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ABSTRACT

Comprehensive understanding of aberrant splicing
in gastric cancer is lacking. We RNA-sequenced 19
gastric tumor–normal pairs and identified 118 high-
confidence tumor-associated (TA) alternative splic-
ing events (ASEs) based on high-coverage sequenc-
ing and stringent filtering, and also identified 8 dif-
ferentially expressed splicing factors (SFs). The TA
ASEs occurred in genes primarily involved in cy-
toskeletal organization. We constructed a correlative
network between TA ASE splicing ratios and SF ex-
pression, replicated it in independent gastric can-
cer data from The Cancer Genome Atlas and experi-
mentally validated it by knockdown of the nodal SFs
(PTBP1, ESRP2 and MBNL1). Each SF knockdown
drove splicing alterations in several corresponding
TA ASEs and led to alterations in cellular migration
consistent with the role of TA ASEs in cytoskeletal
organization. We have therefore established a robust

network of dysregulated splicing associated with tu-
mor invasion in gastric cancer. Our work is a re-
source for identifying oncogenic splice forms, SFs
and splicing-generated tumor antigens as biomark-
ers and therapeutic targets.

INTRODUCTION

Gastric cancer is the fourth most common cancer type, the
third leading cause of cancer-related deaths worldwide and
extremely common in East Asia (1,2). Gastric cancer is of-
ten diagnosed at advanced stages due to late emergence of
symptoms, and it is associated with poor 5-year survival
rates and limited treatment options (3). Gastric cancer also
manifests substantial heterogeneity, and has been classified
into subtypes based on histological features (4) and geno-
types and gene expression profiles (5–7). Research on gastric
carcinogenesis has primarily focused on acquired molecular
aberrations, including chromosomal instability, microsatel-
lite instability, altered epigenetic profiles and somatic muta-
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tions, with the goal of finding key players that can poten-
tially lead to improved therapy and prognosis (8).

One molecular aspect of gastric cancer that is less studied
is alternative splicing. In general, it is estimated that 95% of
multi-exon human genes undergo alternative splicing (9,10),
and alternative splicing is a major mechanism that gener-
ates functional proteomic diversity. Splicing is modulated
by both the spliceosome and trans-acting splicing factors
(SFs) (11). The choice of alternative splice sites is regulated
by these trans-acting SFs (12) and by the cis-regulatory
exonic/intronic splicing enhancer or silencer sequences that
they bind to (13).

Alternative splicing has important regulatory functions
in cellular development and differentiation (14), is highly
tissue specific (15) and has been linked to some diseases (16).
Several lines of evidence indicate that tumors exploit alter-
native splicing to acquire growth and survival advantage
(17). First, several cancer types harbor recurrent somatic
hotspot mutations affecting SFs, notably U2AF1 (18) and
SF3B1 (19–21). Second, several cancer types exhibit alter-
ation of the expression of SFs. Examples include RBFOX2
downregulation in ovarian cancer (22), SRSF1 overexpres-
sion in breast cancer (23), and PRPF6 and PTBP1 overex-
pression in colorectal cancer (24,25). Third, the oncogenic
effect of aberrant splicing of known tumor drivers has been
delineated in several instances comprising several cancer
types, showing that alternative splicing sometimes directly
promotes tumor progression (17). Examples include AR
(androgen receptor) (26), BCL2L11 (also known as BIM)
(27), BRAF (28), VEGFA (29), BCL2L1 (30,31), CD44 (32)
and FGFR2 (33).

To date, a few large-scale RNA-seq studies have described
aberrant splicing repertoires of several cancer types: breast
cancer (34), chronic lymphocytic leukemia (35), lung can-
cer (36), acute myeloid leukemia (37) and uveal melanoma
(38,39). With respect to gastric cancer, we are aware of three
studies that globally examined alternative splicing, and each
study addressed a different question. One study focused
on differences in alternative splicing between Epstein–Barr
positive and negative gastric cancers in The Cancer Genome
Atlas (TCGA) data, followed by focused, functional stud-
ies in an embryonic kidney cell line (6,40). Another study
explored gastric-cancer-associated splicing within a larger
multi-omics study, and then focused on functional studies of
a specific ZAK kinase splice form (41). A third study exam-
ined the splicing aberrations in gastric carcinomas using the
TCGA data, focusing on the prognostic value of a few splic-
ing events in predicting patient survival (42). In addition
to these studies that globally examined alternative splicing,
other studies in gastric cancer focused on splicing in single
specific genes, including CD44, FGFR2, BIRC5, MST1R,
CD82, WISP1, SPP1, WNT2B, CDH1, MUTYH, FHIT,
MUC1, NUF2 and TERT [reviewed in (43)].

