y, 1: 500), used as a control,
all diluted in 1%-BSA in TBST. Membranes were incubated
with the HRP-goat anti-rabbit secondary antibodies (Invitrogen,
656120, 1:1000) or HRP-rabbit anti-goat (Invitrogen, A16142,
1:1000) for two hours at room temperature. Finally, the bands
were recognized by their respective antibodies, following a
chemiluminescence procedure (BioRad, United States, Clarity
western ECL blotting substrate), being visualized with the
system ChemiDoc XRS (BioRad, United States). The band
densities were measured by ImageJ software (NIH, Bethesda,
MD, United States).

Involvement of the HO-1 Pathway on the
MC-H-induced Antinociception
Animals were pre-treated (30 min) with zinc protoporphyrin-
IX (ZnPP-IX) (3 mg/kg, sc), followed by administration of the
MC-H (1 µg/kg; po) 1 h before intra-TMJ injection of formalin
(1.5%, 50 µL/TMJ). The sham group received the vehicle of the
ZnPP-IX (sc) followed by administration of the MC-H vehicle
(po) 1 h before intra-TMJ injection of saline (50 µL/TMJ).
Behavioral nociception responses were evaluated for a 45-min
observation period.

Role of NO/cGMP/PKG/ATP-Sensitive
Potassium Channel Pathway in the
MC-H-Induced Antinociception
Rats were pre-treated (15 min) with aminoguanidine (30 mg/kg;
ip), a selective inhibitor of inducible nitric oxide synthase (iNOS),
ODQ (5 mg/kg; sc), an inhibitor of soluble guanylate cyclase
enzyme (sGC) what generates cyclic guanosine monophosphate
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(cGMP), KT5823 (4 mg/kg, sc), an inhibitor of protein kinase
G (PKG), or glibenclamide (10 mg/kg; ip), an ATP-sensitive
potassium channel blocker (K+ATP) followed by the MC-H
(1 µg/kg; po) administration 1 h before the intra-TMJ injection
of 1.5% formalin (50 µl/TMJ). The sham group received a
pre-treatment (15 min) of the vehicle of aminoguanidine (ip),
ODQ (sc), KT5823 (sc) or glibenclamide (ip), followed by the
administration of the MC-H vehicle (po) 1 h before the intra-
TMJ injection of saline (50 µL/TMJ). Behavioral nociception
responses were evaluated for a 45-min period of observation.

Effects of the Central Opioid Receptor
Antagonists (µ, δ, κ) on the
MC-H-Induced Antinociception
In another series of experiments, rats received briefly isoflurane
anesthesia and took an intrathecal injection of naloxone
(15 µg/10 µL), a non-specific opioid antagonist, as previously
described (Fischer et al., 2005). To evaluate the participation
of specific opioid receptors, it was used CTOP (10 µg/µl),
naltrindole (30 µg/10 µL) or norbinaltorphimine (45 µg/10
µL), µ, δ, and κ selective opioids receptors antagonists,
respectively. After 15 min after naloxone, CTOP, naltrindole,
or norbinaltorphimine intrathecal administration, rats received
MC-H (1 µg/kg). One hour after MC-H administration, the
animals received an intra-TMJ injection of formalin (1.5%,
50 µl). The sham group received intrathecal injection of the
vehicle of naloxone, CTOP, naltrindole or norbinaltorphimine.
After 15 minutes, they received the MC-H vehicle (po) 1 h
before the intra-TMJ injection of saline (50 µL/TMJ). Behavioral
nociception responses were evaluated for a 45-min period
observation following formalin injection.

Statistical Analysis
Normality was evaluated by the Shapiro-Wilk test. Student’s t-test
or one-way ANOVA was used to analyze associations between the
variables. The post hoc test for ANOVA was chosen according
to the result of the homogeneity of variances (Levene’s test).
For homoscedastic variances Tukey’s test was applied, while
for heteroscedastic variances the Games-Howell test was used.
Results are presented as means ± SEM or mean ± SD for
parametric. All tests were performed using SPSS 20.0 (SPSS Inc.,
Chicago, IL, United States) program for Windows. All graphs
were made with Graph Pad Prism 6 (Graph Pad Prism software,
La Jolla, CA, United States) software for Windows. Probability
level (p-value) < 0.05 was assumed.

