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Abstract

Autoimmune hepatitis (AIH) is a chronic autoimmune liver disease that can

lead to hepatocyte destruction, inflammation, liver fibrosis, cirrhosis, and liver

failure. The diagnosis of AIH requires the identification of lymphoblast cell

interface hepatitis and serum biochemical abnormalities, as well as the

exclusion of related diseases. According to different specific autoantibodies,

AIH can be divided into AIH-1 and AIH-2. The first-line treatment for AIH is a

corticosteroid and azathioprine regimen, and patients with liver failure

require liver transplantation. However, the long-term use of corticosteroids

has obvious side effects, and patients are prone to relapse after drug

withdrawal. Autoimmune diseases are characterized by an imbalance in

immune tolerance of self-antigens, activation of autoreactive T cells,

overactivity of B cells, and increased production of autoantibodies. CD4+ T

cells are key players in adaptive immunity and can secrete cytokines,

activate B cells to produce antibodies, and influence the cytotoxicity of CD8+

T cells. According to their characteristics, CD4+ T cells can be divided into

different subsets. In this review, we discuss the changes in T helper (Th)1,

Th2, Th17, Th9, Th22, regulatory T cell, T follicular helper, and T peripheral

helper cells and their related factors in AIH and discuss the therapeutic

potential of targeting CD4+ T-cell subsets in AIH.

Abbreviations: AhR, aryl hydrocarbon receptor; ALT, alanine aminotransferase; ANA, antinuclear antibody; APC, antigen-presenting cell; AST, aspartate amino-
transferase; ATH, autoimmune hepatitis; Bcl-6, B-cell lymphoma 6; Blimp-1, B lymphocyte maturation protein 1; CCL20, chemokine (C-C motif) ligand 20; CCR, C-C
chemokine receptor; c-Maf, cellular musculoaponeurotic fibrosarcoma; Con A, concanavalin-A; CTLA-4, cytotoxic T-lymphocyte-associated antigen-4; CXCL, CXC
chemokine ligand; CXCR3, CXC chemokine receptor 3; CXCR5, CXC chemokine receptor 5; Foxp3, forkhead box P3; GATA3, gata-binding protein-3; GC, germinal
center; GM-CSF, granulocyte-macrophage colony-stimulating factor; HLA-II, human leukocyte antigen-II; IFN-γ, interferon gamma; IRF4, interferon regulatory factor 4;
ICOS, inducible costimulatory; JAK, Janus kinase; LKM1, liver kidney microsome type 1; MHC, major histocompatibility complex; NK, natural killer; PBMCs, peripheral
blood mononuclear cells; PD-1, programmed cell death protein 1; RORγt, retinoid-related orphan receptor-γt; SLAM, signaling lymphocyte activation molecule; SAP,
SLAM-associated protein; SMA, smooth muscle antibody; STAT4, signal transducer and activator of transcription 4; Teffs, effector T cells; Th, T helper; Treg,
regulatory T cell; Tfh, T follicular helper; Tph, T peripheral helper; TYK, tyrosine kinase.
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INTRODUCTION