Given the potential impact of RNA-seq analysis of
tumor-associated (TA) aberrant splicing and given the re-
cent advances in understanding the role of splicing in the bi-
ology of other tumor types, we sought to use high-coverage
RNA sequencing to systematically identify the repertoire
of high-confidence TA alternative splicing events (ASEs) in
primary human gastric cancer tissue and to experimentally
identify their upstream regulators. Our aim was to construct

a network of dysregulated splicing in gastric cancer and to
use knockdown experiments to functionally validate it. This
network illuminates the mechanisms of gastric tumorigen-
esis, and points to high-confidence TA, and in some cases
oncogenic, splice forms that are common across gastric can-
cer subtypes. These splice forms can then be the subjects of
further functional study, including those splice forms that
might encode TA antigens that could be exploited in im-
munotherapy, or that might be used as biomarkers for dis-
tinguishing tumor from non-tumor tissue in the operating
room.

MATERIALS AND METHODS

The tissue samples, the cell lines and the experimental meth-
ods are described in detail in Supplementary Information.

RNA-seq analysis for identifying TA ASEs and differentially
expressed SFs

We used high-coverage (>200 million reads), stranded,
RNA sequencing on rRNA-depleted input RNA in order
to provide a basis for very high confidence identification of
alternative splicing. Supplementary Information provides
further details. We used rMATS V3.2.5 for exon-centric al-
ternative splicing analysis of both the primary tissue sam-
ples and the gastric cell lines (44). rMATS quantifies the
relative abundance of an ASE by a percent spliced in (PSI)
value, and it does so for all major types of ASEs, including
skipped exons, alternative 5′ splice sites, alternative 3′ splice
sites, mutually exclusive exons and retained introns. The
identification of ASEs was guided by GENCODE gene an-
notation v19 with the argument ‘-novelSS 1’ to additionally
allow detection of novel splice sites. Differential splicing was
called by RNASeq-MATS.py with the options ‘-t paired -
len 100 -analysis P -libType fr-firststrand -novelSS 1 -c 0.1’.
Figure 1B shows PSIs in tumor and normal samples at an
ASE in the HLA-DMB gene as examples. For matched tu-
mor and normal tissue samples, we performed paired analy-
sis. We sought to maximize the specificity of our analysis be-
cause we intended to identify high-confidence TA ASEs that
are common across gastric cancer subtypes. In the future,
these could be prioritized for functional analysis or might
be exploited in immunotherapy or used as biomarkers for
distinguishing tumor from non-tumor tissue in the operat-
ing room. We first selected ASEs with false discovery rates
(FDRs) <0.05 based on the rMATS P-values and with me-
dian junction read counts ≥10 in both tumor and normal
samples. To further maximize specificity, we inspected the
sashimi plots of all remaining individual ASEs (Supplemen-
tary Information and Supplementary Figures S1–S4). We
excluded ASEs with any of the following characteristics, as
illustrated in the examples in Supplementary Figure S2: (i)
ASEs with many intronic reads, because these likely arose
from unprocessed transcripts and may obscure the signal
arising from mature transcripts; and (ii) ASEs with com-
plex transcript structures involving several combinations of
multiple exons, for which rMATS is often unable to reliably
estimate PSI (45).

We selected an initial list of 73 SFs to investigate from a
database of experimentally validated SFs, SpliceAid-F (46),
and from a review of the literature (Supplementary Table
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Figure 1. Experimental design and identification of TA ASEs. (A) Flowchart of study design. (B) Sashimi plot of an example of a differentially spliced ASE
in tumor (red) and normal (purple) samples above a schematic representation of the alternative exon–intron structures (bottom panel in black). RPKM
= reads per kilobase per million reads, averaged across samples within the same group. Numbered arcs within the sashimi plot, e.g. 155 in the upper left,
indicate the average number of sequencing reads that span the indicated exon–exon junction. In this example, the middle exon was included with an average
PSI of 0.59 in the normal sample and an average PSI of 0.86 in the tumor. (C) Principal component analysis over PSIs of 118 TA ASEs strongly separates
tumors (red) from non-malignant samples (black).