RESULTS

Computational Simulations of
MC-H-Receptor Interactions
The interactions of MC-H with the targets of interest were tested
in silico by molecular docking. Figure 1 depicts the affinity
(kcal/mol) of MC-H in all simulations. All interactions presented
acceptable binding energy values, below −6.0 kcal/mol, which
suggest MC-H might strongly bind to the molecular targets of

FIGURE 1 | Graphical representation (means ± SD) of binding energy values
of molecular dockings between MC-H and ICAM-1, CD55, HO-1, iNOS,
soluble cGMP, cGMP-dependent protein kinase (PKG), K+ATP channel, mu
(µ), kappa (k), and delta (δ) opioid receptors. AutoDock Vina was employed to
calculate the affinity values demonstrated.

interest. Mean values of binding energy in kcal/mol (± standard
deviation) of MC-H were determined for each potential
target as follows: ICAM-1 (−8.0 ± 1.10 kcal/mol), CD55
(−6.6 ± 0.20 kcal/mol), HO-1 (−7.4 ± 0.82 kcal/mol), iNOS
(−7.9 ± 1.02 kcal/mol), soluble cGMP (−7.5 ± 0.74 kcal/mol),
cGMP-dependent protein kinase (PKG) (−7.4 ± 0.82 kcal/mol),
K+ATP channel (−6.6 ± 0.38 kcal/mol), mu (µ) opioid
receptor (−7.1 ± 0.45 kcal/mol), kappa (k) opioid receptor
(−7.6 ± 0.81 kcal/mol), and delta (δ) opioid receptor
(−7.7± 0.68 kcal/mol).

Furthermore, the three-dimensional structure of molecular
dockings between MC-H at different binding sites of the
molecular targets of interest is shown in Figure 2. The MC-H
structure presented a flexible behavior with several interactions
with azanide regions, strong hydrogen interactions, and many
hydrophobic bonds in all interactions tested. A re-docking was
performed to compare native ligands of the regions with which
MC-H interacts. Thus, confirming in all structures the correct
interaction of MC-H within the pocket of each molecular target.

MC-H Down-Regulates the Levels of
Intercellular Adhesion Molecule (ICAM-1)
and Decay-Accelerating Factor (CD55) in
Formalin-Induced Hypernociception in
the TMJ
Western blotting analysis demonstrated that intra-articular
injection of formalin solution (1.5%; 50 µl/TMJ) increased
ICAM-1 levels in the periarticular tissue when compared with the
sham group as shown in Figure 3A. The same characteristic effect
was observed concerning the CD55 levels as shown in Figure 3B.
The treatment with MC-H (1 µg/kg; po), 60 min before the intra-
articular injection of formalin, significantly reduced the levels of
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FIGURE 2 | Three-dimensional representation of molecular dockings between MC-H and the molecular targets of interest. (A) ICAM-1, (B) CD55, (C) HO-1, (D)
iNOS, (E) soluble cGMP, (F) cGMP-dependent protein kinase (PKG), (G) K+ATP channel, (H) mu (µ) opioid receptor, (I) kappa (k) opioid receptor, and (J) delta (δ)
opioid receptor.

FIGURE 3 | (A) ICAM-1 and (B) CD55 levels in the periarticular tissue after formalin-induced TMJ nociception. Administration of MC-H (1 µg/kg; po) significantly
decreased the levels of both ICAM (A) and CD55 (B), which were significantly lower than the formalin group. Values are expressed as mean ± SEM for all groups.
The symbols (#) and (*) represent statistically significant differences compared with sham and formalin groups, respectively (p < 0.05: ANOVA, Tukey’s test).
Representative ICAM-1, CD55, and GAPDH bands of each group are displayed below the graph.

both ICAM-1 and CD55 in the TMJ periarticular tissue (p < 0.05)
(Figures 3A,B).

HO-1 Pathway Mediated the
Antinociceptive Effects of MC-H
Figure 4 shows that the intra-articular injection of the formalin
solution (1.5%; 50 µl/TMJ) significantly increased the nociceptive
behavior when compared to the sham group, as well as the
MC-H (1 µg/kg; po) reduced the nociceptive behavior when
compare to the formalin group. The pre-treatment with ZnPP-
IX (3 mg/kg; sc), a specific HO-1 inhibitor, partially reversed the
antinociceptive effect of MC-H (1 µg/kg; po) in the formalin-
induced TMJ hypernociception (p < 0.05), and ZnPP when
applied previously to the formalin into the TMJ without MC-H

was similar to the formalin group, showing no effect of this
pharmacological agent alone. This result suggests that the
antinociceptive effect of MC-H in part depends on the HO-
1 induction.