Autoimmune hepatitis (AIH) is an immune-mediated
non–self-limiting liver disease that can lead to hepatocyte
destruction, inflammation, hepatic fibrosis, cirrhosis, and
liver failure.[1] AIH occurs in different human populations
of all ages, with an incidence rate of ~4–42.9/100,000,
among which women aged 10–30 and 40–60 have the
highest incidence rates.[2] AIH has no characteristic
diagnosis, and clinical diagnosis of AIM requires char-
acteristic histological abnormalities (interfacial hepatitis),
elevated laboratory indicators [serum alanine amino-
transferase (ALT), serum aspartate aminotransferase,
serum IgG, antinuclear antibodies (ANAs), smooth
muscle antibodies (SMAs), and antibodies to liver-kidney
microsome type 1 (anti-LKM1) levels], and exclusion of
various liver diseases and liver injuries similar to AIH,
such as viral hepatitis and DILI.[2] According to different
specific autoantibodies, AIH is divided into AIH-1 (ANA+,
SMA+, SLA+, anti-actin+) and AIH-2 (anti-LKM1+, anti-
LC1, anti-LKM3).[3,4] In addition, ~20% of the patients
were negative for these antibodies, which is called
serum-negative AIH.[2] At present, the first-line treatment
for AIH is a corticosteroid and azathioprine regimen,
which aims to improve the symptoms of patients, control
inflammation, and achieve biochemical remission; myco-
phenolate mofetil, tacrolimus, and cyclosporine are also
normally used in the treatment of AIH patients. Patients
with acute severe AIH leading to liver failure require liver
transplantation.[5] However, long-term use of cortico-
steroids has obvious side effects, and patients are prone
to relapse after drug withdrawal.[6] Therefore, it is

necessary to study the pathogenesis of AIH in depth to
provide evidence for the diagnosis and treatment of AIH.

Autoimmune diseases are characterized by an
imbalance in immune tolerance to self-antigens, leading
to abnormal immune active and autoimmune attacks on
target organs.[7] Similar to other autoimmune diseases,
AIH is characterized by the activation of autoreactive T
cells, overactivity of B cells, and increased autoantibody
production.[8] CD4+ T cells (or T helper cells, Th cells)
are key players in adaptive immunity. They can secrete
cytokines, activate B cells to produce antibodies, and
affect the cytotoxicity of CD8+ T cells.[9] Abnormal CD4+

T cells can lead to serious autoimmune disease, and
significant CD4+ T-cell infiltration can be observed in the
liver of AIH patients (Figure 1). The genetic
susceptibility of human leukocyte antigen-II (HLA-II)
alleles in AIH and the liver infiltration of CD4+ T cells in
AIH indicate the key role of CD4+ T cells in AIH.[1] In this
review, we focus on recent research and investigations
on the differentiation of different CD4+ T-cell subsets in
AIH and the expression of their related factors and
discuss the therapeutic potential of targeting CD4+

T-cell subsets in AIH.

DIFFERENTIATION OF CD4+ T-CELL
SUBSETS

In addition to thymic-induced regulatory T cells (tTregs),
other CD4+ T subsets are differentiated from naive
CD4+ T cells (Th0), whereas tTregs and Th0 cells are
differentiated from CD4+CD8+ cells in the thymus.[10] In

F IGURE 1 Epidemiology, diagnosis, autoimmune serology, treatment, and mechanisms of autoimmune imbalance in AIH. Abbreviations: AIH,
autoimmune hepatitis; ALT, alanine aminotransferase; ANA, antinuclear antibody; APC, antigen-presenting cell; AST, aspartate aminotransferase;
LKM1, liver kidney microsome type 1; SLA, soluble liver antigen; SMA, smooth muscle antibody; Treg, regulatory T cell.
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the thymus, CD4+CD8+ T cells undergo positive and
negative selection to differentiate and select Th0 cells
that bind to class II major histocompatibility complex
(MHC II) with moderate affinity and then leave the
thymus.[11–14] After entering the periphery, Th0 cells
recognize the cognate antigen presented by professio-
nal antigen-presenting cells (APCs), such as macro-
phages, dendritic cells, and B cells.[15,16] APCs have
HLA-II molecules on the surface of membranes, which
bind to peptide chains that need to be recognized.[17]

When peptides are recognized as non-self, Th0 cells
are activated and differentiated into different CD4+

T-cell subsets. At present, the identified CD4+ T-cell
subsets mainly include Th1, Th2, Th17, Th9, and Th22
cells, regulatory T cells (Tregs), T follicular helper (Tfh)
cells, and T peripheral helper (Tph) cells (Table 1).