S4). We detected changes in SF transcript levels in the 19
paired primary tumor and normal samples by first comput-
ing gene counts using HTSeq (47) and then analyzing differ-
ential gene expression using DESeq2 (48). To identify SFs
that were differentially expressed at the transcript level, we
initially required FDR ≤ 0.05 and absolute log2 fold change
≥0.5. We further included SFs that did not satisfy these cri-
teria but were known from the literature to be associated
with some cancer types. This yielded 22 candidate SFs with
dysregulated transcript levels. We then assessed the 22 SFs’
protein levels via western blot in several gastric cancer cell
lines (Supplementary Table S2) to generate the final list of
differentially expressed SFs.

Experimental assessment of SF regulation of ASEs

We used knockdown experiments to assess whether the
SFs directly or indirectly controlled correlated ASEs. We

knocked down each SF with siRNAs targeting three differ-
ent regions of the gene (Supplementary Table S5). In addi-
tion, three replicates of a non-targeting siRNA were used as
negative controls for each cell line. For each knocked-down
SF, we used rMATS to determine which ASEs had signifi-
cant PSI changes in the direction predicted by the correla-
tion network. We evaluated the ratio of the number, d, of
such ASEs relative to the number, c, of TA ASEs that were
both detectable in the cell line and significantly correlated
with the SF in the network model. To compute the statistical
significance of d/c, we calculated an empirical null distribu-
tion based on 10 000 random samples as follows. For each
sample, we randomly selected c ASEs that were detectable
in the cell line, but without regard to the statistical signifi-
cance of their correlation to the SF in the network model,
and then determined d’ based on the knockdown data. The
P-value was the fraction of the 10 000 random samples in
which d’/c ≥ d/c.
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RESULTS

ASEs in gastric cancer occur in genes involved in cytoskeleton
organization

We generated deep (∼200 million reads per sample), strand-
specific RNA-seq data from 19 gastric tumors and their
adjacent normal tissues (Figure 1A, Supplementary Table
S3). Of the 19 tumor samples, 11 were of intestinal subtype,
while the others were either diffuse or of a mixed subtype.
Most were late-stage samples and most were poorly differ-
entiated (Supplementary Table S1).

Using rMATS (44), we identified a total of 238 545
ASEs across the 19 tumor–normal pairs. To focus on high-
confidence differential splice form abundance between gas-
tric tumors and corresponding normal tissues, we screened
for ASEs that showed a change in PSI in either direction be-
tween tumor and normal samples with an rMATS FDR <
0.05. We then manually curated the ASEs and retained 118
ASEs in 100 genes that showed strong evidence of tumor as-
sociation (‘Materials and Methods’ section, Supplementary
Table S6, Supplementary Figures S1–S4). Henceforth, we
refer to these as TA ASEs. Several known splicing variants
affecting cancer-critical genes were rediscovered among the
118 TA ASEs, including ASEs in CD44, KRAS, CTTN
and TNC (49–52). The list of TA ASEs we identified here
had limited overlap with gastric-cancer-associated alterna-
tive splice forms identified in other studies (40,41) (9 and 13
overlapping genes, respectively). This is likely because the
previous studies relied on difficult-to-estimate differences in
abundances of entire transcript isoforms rather than on dif-
ferences in PSI at ASEs. ASEs are spatially localized, and
therefore, compared to the abundances of entire transcript
isoforms, PSIs at ASEs are more amenable to estimation
based on relatively short, next-generation sequencing reads.
Principal component analysis on the PSIs of the 118 TA
ASEs cleanly separated tumor from normal samples (Fig-
ure 1C). Thus, the 118 TA ASEs constitute an alternative
splicing signature that distinguishes gastric tumors from ad-
jacent non-malignant tissue based on PSIs.

In a panel of gastric cancer cell lines and using HFE-145
(a normal gastric cell line) and normal primary stomach
RNA as controls, reverse transcriptase polymerase chain re-
action (RT-PCR) experiments on 25 top-ranked TA ASEs
confirmed that 19 had PSI differences in agreement with
those observed in the primary tissues (Figure 2A, Supple-
mentary Table S7, Supplementary Figure S5). These RT-
PCR experiments confirmed the existence and directional-
ity of PSI differences that we initially detected in the RNA-
seq data. Furthermore, these experiments indicated that the
splicing changes in primary tumors were recapitulated in
the cell lines, which could then serve as model systems for
experimental study of the role of splicing alteration in gas-
tric cancer.