Involvement of the
NO/cGMP/PKG/K+

ATP Pathway in the
Antinociceptive Effect of MC-H
The intra-articular injection of the formalin solution (1.5%;
50 µl/TMJ) significantly increased the nociceptive behavior when
compared to the sham group, as well as the MC-H (1 µg/kg; po)
reduced the nociceptive behavior when compared to the formalin
group. The injection of aminoguanidine, an iNOS inhibitor, or
ODQ, a specific inhibitor of the soluble cGMP, or KT5823, a
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FIGURE 4 | MC-H-induced antinociception depends on heme oxygenase-1
(HO-1) integrity. Administration of MC-H (1 µg/kg; po) significantly decreased
the nociceptive behavior induced by formalin in the TMJ. Pre-treatment with
ZnPP IX (3 mg/kg), an HO-1 inhibitor, significantly decreased the
antinociceptive effects of MC-H. The symbols (*), (#), and (&) represent
statistically significant differences compared with saline, formalin, and MC-H
groups, respectively (p < 0.05: ANOVA, Tukey’s test).

selective inhibitor of cGMP-dependent protein kinase (PKG), did
not reverse the antinociceptive effect of MC-H in the formalin-
induced TMJ nociception, whereas the K+ATP channel blocker
glibenclamide prevented the MC-H- mediated analgesic effect
(p < 0.05). Also, when these pharmacological agents were applied
previously to the formalin into the TMJ without MC-H, the
nociceptive behavior was similar to the formalin group, showing
no effect of them alone (Figure 5).

MC-H Inhibits Formalin-Induced
Nociception in the Temporomandibular
Joint via Central Opioid System
Activation
The intra-articular injection of the formalin solution (1.5%;
50 µl/TMJ) significantly increased the nociceptive behavior when
compared to the sham group, as well as morphine and the MC-H
(1 µg/kg; po) reduced the nociceptive behavior when compared
to the formalin group. The sub-arachnoid administration of
naloxone prevented (p < 0.05) the antinociceptive effect for the
both of morphine and MC-H (1 µg/kg; po) as shown in Figure 6.
This indicated that there might be a correlation between the
activation of central opioid receptors and the antinociceptive
effect of MC-H. To investigate it in more detail, the blockade
with µ, κ, and δ opioid receptor-specific antagonists were also
performed. Figures 7A,B show that central administration of
selective µ-opioid receptor antagonist CTOP (10 µg/µL) and the
selective δ-opioid receptor antagonist naltrindole (30 µg/10 µL)
abolished the antinociceptive effect of MC-H (p < 0.05). Despite
this, the intrathecal injection of norbinaltorphimine (45 µg/10

µL), a selective κ-opioid receptor antagonist, did not inhibit MC-
H-induced antinociception as shown in Figure 7C (p > 0.05).
Also, when these pharmacological agents were applied previously
to the formalin into the TMJ without MC-H, the nociceptive
behavior was similar to the formalin group, showing no effect of
them alone (Figure 7).

DISCUSSION

The semisynthetic derivative MC-H is a hydrazine
carbothioamide obtained from the benzylisothiocyanate-
type natural product (MC-1) isolated as main constituent
from flowers of M. oleifera. Previously, our research group
showed that MC-H was not toxic when applied in mice by
gavage in daily doses for 14 days (dos Santos et al., 2018). In
the present study, molecular docking simulation was carried
out with the targets of interest [ICAM-1, CD55, HO-1, iNOS,
soluble cGMP, cGMP-dependent protein kinase (PKG), K+ATP
channel, mu (µ), kappa (k), and delta (δ) opioid receptors] and
all of them showed high binding affinity to the binding site of
MC-H. These data were confirmed by in vivo assays showing
that the MC-H mechanism of action involves, at least in part,
downregulation of ICAM-1 and CD55 levels in TMJ periarticular
tissues. Furthermore, the mechanisms that mediate MC-H
antinociception can also be explained in part by peripheral
HO-1 activity and activation of central opioid receptors. Also,
molecular docking has a satisfactory consistency and represents
a complementary method for drug development, and it should
be used together with in vitro and in vivo studies. In the present
study we found a satisfactory correlation between in silico
docking studies and in vivo activity. Considering the 10 targets
of interest that showed high binding affinity to the binding site
of MC-H in the docking studies, six of them were confirmed
by the in vivo tests.