Th1 cells and AIH

Th1 cells are characterized by the expression of the
transcription factor T-bet and the production of the
cytokine interferon gamma (IFN-γ).[58] In addition, Th1
cells produce various cytokines, such as IL-2, IL-10,
TNF-α, and CXC chemokine receptor 3 (CXCR3).[59]

When Th0 recognizes APC-pHLA, IL-12 can promote
T-bet expression, Th1 conversion, and IFN-γ generation
through the IL-12-signal transducer and activator of
transcription 4 (STAT4) pathway.[60] T-bet is encoded by
Tbx21 and is a key transcription factor in Th1 cell
differentiation.[61] DNase I hypersensitivity site sequenc-
ing identified that the transcription-start site 12 kb
upstream of Tbx21 (Tbx21-CNS-12) contains STAT
binding motifs.[62] Tbx21-CNS-12 can also be acces-
sible in Th0 cells, which indicates that it can react to
cytokines in the Th0 stage.[63] Studies have shown that
the IL-12-STAT4, IFN-γ-STAT1, and IL-2-STAT5 axes
can upregulate the expression of T-bet and promote
Th1 differentiation.[64,65] Among these factors, IFN-γ and
IL-2 can be produced by Th1 cells, and positive
feedback enhances Th1 differentiation (Figure 2).

Th1 cells play important roles in the pathogenesis of
AIH. Behfarjam et al[18] found that the levels of T-bet,
IFN-γ, and TNF-α were significantly increased in the
blood of untreated AIH patients. TNF-α can play
pathogenic or protective roles in AIH, which can lead
to apoptosis or differentiation of hepatocytes.[19] Che-
mokine (C-C motif) ligand 20 (CCL20) mediates the
migration of a variety of immune cells to the liver by
binding to its specific receptor C-C chemokine receptor
6 (CCR6).[20] Iwamoto et al[66] found that TNF-α could
induce an increase in hepatic CCL20 expression and
play a pathogenic role in the concanavalin-A (Con A)-
induced AIH model. IFN-γ can promote IgG2a antibody
conversion and MHC I and MHC II antigen presentation
and activate a variety of cells.[67] CXCR3 is highly
expressed in Th1 cells, CTLs, natural killer (NK) cells,

and other cells, and its ligand CXC chemokine ligand
(CXCL)9-11 can be induced by IFN-γ produced by Th1
cells.[68] The CXCL9-11/CXCR3 axis can lead to the
recruitment of Th1 cells, CTLs, and NK cells to inflamed
sites, leading to inflammatory cell infiltration in the
liver.[69,70] Bovensiepen et al[21] found that TNF-α-
producing Th1 cells were significantly expanded in
peripheral blood mononuclear cells (PBMCs) and liver
of AIH patients and that IFN-γ expression was also
elevated in the liver. Yang et al[22] used methyl butyrate
to inhibit Th1 differentiation and homing to achieve a
therapeutic effect in the Con A-induced AIH model. In
their model, ALT and aspartate aminotransferase levels
were significantly elevated, and inflammatory cell
infiltration in the liver was evident. The frequency of
Th1 cells was significantly increased, as was the
expression of IFN-γ, TNF-α, CXCR3, and CXCL9-11.
After Th1 cells were inhibited, the above indices were
significantly improved.[22] Gil-Farina et al[23] created
mice with transient IL-12 transgene expression, which
resulted in a persistent elevation in IL-12 and IFN-γ
expression and induction of AIH-1-like chronic hepatitis.
Mix et al[24] found that the autoantigen peptides in AIH-
specific SLA/LP could be targeted by CD4+ T cells to
produce IFN-γ, and are regulated by the AIH suscept-
ibility gene HLA-DRB1*0301. AIH-2 patient character-
istic antibody anti-LKM1 recognizes cytochrome
P450 IID6. Studies have shown that cytochrome
P450 IID6 can damage hepatocytes by promoting
specific Th1 cells to produce IFN-γ and produce
autoantibodies.[25] A Chinese study showed that STAT4
polymorphisms were positively associated with AIH-1 in
Chinese Han children,[71] but a Tunisian study showed
that STAT4 polymorphisms were not associated with
AIH in the local population, which may be related to a
difference in susceptibility genes among different
populations.[72]