Gene set enrichment analysis

We investigated enrichment for high-confidence TA
ASEs in gene sets in the MSigDB ‘GO gene sets’ and
‘curated gene sets’ collections (53). To avoid detecting
enrichment for alternatively spliced genes in general, as
opposed to genes with TA alternative splicing, we used

the set of genes harboring detected ASEs, and not the
set of all genes, as the background set. We found that
TA ASEs prominently affect genes involved in cytoskele-
ton organization and cell motility (adjusted P-values by
hypergeometric tests between 7.23 × 10−6 and 4.91 ×
10−2, Figure 2B, Supplementary Figure S6, figures plotted
using the Bioconductor package ’clusterProfiler’ (54)).
In the ‘GO gene sets’ collection, ‘actin filament based
process’, ‘actin binding’ and ‘cell leading edge’, which are
all essential functions in cellular movement, showed the
most significant enrichment. In the ‘curated gene sets’ col-
lection, ‘KEGG ECM RECEPTOR INTERACTION’,
which contains genes involved in adhesion, migra-
tion, differentiation, proliferation and apoptosis, and
‘KEGG TIGHT JUNCTION’, which contains genes that
mediate cell adhesion, showed significant enrichment. In
addition, the set ‘COULOUARN TEMPORAL TGFB
1 SIGNATURE UP’, which contains genes associated
with a more invasive phenotype in experimental systems,
showed significant enrichment. These findings regarding
gene set enrichment are consistent with previous reports in
other cancer types of TA ASEs in cytoskeletal genes such
as TPM1, CTTN, CALD1 and ENAH (50,55–58).

We also draw attention to two addi-
tional enriched gene sets in the ‘curated gene
sets’ collection (Supplementary Figure S6).
‘DUTERTRE ESTRADIOL RESPONSE 24HR DN’
contains genes that respond to estradiol treatment. Thus,
estrogen may play a role in gastric cancer. This finding
is consistent with reports of the association of estrogen
receptors with gastric cancer, in terms of both expression
dysregulation and isoform switches (59,60). Another highly
enriched gene set in the ‘curated gene sets’ collection,
‘DANG REGULATED BY MYC DN’, contains genes
downregulated by the MYC oncogene. This is consistent
with reports that MYC regulates several SFs, including
PTBP1 (61), which was a key dysregulated SF identified in
the current study.

Because some previous studies (40,42) reported larger
sets of TA ASEs based on relaxed filtering criteria, we ana-
lyzed gene set enrichment for 1595 genes harboring 2104 TA
ASEs identified using relaxed filtering criteria in our data
(Supplementary Table S11). While the themes noted earlier
remained, and a few more gene sets were enriched, FDRs
were higher, suggesting that using the stringent criteria for
identifying TA ASEs is more likely to pinpoint relevant bi-
ology (Supplementary Figure S10).

Expression of several SFs is dysregulated in gastric cancer

To understand the mechanisms regulating splicing aber-
ration in the 19 tumor–normal pairs, we examined the
data for mutations at splice sites in TA ASEs and
looked for recurrent mutations or expression level differ-
ences in the 73 experimentally confirmed SFs listed in
the SpliceAid-F database (46). In addition, we examined
the expression level differences of several regulators of
SFs, specifically SF kinases and phosphatases, including
CLK1, CLK2, CLK3, CLK4, SRPK1, SRPK2, SRPK3,
DYRK1A, DYRK2, PIM1, PIM2, PRPF4, PPP1CA,
PPP1CB, PPP1CC, PP2CA, PPP2CB, MAPK1, MAPK3,
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A

