
Letter to the Editor

Transcriptional output, cell-type densities, and
normalization in spatial transcriptomics

Dear Editor,
Spatial transcriptomics (ST) makes it

possible to perform RNA-seq at hundreds
of precisely located spots on the surface
of a histological slice (Ståhl et al., 2016).
Since mRNA diffusion is minimal during
tissues permeabilization and mRNA cap-
ture, the transcriptome of each spot is
thought to aggregate the transcriptomes
of the cells it contains. The number of
cells within a spot and their transcrip-
tional output depend on their type, state,
and overall local morphology. ST shares
some limitations with single-cell RNA-
seq, including high dropout rate. So far,
ST studies have relied on preprocessing
pipelines inspired by single-cell RNA-seq
studies (Ståhl et al., 2016; Asp et al.,
2017; Giacomello et al., 2017; Berglund
et al., 2018; Lundmark et al., 2018).
These include normalization of gene-
wise read counts in a cell/spot by the to-
tal number of reads collected from that
cell/spot. But the number of reads
obtained from a spot could reflect its cel-
lular content or technical variation in
RNA capture and amplification. Thus,
whether read count normalization is war-
ranted in the context of ST remains an
open question. We addressed it by quan-
tifying the cellular content of individual
spots from image analysis and by com-
paring it with read counts.

A BRAF V600E-mutated papillary thy-
roid cancer was profiled with ST
(Supplementary material). Pathology re-
view of the H&E image revealed five

major types of morphologies (Figure 1A).
This qualitative approach was comple-
mented by whole-slide machine
learning-based localization of nuclei,
and their classification within three cate-
gories (Figure 1B): epithelial cells, fibro-
blasts, and ‘other cells’, which mostly
contain immune cells. Among 86111

detected nuclei (Figure 1C), 31% were lo-
cated within ST spots. The mean number
of cells per spots varied from 0 to 197

(median 67).
Spot-wise read coverage varied from

356 to 8749 across the slide (Figure 1E),
a 25-fold variation. It was associated
with the number of cells of all types in a
multivariate analysis (Figure 1G), particu-
larly epithelial cells (Figure 1F). As
expected, total read count per spots was
highest in dense epithelial areas and
lowest in low cell density fibrotic zones
(Figure 1E and G). We concluded that to-
tal read counts per spot reflects relevant
quantitative and qualitative features of
tissue morphology.

To assess the effect of normalization,
we compared raw read counts with raw
counts normalized for total counts and
with scale-normalized expression esti-
mates generated by the Deep Count
Autoencoder (DCA; Eraslan et al., 2019),
a neural network-based algorithm devel-
oped in the context of single-cell RNA-
seq. Figure 1H and I show expression of
thyroglobulin (TG, a thyroid differentia-
tion marker) and vimentin (VIM, a mes-
enchymal intermediate filament),
respectively. Raw counts and normalized
expression of TG all closely followed epi-
thelial density and total counts (compare
Figure 1H to Figure 1A and E, and see
also Supplementary Figure S1). VIM raw
counts were substantial in the epithelial
areas but also in the cellular fibrosis and

immune foci. Normalization, however,
revealed a dramatically different picture,
particularly for DCA: while remaining
high in cellular fibrosis and immune foci,
VIM expression was lower in epithelium
(Figure 1I; Supplementary Figure S1).

Thus, normalization affected the spa-
tial expression pattern of VIM, but not
TG. The absolute numbers of epithelial
cells and fibroblasts per spot were
weakly associated (Figure 1J), while their
relative proportions, i.e. their number di-
vided by the total number of cells within
a spot, were massively anti-correlated
(Figure 1K). The raw counts of TG and
VIM are positively correlated (Figure 1L),
while their normalized values are nega-
tively correlated (Figure 1M). The posi-
tive correlation between TG and VIM raw
counts (Figure 1L) suggests that the tu-
moral epithelium expresses VIM and
could undergo an epithelial–mesenchy-
mal transition. This transition has been
reported in BRAF V600E-mutated tumors
(Knauf et al., 2011) such as this one.
VIM is also expressed in primary cultures
of normal thyrocytes treated with epider-
mal growth factor, which inhibits differ-
entiation, but not of thyrocytes treated
with thyroid-stimulating hormone, which
promotes thyroid differentiation—while
both are mitogenic (Coclet et al., 1991).
Alternatively, VIM expression by fibro-
blasts could be promoted by nearby epi-
thelial cells. Overall, raw counts seemed
more related to the number of cells of a
given cell type, while normalized expres-
sion captured cell types’ relative
proportions.