Th2 cells and AIH

Th2 cells are characterized by the expression of gata-
binding protein-3 (GATA3) and the production of IL-4,
IL-5, IL-6, and IL-13.[58] When Th0-TCR recognizes
APC-pHLA, the IL-12-STAT4 axis guides Th1 differ-
entiation, while the IL-4-STAT6 axis mediates Th2
differentiation.[73] However, IL-4 or STAT6 alone is not
the determinant of Th2 differentiation. Studies have
shown damaged Th2 differentiation in IL-4-STAT6-
deficient mice, but under Th1-differentiating conditions,
the enforced expression of GATA3 by reverse tran-
scription can lead to Th2 differentiation in IL-4-deficient
mice.[74,75] Subsequent studies have shown that GATA3
plays a major regulatory role in Th2 cell differentiation.
GATA3− Th0 cells show impaired Th2 differentiation
and can undergo Th1 differentiation in the absence of
IL-12 and IFN-γ.[76,77]
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TABLE 1 CD4+ T-subsets differentiation, signature cytokines, and changes in AIH

CD4+ T-cell
subsets Differentiation Transcription factors Production Changes in AIH References

Th1 IL-12 T-bet IFN-γ, TNF-α, IL-2, CXCR3 Increased Th1 differentiation and liver infiltration [18–25]

Th2 IL-4, IL-2 GATA3 IL-4, IL-5, IL-13, IL-10 Increased or remained unchanged Th2 and imbalanced Th1/
Th2 ratio

[18,26–31]

Th17 IL-6, IL-21, TGF-β, IL-1β, IL-
23

RORγt IL-17, IL-21, IL-22, CCR4,
CCR6

Th17-related factors increased in the liver, Th17 infiltration
increased, CD39+ Th17 decreased

[32–38]

Treg TGF-β, IL-2 Foxp3 TGF-β, IL-10, CD25, CTLA-4,
CD39

Increased or decreased Treg and decreased Treg/CD4+ Teff
ratio

[39–45]

Th9 IL-4, TGF-β PU.1, IRF4 IL-9, IL-10 Increased IL-9 levels associated with liver fibrosis and
cirrhosis

[46]

Th22 IL-6, TNF-α, IL-1β, IL-21, IL-
23

AhR IL-22, CCR4, CCR6, CCR10,
TNF-α, IL-13

AhR and IL-22 levels increased, which could improve Treg/
CD4+ Teff ratio

[47–50]

Tfh IL-21, IL-6, IL-12, Activin A,
ICOS

Bcl-6, c-Maf IL-21, PD-1, CXCR5 Increased IL-21+ICOS+CXCR5+ Tfh positively correlated
with the severity of AIH

[51–56]

Tph IL-21, IL-6, IL-12, ICOS Blimp-1, c-Maf, Sox4 IL-21, PD-1, CXCL13 Increased IL-21+ICOS+CXCL5− Tph mainly stimulated
humoral immunity in AIH

[57]