B

Figure 2. Confirmation of TA ASEs. (A) Top panels show gel electrophoresis images of RT-PCR confirmation of example TA ASEs above sashimi plots
and diagrams of the ASEs’ exon–intron structures, as in Figure 1B. (B) Top enriched Gene Ontology (GO) terms (C5 of MSigDB) in genes affected by TA
ASEs. Dot size indicates the number of genes harboring TA ASEs in that GO term; dot color indicates the significance of enrichment (hypergeometric test
P-value adjusted by the Benjamini–Hochberg method). Figure plotted using the Bioconductor package ‘clusterProfiler’ (54).
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MAPK7-14, AKT1, PTK6, FYN, SRC, ABL1, PRKACA,
PRKACB, TOP1, FASTK and AURKA (62,63). We did
not find any splice site mutations, or any recurrently mu-
tated SFs (Supplementary Table S4). We did find the Aurora
kinase A (AURKA) to be upregulated in gastric tumors and
the protein kinase CAMP-activated catalytic subunit beta
(PRKACB) to be downregulated in gastric tumors. While
AURKA was previously reported to regulate splicing of two
apoptotic genes, BCL-X and MCL1, through phosphoryla-
tion of SRSF1 (64), we did not observe significantly differ-
ential splicing of these two genes in our data. PRKACB,
which acts on SRSF1 and SRSF7, was reported to regu-
late alternative splicing of the gene, TAU (65,66), although
the latter was not found to be differentially spliced in our
data either. Therefore, we focused on differential expression
of SFs as possible drivers of PSI differences between tu-
mor and normal tissue. The mRNA levels of 22 of the 73
SFs differed between tumor and normal samples [DESeq2
FDR < 0.05 and abs(log2(fold change)) > 0.5, see ‘Materi-
als and Methods’ section]. We then assessed expression of
these 22 SFs plus MBNL1 (because of previous reports in-
dicating its role in cancer) in a panel of 8 gastric cancer and
2 non-malignant gastric epithelium cell lines by western blot
analysis. SF proteins SF3B3, PTBP1, SQSTM1, HNRNPF,
HNRNPL and HNRNPK were upregulated in gastric can-
cer cell lines, while MBNL1 was downregulated (Supple-
mentary Figure S11). ESRP2 mRNA and protein were ab-
sent from both of the non-malignant cell lines that we stud-
ied. However, ESRP2 mRNAs were consistently downreg-
ulated in tumors in our 19 tumor–normal pairs and in the
TCGA gastric cancer data. We therefore proceeded on the
hypothesis that ESRP2 downregulation contributes to gas-
tric carcinogenesis.

PTBP1, ESRP2 and MBNL1 play key regulatory roles in the
networks of gastric-cancer-associated splicing

To better understand the roles of these eight SFs (the six
upregulated SFs and the two downregulated SFs, MBNL1
and ESRP2) in gastric cancer, we examined associations be-
tween the SFs and their potential ASE targets. We first com-
puted Spearman’s correlations between the mRNA levels of
the dysregulated SFs and the PSI values of the 118 high-
confidence TA ASEs (Supplementary Table S8). Some dys-
regulated SFs were correlated to more TA ASEs than oth-
ers, with ESRP2, SF3B3, PTBP1 and MBNL1 correlated to
the most TA ASEs (Supplementary Figure S7). In all, 59%
of the TA ASEs were significantly correlated (Benjamini–
Hochberg FDR < 0.05, Supplementary Table S8) to ≥1
dysregulated SF (Figure 3A). The average absolute correla-
tion coefficient over significantly correlated SF–ASE pairs
was 0.64 (95% confidence interval = 0.42–0.79). Statistical
significance of the correlation coefficients was estimated by
permutation tests that randomly permuted the association
of PSIs with the ASEs before computing the ASE–SF cor-
relations. We did this separately for the tumor and for the
matched non-malignant tissue to remove a possible indirect
association due to the fact that both the ASEs and SFs were
TA.

To visualize the association between dysregulated SFs
and TA ASEs, we computed a hub-and-spoke network

ESRP2
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ESRP2

HNRNPF

HNRNPK

HNRNPL

MBNL1

PTBP1

SF3B3

SQSTM1

A B
Spearman’s Correlation Co-efficient

Figure 3. Expression of the dysregulated SFs and the PSIs of TA ASEs
is highly correlated. (A) Heatmap showing Spearman’s correlation coeffi-
cients between the DESeq2-normalized log counts of the 8 dysregulated
SFs and the PSIs of the 118 TA ASEs (data in Supplementary Table S8).
Red indicates high positive correlation, while blue indicates high nega-
tive correlation. (B) A hub-and-spoke network model showing correlations
(spokes) between the eight dysregulated SFs (hubs in yellow) and their po-
tential target TA ASEs (gray). The model features three regulatory clusters.

model of aberrant splicing events (Figure 3B), which
depicted highly correlated ASEs and SFs (those with
Benjamini–Hochberg FDR < 0.05 based on the permuta-
tion test P-values, Supplementary Table S8). Hierarchical
clustering of the eight SFs based on their co-expression with
the ASEs and assessed by silhouette indices indicated that
the optimal number of clusters was 3 (Figure 3A, Supple-
mentary Information, Supplementary Table S12). Cluster I
consisted of PTBP1, SF3B3, HNRNPK, HNRNPF, HN-
RNPL and SQSTM1, Cluster II consisted of ESRP2 and
Cluster III consisted of MBNL1. This model suggested that
the dysregulated SFs in gastric cancer regulate more than
half of the identified TA ASEs either directly or indirectly.