MC-H is a promising molecule showing high antinociceptive
effects even at low concentrations, showing the same effect
of indomethacin and morphine in a 5,000 times lower dose
(dos Santos et al., 2018). This occurs possibly due to the triple
acetylation at the carbons (2′, 3′, and 4′) of the rhamnose
sugar provides more stability and renders the molecule more
lipophilic, enabling a greater ability to cross organic barriers
such as the blood-brain barrier (Dvorak, 2010; do Val et al.,
2018). Tests performed with seven semi-synthetic compounds
produced from MC-1 isolated from M. oleifera and structurally
similar to MC-H (presence of benzene ring and sugar rhamnose)
showed that the anti-inflammatory activity of these compounds
is reduced by up to 8 times in un-acetylated derivatives
(dos Santos et al., 2018).

In nature, glucosinolates produce isothiocyanates after the
disruption of the plant tissue and activation with the enzyme
myrosinase. Plants produce isothiocyanates with the main
function of protection against insects and microbial invaders
(Dinkova-Kostova and Kostov, 2012; Galuppo et al., 2015). In
addition to plants, the human, mouse, and rat gut microflora
can also breakdown glucosinolates into isothiocyanates (Rouzaud
et al., 2003; Zhu et al., 2010; Wu et al., 2019). However,
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FIGURE 5 | The role of NO/cGMP/PKG/K+ATP signaling pathway in the MC-H-induced antinociception. Rats received the NO/cGMP/PKG/K+ATP pathway inhibitors
30 minutes before MC-H (1µg/kg; po) treatment. The nociceptive behavior was evaluated 1 h after the MC-H administration. (A) Aminoguanidine - Amg (30 mg/kg;
ip), (B) ODQ (5 mg/kg; sc) or (C) KT5823 (4 µg/mL; sc) did not modify the nociceptive response of MC-H (p < 0.05: ANOVA, Tukey’s test). However, (D) the
pre-treatment with glibenclamide - Gli (10 mg/kg; ip) increased the nociceptive behavior (p < 0.05: ANOVA, Games-Howell test). The symbols (∗), (#), and (&)
represent statistically significant differences compared with saline, formalin, and MC-H groups, respectively.

recent studies have shown that these compounds may exhibit
various biological activities in animal cells, including anticancer,
chemopreventive, hypoglycemic, antioxidant, analgesic and anti-
inflammatory effects (Dhakad et al., 2019; Lopez-Rodriguez et al.,
2020; Wu et al., 2021). In addition, there is evidence that
isothiocyanates act to protect against neurodegenerative and
cardiovascular diseases since they have the ability to produce
varied and long-lasting responses that defend against oxidative
stress, electrophilic stress, chronic inflammation, and apoptosis
(Brunelli et al., 2010; Kamal et al., 2022). Different from those
present in cruciferous vegetables, like broccoli and watercress,
the isothiocyanates from M. oleifera have higher chemical
stability due to the presence of an additional sugar bound to a
benzene ring. In the case of MC-1, this sugar is the rhamnose

monoacetylated in 4′-position, and which is hyperacetylated in
the MC-H molecule after its semi-synthesis. These chemical
characteristics permit the compound to be solid, odorless, and
relatively stable at room temperature (Waterman et al., 2014).

The formalin-induced TMJ hypernociception is a validated
model widely used in the literature for the experimental study
of deep face pain. Formalin evokes a nociceptive response in
two distinct phases. First, serotonin and histamine are released
at the inflammatory site, acting directly on nociceptors of C-
and A-delta-type fibers. In the second phase, prostaglandins,
cytokines, and sympathomimetic amines mediate the previous
sensitization of nociceptors (Jiménez et al., 2006; Chicre-
Alcântara et al., 2012). However, when applied to the TMJ,
formalin induces a single-phase nociceptive behavior of rubbing
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FIGURE 6 | MC-H-induced antinociception depends on central opioids
receptors. Administration of MC-H (1 µg/kg; po) significantly decreased the
nociceptive behavior induced by 1.5% formalin in the TMJ. Pre-treatment of
naloxone (Nlx), a non-selective opioid antagonist, affected the antinociception
induced by MC-H. The symbols (*), (#), (&), and (+) represent statistically
significant differences compared with saline, formalin, morphine, and MC-H
groups, respectively. (p < 0.05: ANOVA, Games-Howell test).