Abbreviations: AhR aryl hydrocarbon receptor; AIH, autoimmune hepatitis; Bcl-6, B-cell lymphoma 6; Blimp-1, B lymphocyte maturation protein 1; CCR, C-C chemokine receptor; c-Maf, cellular musculoaponeurotic
fibrosarcoma; CTLA-4, cytotoxic T-lymphocyte-associated antigen-4; CXCL13, CXC chemokine ligand 13; CXCR, CXC chemokine receptor; Foxp3, forkhead box P3; GATA3, gata-binding protein-3; GM-CSF, granulocyte-
macrophage colony-stimulating factor; ICOS, inducible costimulatory; IFN-γ, interferon gamma; IRF4, interferon regulatory factor 4; PD-1, programmed cell death protein 1; RORγT, retinoid-related orphan receptor-gamma t;
Sox4, SRY-related high mobility group box 4; Teffs, effector T cells; Tfh, T follicular helper; Th, T helper; Tph, T peripheral helper; Treg, regulatory T cell.
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GATA3 can be activated by the IL-4-STAT6
and IL-2-STAT5 axes. In the IL-4-STAT6 pathway,
IL-4-IL-4R binding can activate the Janus kinase (JAK)-
STAT pathway and induce the phosphorylation and
dimerization of STAT6.[78] Then, STAT6 enters the
nucleus and activates GATA3 to promote Th2
differentiation.[79] GATA3 can promote the production
of cytokines such as IL-4, IL-5, and IL-13, and IL-4-
GATA3 positive feedback maintains Th2 polarization
and production of Th2 memory cells. In addition,
GATA3 can inhibit IFN-γ and STAT4 to inhibit Th1
differentiation.[80] STAT5 is also important in Th2 cell
differentiation. Studies have shown that Th2 differ-
entiation is impaired in STAT5a− mice; compared with
STAT6− mice, STAT5−STAT6− mice show further
impairments in Th2 cell differentiation.[73,81] Under Th1-
differentiating conditions, reverse transcription of
STAT5a can induce Th2 differentiation.[81] However,
reverse transcription of STAT5a cannot induce Th2

differentiation in GATA3− mice, which emphasizes the
role of GATA3.[76] IL-2 is mainly produced by activated
CD4+ T cells and is the most effective inducer of STAT5
activation.[64] IL-2-mediated STAT5 signal transduction
is necessary for Th2 cell differentiation in vitro. The
signal transduction activated by IL-2 is related to the
intensity of the TCR signal. Low-intensity TCR stim-
ulation leads to the production of IL-2 and upregulation
of IL-2Ra, while strong TCR stimulation inhibits IL-2
signaling.[82,83] IL-2 activates the STAT5-GATA3 axis,
resulting in the production of IL-4. This IL-4 production
depends on only the activation of TCR, not on IL-4 in the
environment. In addition, GATA3 and STAT5 can
regulate the expression of IL-2R and IL-4R to promote
IL-4-GATA3 positive feedback.[83] Multiple pathways,
such as the Notch pathway and Wnt-β-Catenin path-
way, may regulate the expression of GATA3 and Th2
differentiation.[84,85] Th2 cells produce cytokines such as
IL-4, IL-5, IL-13, IL-9, and IL-10, which can induce B

F IGURE 2 Processes of Th1, Th2, Th17, Treg differentiation. pMHC-TCR and CD28-CD80/CD86 costimulation and various cytokines
induced different differentiation of Th0. IL-2, IL-12, and IFN-γ promote T-bet expression and Th1 differentiation. IL-2 and IL-4 promote GATA3
expression and Th2 differentiation. TGF-β, IL-21, IL-6 promote RORγt expression and Th17 differentiation, while IL-1β and IL-23 promote
pathogenic Th17. TGF-β and IL-2 induced Foxp3 expression and Treg differentiation. Abbreviations: APC, antigen-presenting cell; Foxp3,
forkhead box P3; GATA3, gata-binding protein-3; GM-CSF, granulocyte-macrophage colony-stimulating factor; IFN-γ, interferon gamma; JAK,
Janus kinase; MHC, major histocompatibility complex; RORγT, retinoid-related orphan receptor-gamma t; STAT, signal transducer and activator of
transcription; TYK, tyrosine kinase.
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cells to produce IgG1 and IgE, activate M2 macro-
phages, and recruit eosinophils.[86] Th2 cells play roles
in infection, helminth infection, and allergies and are
also related to autoimmune diseases (Figure 2).