We experimentally assessed the possible regulatory roles
of the SFs by using RNAi to knock down one representa-
tive SF from each of the three clusters in a gastric cell line,
followed by RNA-seq analysis of the consequences. For the
knockdown target in Cluster I, we selected PTBP1, which
was correlated with the second largest number of ASEs in
that cluster (Supplementary Figure S7). (The SF correlated
with the largest number of ASEs was SF3B3, which cannot
be knocked down because it is required for cell viability.)
We studied PTBP1 in the AGS cell line, a gastric adenocar-
cinoma cell line that expresses high levels of this gene. After
knockdown of PTBP1, 4 out of the 11 PTBP1-correlated
ASEs that were detectable in AGS showed changes in splic-
ing in the expected direction (P = 0.246, see ‘Experimental
assessment of SF regulation of ASEs’, Figure 4A). Because
TA ASEs in Cluster I are correlated to multiple SFs (Figure
3B), it is possible that the seven ASEs that were correlated
to PTBP1 but showed no effect upon PTPB1 knockdown
might be regulated by SFs in Cluster I other than PTBP1.

For Cluster II, centered on the SF ESRP2, we also used
AGS cells, which show high ESRP2 expression. Of 34 de-
tectable TA ASEs correlated to ESRP2, 9 showed expected
changes in splicing after ESRP2 knockdown (Figure 4B, P
< 0.0001).

For Cluster III, centered on MBNL1, we used HFE-145
cells, a non-neoplastic gastric epithelial cell line with high
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Figure 4. siRNA knockdown of individual SFs confirms predicted regulatory targets. Each of the panels (A), (B) and (C) corresponds to knockdown of one
SF, as indicated. The bar plots (top left of each panel) show the quantitative RT-PCR expression of the respective SF post knockdown by four individual
siRNAs (data in Supplementary Table S14). Red triangles indicate the most effective knockdowns, which were subsequently characterized by RNA-seq.
Below each bar plot is the western blot confirming protein-level knockdown of the SF. ‘siNeg’ indicates data from a non-targeting control siRNA. The pie
chart (bottom left of each panel) summarizes the validation results of predicted targets of the SF via RNA-seq experiments; dark blue portion indicates the
correlated events showing significant differential splicing in a direction expected from the correlations in RNA-seq from the initial 19 tumor–normal pairs.
On the right of each of panels (A), (B) and C are plots showing three example ASEs that were directly or indirectly regulated by the SF. In each panel, the
top row plots relationships between the PSIs of 3 TA ASEs and the SF mRNA level across all samples in the initial 19 tumor–normal pairs; R indicates the
strength of the correlation; p indicates the statistical significance of the correlation. The bottom row of plots in each panel shows the knockdown-driven
splicing changes in the TA ASEs; dPSI = average change in PSI; KD = knockdown; the P-value, reported by the rMATS software, reflects the statistical
significance of splicing changes due to the knockdown. For ESRP2, there was a technical replicate of one of the siRNA knockdowns, so there were a total
of four knockdown experiments.
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MBNL1 expression. Of nine MBNL1-correlated ASEs de-
tectable in the knockdown samples, six showed expected
changes in splicing (Figure 4C, P = 0.0007). Taken together,
these results confirm that many of the correlations reflect
direct or indirect regulation of the TA ASE by a dysreg-
ulated SF (Figure 4, Supplementary Table S9). We there-
fore have developed a novel methodology for constructing
a splicing network model that captures hypotheses regard-
ing regulatory relationships between SFs and ASEs and that
are amenable to experimental assessment of biological rele-
vance.

Knocked-down SFs modulate the same biology as their pre-
dicted TA ASE targets

Having experimentally established a regulatory relation-
ship between dysregulated SFs and many of their network-
model-predicted TA ASE targets, we hypothesized that the
SFs and their target TA ASEs modulate the same biolog-
ical functions. GO analysis showed that the genes affected
by TA ASEs are involved in cytoskeletal organization (Fig-
ure 2B). We therefore experimentally investigated whether
the SFs regulating these TA ASEs also affect this GO cate-
gory. Cytoskeletal organization refers to organization and
distribution of actin and actin-binding proteins that play
key roles in focal adhesion formation and in cell migration
and invasion. These in turn correlate to metastatic poten-
tial (53). To assess the role of the SFs in cell migration,
we measured AGS cells’ trans-well migration after sepa-
rate knockdowns of PTBP1, ESRP2 and MBNL1 (three
different siRNAs for each target, Figure 5A and B). These
three SFs appeared to be dominant regulatory nodes in
the gastric-cancer-associated splicing network model (Fig-
ure 3B). As expected, knockdown of ESRP2 and MBNL1
led to increased migration in all three knockdown replicates
as compared to controls, while loss of PTBP1 led to a re-
duction in migration in two out of three replicates. We fur-
ther knocked down each of the SFs with its three target-
ing siRNAs pooled, and observed the expected significant
changes in migration (Supplementary Figure S8). Notably,
the knockdown of these three SFs did not affect cell prolif-
eration (Supplementary Figure S9B), thereby showing that
the changes observed in cell migration are independent of
altered cell growth. Furthermore, 24 h after knockdown
of MBNL1 and ESRP2 some cells showed a more mes-
enchymal morphology compared to control cells (Supple-
mentary Figure S9A). Taken together, our data indicate that
dysregulated expression of key SFs (MBNL1, ESRP2 and
PTBP1) alters cell migration, possibly via changes in alter-
native splicing. We therefore concluded that the key SFs and
TA ASEs identified in the gastric cancer splicing network
(Figure 3B) may play important roles in tumor metastasis.