the orofacial region and flinching the head quickly (Roveroni
et al., 2001; Fischer et al., 2005). Considering our previous result
showing that MC-H (1 µg/kg; po) was the most efficient dose
in the experimental model of TMJ hypernociception, this dose
was used as a standard in vivo assays to determine the MC-H
mechanisms of action.

Plasma extravasation promotes the passage of proteins and
leukocytes into tissues and it is, therefore, considered a major
sign of inflammation (Yang et al., 2005; Silva Quinteiro et al.,
2014). In the Evans Blue Dye plasma extravasation test, MC-
H reduced the amount of protein extravasation into the TMJ
periarticular tissue (dos Santos et al., 2018), suggesting a
potent anti-inflammatory effect. One of the first steps in the
inflammatory process is the migration of circulating leukocytes
to tissues. There is a cascade of events that commands leukocyte
recruitment, namely rolling, firm adhesion, and, ultimately,
transmigration. For this purpose, cellular binding is mediated
by activation of adhesion receptors in leukocytes, followed
by binding to counter-receptors in endothelial cells. The
endothelial intracellular adhesion molecule-1 (ICAM-1) interacts
with the CD11/CD18 complex of leukocytes and mediates
transmigration. On the other hand, the decay-accelerating factor
(DAF, also called CD55) functions as an anti-adhesive molecule
that promotes the clearance of epithelial-bound leukocytes
(Karpus et al., 2015).

We have shown that MC-H prevented an increase of formalin-
induced ICAM-1 in periarticular tissues. Also, the amount
of CD55 protein remained at baseline levels. It has been
demonstrated that the induction of endothelial ICAM-1 is
mediated by phospholipase A2α with the participation of the
transcription factor NF-κB (Hadad et al., 2011). This suggests

FIGURE 7 | (Continued)
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FIGURE 7 | MC-H-induced antinociception depends on central µ- and
δ-opioid receptors. Intrathecal administration of (A) CTOP (10 µg/µL), a
selective µ-opioid receptor antagonist, or (B) naltrindole, Nal (30 µg/10 µL), a
δ-opioid receptor antagonist, abolished the antinociception induced by MC-H.
(C) Norbinaltorphimine, Nor (45 µg/10 µL), a selective κ-opioid receptor
antagonist, did not inhibit the MC-H-induced antinociception. The symbols (*),
(#), and (+) represent statistically significant differences compared with saline,
formalin, and MC-H groups, respectively, (p < 0.05: ANOVA, Games-Howell
test).

that the regulation of inflammatory factors may inhibit the
production of ICAM-1. Similarly, the expression of the CD55
molecule is controlled by the hypoxia-induced factor (HIF),
functioning as a protective mechanism (Louis et al., 2005).
Therefore, it is likely that in the absence of pro-inflammatory
factors, ICAM-1 levels are reduced and consequently avoid the
increase in CD55 levels. However, more studies are needed to
support this hypothesis.

It is known that glucosinolates and isothiocyanates derived
from M. oleifera can decrease the gene expression and production
of IL-1β, TNF-α, and nitric oxide synthase (iNOS) enzyme in
RAW macrophages cells (Cheenpracha et al., 2010; Waterman
et al., 2014; Giacoppo et al., 2017). These inflammatory
mediators are primarily responsible for chemical and cellular
changes in endothelium, injured tissue, and circulating cells
that lead to increased vascular permeability and leukocyte
migration (Tancharoen et al., 2008). Indeed, inflammatory pain
in peripheral tissue depends on the activation of the TNF-α type
1 receptor in the primary afferent neuron, and, specifically in
the TMJ, cytokines play a crucial role on pain and inflammation
reaction (Kellesarian et al., 2016; Magalhães et al., 2021). TNF-
α and IL-1β concentrations have been determined in the TMJ
periarticular tissue and trigeminal ganglion associated with other
nociceptive pathways as HO-1, NO and opioid (Chaves et al.,
2011, 2018; Messlinger et al., 2020; Wang et al., 2021). The ability
of isothiocyanates to inhibit these mediators appears to occur by
blocking IκB-α phosphorylation and nuclear translocation of NF-
κB, a transcription factor that regulates several pro-inflammatory
genes (Giacoppo et al., 2017). Besides, animal model tests of
multiple sclerosis, an inflammatory demyelinating disease in
which vascular endothelium plays a primordial role, treated with
glucomoringin isothiocyanates, confirmed that glucomoringin
compound can neutralize the inflammatory cascade, promoting
neuronal and axonal protection (Brunelli et al., 2010). This result
was demonstrated by the reduction of TNF-α and iNOS levels
and the improvement of histological parameters in spinal cord
samples (Brunelli et al., 2010).