Cytokines produced by Th2 cells can counteract the
proinflammatory effects of Th1 cells and promote
humoral immunity.[73] IL-4 can promote B-cell differ-
entiation and induce antibody class switching to IgG1
and IgE.[87] IL-5 can stimulate the activation of B
cells to produce antibodies and the maturation of
eosinophils.[88] IL-13 can promote the maturation of B
cells and inhibit proinflammatory cytokines, such as IL-12
and TNF-α.[89] Th1/Th2 imbalance can cause a variety of
autoimmune diseases.[26,90,91] Behfarjam and colleagues
found that T-bet and IFN-γ levels were significantly
elevated in PBMCs of AIH patients, but the expression of
GATA3 and IL-4 of the patients was not significantly
different from that of controls, indicating a Th1/Th2
imbalance.[18,27] In another study, CD4+CD25+IL-4+ cells
showed no significant changes in AIH, AIH-systemic
lupus erythematosus (SLE)/MCTD, and healthy
controls.[28] A protein array study showed high specificity
and sensitivity of IL-4 in AIH, and inhibition of IL-4-STAT6
was detected in the serum of AIH patients.[29] Yousefi
et al[30] reported that the IL-4-33 TT genotype and
IL-4-590 C/T polymorphism were susceptibility genes in
Iranian AIH patients. Kawashima et al[31] reported a
significant increase in the IFN-γ concentration in PBMCs
of children with AIH but no significant change in that of IL-
4. Zachou et al[92] found a significant increase in the
levels of the Th2-related cytokines IL-4 and IL-10 and the
Th1-related cytokines IFN-γ and TNF-α in the bone
marrow of patients with AIH-1, but they did not measure
the Th1/Th2 ratio. IL-4 and specific antibodies were
increased in cytochrome P450 IID6–induced AIH-2.[25]

Chi et al[93] induced AIH using TLR2/4 ligand-amplified
liver inflammation and found increased expression levels
of the IL4 and IL13 genes and IL-4 and IL-13 proteins in
the liver. However, this Th2 response has an insufficient
inhibitory effect on Th1 cells, which is conducive to the
maturation and humoral immune function of B cells,
highlighting the pleiotropy of Th2 cells in AIH.[93]

Th17 cells and AIH

Th17 cells express IL-1R, IL-23R, and chemokine
receptors CCR4 and CCR6, and can produce IL-17A,
IL-17F, IL-21, IL-22, and TNF-α. Retinoid-related
orphan receptor-γt (RORγt) is a major regulator of Th17
differentiation.[94] Th17 differentiation requires IL-6,
TGF-β, and IL-1β in humans and IL-6, TGF-E, and IL-
21 in mice.[95] TGF-β-Smad pathway plays an important
role in Th17 and Treg differentiation.[96] TGF-β com-
bines with TGF-βR to promote the phosphorylation of
Smad2 and Smad3, and then p-Smad2 and p-Smad3
bind with Smad4 to regulate the expression of RORγt

and forkhead box P3 (Foxp3), respectively.[96,97] IL-6
activates RORγt and leads to the production of IL-17
through the IL-6-JAK2-STAT3 pathway.[98] IL-6 can also
inhibit the TGF-β-mediated induction of Foxp3 to
regulate Th17/Treg balance.[99] IL-2 plays a major
negative regulatory role in Th17 differentiation.[100] On
the one hand, Th17 cells can secrete inflammatory
factors, recruit neutrophils, and play a proinflammatory
role. On the other hand, Th17 cells can also produce
cytokines such as IL-4, IL-10, CD39, and CD5-like
molecule (CD5L) and play immunomodulatory roles.