Confirmation of correlations between SF levels and ASE
PSIs in a second dataset

As an independent validation of the findings in our pri-
mary gastric tumor dataset, we repeated our analysis in the
TCGA gastric cancer samples, comprising 323 tumors and
31 non-malignant gastric epithelium samples (6). As in the
initial dataset of 19 tumor–normal pairs, principal compo-
nent analysis over the TCGA PSI values of the 118 TA

ASEs strongly separated tumor and normal samples (Fig-
ure 5C). The TCGA data also confirmed the direction of
gene expression changes in the SFs at the hubs of the net-
work model. Most importantly, 45 out of 48 significant pos-
itive correlations between the level of an SF transcript and
the PSI of a TA ASE in the initial data were positive in the
TCGA data, and all 60 negative correlations in the initial
data were negative in the TCGA data (P < 2.2 × 10–16,
Fisher’s exact test, two-sided, Figure 5D, Supplementary
Table S8). Thus, the dysregulated splicing network reported
here represents a general mechanism underlying gastric can-
cer progression.

DISCUSSION

This study has identified a comprehensive profile of
TA ASEs and their potential regulators in gastric can-
cer. We combined computational and experimental ap-
proaches to build a hub-and-spoke network model of
TA ASEs potentially driven by dysregulation of several
SFs (PTBP1, SF3B3, HNRNPF, HNRNPK, HNRNPL,
SQSTM1, ESRP2 and MBNL1, Figure 3B). Knockdown
of three hub SFs (PTBP1, MBNL1 and ESRP2) estab-
lished causal relationships between these SFs and TA ASEs
within the network model (Figure 4). GO analysis indi-
cated that genes harboring gastric TA ASEs are involved
in cytoskeletal organization, which is associated with in-
vasion and migration. Indeed, knockdown of the hub SFs
(PTBP1, MBNL1 and ESRP2) led to the expected changes
in cell migration (Figure 5A and B). Thus, these SFs func-
tion in migration and invasion potentially via regulation of
the predicted target TA ASEs. Recapitulation of the gastric-
cancer-associated splicing network model (Figure 3B) in the
TCGA gastric cancer RNA-seq data demonstrates the ro-
bustness of our study (Figure 5C and D).

The importance of the three hub SFs (PTBP1, ESRP2
and MBNL1) and a handful of their target ASEs was pre-
viously known in cancer biology. PTBP1 transcripts are
known to be upregulated in gastric tumors (40). In a colon
cancer cell line, knockdown of PTBP1 led to reduction in
some cancer-associated splice forms (67). In breast, colon,
renal and gastric cell lines, upregulation of PTBP1 increased
proliferation or migration and invasion (67–71). CTTN
(cortactin), a splicing target of PTBP1, regulates interac-
tions between components of adherens junctions and plays
a critical role in cytoskeletal organization (72). One splice
form of this gene promotes invasion and migration in colon
cancer cell lines (71). It has been proposed that PTBP1 con-
tributes to the Warburg effect via regulation of the alter-
native splicing of the pyruvate kinase muscle (PKM) gene
(68,70). However, neither the 19 tumor–normal pairs nor
the TCGA data showed significant elevation of the pro-
posed oncogenic PKM splice form.