Heme oxygenase-1 (HO-1) is a cytoprotective enzyme
induced at the site of inflammation and converts the heme
group into carbon monoxide (CO), biliverdin, and free iron.
Studies have reported linking activation of HO-1 with the
prevention of peripheral neuropathic pain in rats (Bijjem et al.,
2013). HO-1 is also present in the dorsal root ganglia, in the
trigeminal ganglia, and in higher regions of the nociceptive
system, exerting protective and adaptive mechanisms (Shen et al.,
2015; Akram et al., 2016). We have previously demonstrated that
HO-1 plays a role in the physiopathology of TMJ pain, exerting

anti-inflammatory effects (Chaves et al., 2018). Since the HO-
1 pathway appeared to be such a crucial factor, we raised the
question of whether MC-H effects would depend on the integrity
of this pathway. Our data suggested that peripheral HO-1
participates in the antinociceptive effect of MC-H, corroborating
with the mentioned findings (Chaves et al., 2018).

The NO/cGMP/PKG/pathway did not appear to regulate the
ability of MC-H to decrease peripheral neuronal sensitization
since inhibition of nitric oxide synthase, guanylyl synthase, and
protein kinase G did not change MC-H pre-treated animals. It
has already been shown that systemic glibenclamide can cross
the blood-brain barrier and reduce brain damage secondary to
ischemic stroke (Khanna et al., 2014). This ability to cross organic
barriers is potentiated by the presence of inflammation (Simard
et al., 2012; Caffes et al., 2015). Once bound to the K+ATP
channel, glibenclamide prevents K+ efflux, reducing neuronal
hyperpolarization and, consequently, decreasing neuronal firing
(Nisticò et al., 2007). Therefore, glibenclamide (ip) may have
centrally blocked the MC-H effects, where other NO pathway
components do not lead to antinociception.

Central opioid receptors are involved in pain regulatory
pathways and pharmacological studies have searched for
drugs that act on these receptors for pain therapies (Stein
and Machelska, 2011; Giri and Hruby, 2014; Linz et al.,
2014). However, most drugs have severe adverse effects such
as constipation, nausea, dependence, and other potentially
dangerous conditions like respiratory depression (Manglik et al.,
2016). There is evidence, both experimental and clinical, that
some chronic pain conditions result from changes that reduce the
effect of downstream modulating pathways (Sessle, 2011, 2021).
Therefore, studies on drug design and the development of new
compounds with activity on opioid receptors and fewer side-
effects are highly necessary. Our data suggest that MC-H may act
directly or indirectly on central opioid receptors with a partial
selectivity for µ and δ-opioid receptors.

As a whole, we determined that MC-H efficacy in a pre-clinical
study of TMJ pain is mediated, at least in part, peripherally by
the HO-1 action, as well as through downregulation of ICAM-1
and CD55 levels, and centrally by activation of opioid receptors
(µ and δ). A study using a semisynthetic compound that has
already been shown to be safe in a pre-clinical trial, along with
the possibilities offered by in silico docking study in combination
with a pre-clinical trial investigating the mechanism of action of
this new compound, may contribute to fuel the development of a
possible future new drug with a good safety/efficacy ratio in the
treatment of TMJ pain relief.

CONCLUSION

Our data provide evidence that a semisynthetic derivative MC-H
obtained from Moringa oleifera Lam. flowers presents potential
antinociceptive and anti-inflammatory effects in the rat TMJ
when administered orally. Primarily, this potential analgesic
effect is mediated peripherally by the HO-1 action, as well as
through inhibition of adhesion molecule levels, and centrally by
activation of opioid receptors (µ and δ).
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