To rule out possible artifacts related to
TG and VIM in this particular tissue slice,
we reproduced the above analysis (i) to
the thyroid-stimulating hormone receptor
(TSHR) and collagen III a1 (COL3A1) in
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Figure 1 Variation of total read counts is related to morphology and number of cells of different types. (A) Five types of morphological
regions were determined from pathology. The transcriptome was measured in each spot with ST. (B) The nuclei on the H&E image were seg-
mented and classified with a machine learning-based algorithm (Supplementary material). (C) Nuclei counts. (D) Distributions of the num-
ber of cells per ST spot. (E) Total read count per spot. (F) Multivariate analysis of association between cell numbers and the log2 of total
read count per spot. (G) Each point represents a ST spot with same color code as in A. q denotes the Spearman’s correlation. (H and I)
Expression of TG (H) and VIM (I) without normalization (left), with adjustment for total read counts (center), and with DCA normalization
(right). Boxplots represent the expression of spots in the regions shown in A (same color code). (J and K) Points represent spots (same
color code as before) with the absolute number (J) and cell-type proportion (K) of epithelial cells (x-axis) and fibroblasts (y-axis). The large
negative correlation stems from the low number of ‘others’ in C. (L and M) Expressions of TG and VIM are compared using raw counts or
auto-encoder-based normalization. (N) Distribution of gene–gene correlation across spots for raw counts and normalized data.
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another slice of the same thyroid cancer
(Supplementary Figure S2) and (ii) to the
estrogen receptor (ESR1) and VIM in a
publicly available breast cancer slice
profiled on the recent Visium platform
(10x Genomics; Supplementary Figure
S3). Taken together, these controls sup-
port the generality of the effect of nor-
malization on the relation between
epithelial differentiation and mesenchy-
mal markers and their relevance to
Visium slides, which have a 4-fold higher
resolution than the first generation of ST
slides shown in Figure 1.

To gain insights on the global effect of
normalization, we calculated the distri-
bution of gene�gene correlations across
spots for all three expression metrics
(Figure 1N). Raw counts were positively
correlated for most pairs of genes. By
contrast, normalized expression correla-
tions were centered on 0. This implies
that genes tend to show a similar expres-
sion pattern that reflects total transcrip-
tional output when raw counts are
considered, while normalized expression
highlights contrasts between genes.

We showed that the variation of total
read counts is largely determined by lo-
cal cell density in ST data. Thus, total
counts per spot are biologically informa-
tive and do not necessarily need to be
normalized out. Importantly, normaliza-
tion and denoising are technically inde-
pendent operations. For example, DCA
estimates read count scale factors, but
users are free to use its scale-adjusted
or un-adjusted outputs (Eraslan et al.,
2019). Our study shows that both
options are valid but address different
purposes.

Raw read counts inform about the ab-
solute density of cell types, while nor-
malized expression informs about their
relative proportions. It is remarkable that
normalized expression better detects
specific morphologies such as pure epi-
thelium and cellular fibrosis (see box-
plots in Figure 1H and I, and compare
the DCA panels in Figure 1H and I with
the pathology annotation in Figure 1A),

while raw counts do reflect actual cell-
type local densities and may highlight
atypical expression patterns, as exempli-
fied here for VIM in regions of high epi-
thelial density.

The resolution of commercially avail-
able ST will eventually reach sub-cellular
resolution (Vickovic et al., 2019). Given
that some cells, e.g. cancer cells, pro-
duce more RNA than others (Lovén et al.,
2012), it begs the question of to what ex-
tent our argument also applies at single-
cell level. Cell-level phenotypic informa-
tion measured independently of tran-
scription must be available together with
matched cell transcriptomes in order to
unambiguously address this question.
[Supplementary material is available at
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