ESRP2 and its homolog ESRP1 are important in
epithelial–mesenchymal transition (EMT) and EMT-driven
tumor invasiveness (73). Knockdown of ESRP2 led to in-
creased proliferation and cell migration in renal (74) and in
head-and-neck cancer cell lines (75), which is concordant
with our observations in gastric cancer cell lines. ESRP2
regulates the splicing of oncogenic transcripts of CD44 and
ENAH (76), which we rediscovered in our data.
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A C

D

B

Figure 5. Changes in cell migration after SF knockdown and recapitulation of our computational analysis in TCGA data. (A) Bar plot of absorbance at
560 nm, a measure of the number of stained cells after migration, showing increased migration after knockdown of MBNL1 and ESRP2 and decreased
migration after knockdown of PTBP1 (see also Supplementary Table S13). (B) Representative images of migrated AGS cells after knockdown with a
control (siNeg) and/or with siPTBP1, siMBNL1 and siESRP2, showing more migration after knockdown with siMBNL1 and siESRP2 than control cells,
and less migration after knockdown with siPTBP1. (C) Principal component analysis of the original 118 TA ASEs based on their PSIs in the TCGA data.
This plot, like the analogous plot based on PSIs in the original 19 tumor–normal pairs, separates tumor from non-malignant samples. (D) Scatter plot of
(i) the PSI-to-SF correlation coefficients in the original 19 tumor–normal pairs versus (ii) the corresponding PSI-to-SF correlations in the TCGA data.
Each dot represents a single TA ASE–SF pair; only pairs with significant correlations in the initial set of 19 patients are shown; 45 out of 48 significant
positive correlations in the initial data were positive in the TCGA data, and all 60 negative correlations were negative in the TCGA data (P < 2.2 × 10–16,
Fisher’s exact test, two-sided, Supplementary Table S8).

MBNL1 is the least studied SF of the three that we fo-
cused on in this study. RNA-seq data from 11 solid tu-
mors (not including gastric cancer) showed reduced levels
of MBNL1 transcripts in several cancer types (77). In breast
cancer, MBNL1 suppresses metastasis (64). Furthermore,
knockdown of MBNL1 led to splicing changes in several
TA ASEs in multiple cancer types (77).

Taken together, all the above data are concordant with
our findings that PTBP1 behaves as an oncogene, that
ESRP2 and MBNL1 behave as tumor suppressors and that
all three are important regulators of TA ASEs. Beyond re-
discovering previously known oncogenic splice forms, our
work has substantially expanded knowledge of the reper-
toire of potentially oncogenic TA ASEs regulated by these
SFs.

Both the pathways enriched for the TA ASEs identified in
the current study and the changes in migration after knock-
down of key SFs suggest that aberrant splicing in gastric
cancer promotes invasiveness, an essential hallmark of all
cancers (78). Concordant with our findings in gastric can-

cer, studies in other cancer types observed splicing changes
that contribute to invasiveness. For example, an EGFR vari-
ant lacking exon 4 was more highly expressed in metas-
tasized ovarian cancers than in primary tumors (79). The
CD44v6 splice form seen in our data also enhanced the sur-
vival and proliferation of melanoma cells in brain metas-
tases (80). In breast and colon cancers, SRSF1 promotes cell
motility by switching the tyrosine kinase RON to a consti-
tutively active splice form (81). Our study further suggests
that global fine-tuning of an alternative splicing program
promotes invasiveness in gastric cancer.

A limitation of the current work is the small sample size
analyzed. Because of this, we focused on splicing aberra-
tions common to all gastric cancer subtypes together, rather
than examining splicing aberration separately for each sub-
type. However, as a consequence, the TA ASEs reported in
this study represent a curated set of high-confidence splic-
ing events common to all gastric cancer subtypes, which
were derived from stringent filtering criteria and which were
supported by strong evidence in the form of replication in
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the TCGA data and in the form of the SF knockdown
experiments. In the future, individual high-confidence TA
ASEs could be studied experimentally to determine their
specific roles in gastric oncogenesis. These high-confidence
TA ASEs may be useful as biomarkers that can distinguish
tumor from non-tumor tissue, particularly in the operating
room where delineating clean surgical margins that demon-
strate removal of tumor tissue is critical to achieving posi-
tive clinical outcomes (82). Furthermore, we are currently
assessing the potential of these TA ASEs as a source of
cancer antigens that can be exploited in immunotherapy, as
proposed by Epstein et al. (83).

Overall, the results presented here provide a broad view
of the alternative splicing landscape in gastric cancer. We
have identified upstream regulators of these splicing alter-
ations and have shown experimentally that three of these
SFs regulate cell migration in gastric cell lines, potentially
via their splicing targets. We speculate that the dysregulated
splicing network plays a critical role in migration and inva-
sion in gastric cancer. The splicing network model (Figure
3B) is a resource for future studies seeking to identify novel
splice-activated oncogenes as biomarkers or as therapeutic
targets.
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