The pathogenicity of Th17 cells is closely related to
autoimmune diseases, and this pathogenicity depends
on IL-6, IL-1β, and IL-23.[101] Single-cell RNA-sequenc-
ing showed that pathogenic Th17 cells showed
increased proinflammatory genes such as IL17a,
IL17f, and IL23r, and decreased immunomodulatory
genes such as IL4, IL10, and Cd5l.[101–103] Th0 cells did
not express IL-1R or IL-23R. During Th17 differentia-
tion, RORγt can promote the expression of IL-1R and
IL-23R.[104,105] The IL-6-STAT3 axis can also inhibit the
expression of IL-1R and the IL-23R negative regulator
Forkhead box O1.[106] Subsequently, IL-1β and IL-23
stimulate Th17 cells to become pathogenic. IL-1β
regulates the expression of RORγt[107]; IL-23 can
activate JunB and inhibit SOCS, subsequently activat-
ing STAT3 expression,[108] and it can also inhibit B
lymphocyte maturation protein 1 (Blimp-1) to inhibit IL-
10.[109] In addition, IL-1β and IL-23 can promote the
expression of the transcription factor Bhlhe40 through
the IL-1β-Bhlhe40 axis and the IL-23-Satb1-Bhlhe40
axis, inducing the expression of granulocyte-macro-
phage colony-stimulating factor (GM-CSF).[110,111] GM-
CSF is one of the key factors in Th17 pathogenicity.
GM-CSF acted on APCs and promoted the secretion of
IL-6 and IL-23, which promoted the positive feedback of
Th17 differentiation[101] (Figure 2).

Th17 cells are closely related to AIH. Several studies
have shown that RORγt, IL-17A, IL-6, IL-22, and IL-23
levels are significantly increased in PBMCs of AIH
patients.[32–36] Wu et al[37] found that IL-17A expression
was significantly elevated in both AIH patients and Con
A-induced AIH mice and that T-cell-immunoglobulin and
mucin domain 3 (Tim-3) may inhibit Th17 cell-related
expression and AIH through the p38-MKP-1 pathway.
T-cell differentiation requires energy and metabolites, in
which glutamine metabolism plays an important role.[112]

Yu et al[113] found that targeted suppression of
glutamine metabolism could reduce Th1 and Th17
differentiation and inhibit Con A-induced AIH. Zhao
et al[38] found an increased frequency of CCR4+CCR6+

Th17 in PBMCs of AIH patients. Th17 cells were
significantly infiltrated in the portal tracts and lobular
areas, and the levels of Th17-related transcription
factors and cytokines were significantly increased in the
liver.[38] Cell experiments confirmed that IL-17 could
promote the expression of IL-6 in human hepatoma

6 | HEPATOLOGY COMMUNICATIONS



HepG2 cells through the MAPK pathway and that
positive feedback promoted the differentiation of Th17
cells.[38] CCN1 is an extracellular matrix-associated
protein.[114] IL-17 can promote the expression of CCN1,
and CCN1 can promote the production of IL-6 and
induce Th17 differentiation.[115] Jiang et al[116] found that
CCN1 expression was increased in the liver of AIH
patients and that CCN1 could increase IL-6 expression
through the α6β1-PI3K-Akt-NF-κB axis. CD39 is an
enzyme that catalyzes the hydrolysis of extracellular
ATP/ADP to produce AMP, which is then converted to
immunosuppressive adenosine through CD73.[117]

CD39+ Th17 cells can produce adenosine to exert
immunosuppressive effects and reduce its pathogenic-
ity. Studies have shown that CD39+ Th17 cells,
immunosuppressive adenosine, and A2A adenosine
receptor expression are decreased in adolescents with
autoimmune liver diseases such as AIH.[95] CD39
promotion can be modulated by aryl hydrocarbon
receptor (AhR) signaling. AhR interacts with its ligand
AhR nuclear transporter to promote downstream gene
expression, and HIF-1α can bind to AhR nuclear
transporter to inhibit AHR signaling.[118] Studies have
shown that the expression of HIF-1α is increased in
Th17 cells in AIH, which inhibits AhR signaling and
CD39 mRNA expression, and HIF-1α silencing can
partially restore CD39 levels.[119]

Tregs and AIH

Treg cells are important immunosuppressive cells, which
are divided into tTregs and peripheral-induced Treg cells
according to their origin.[120] tTregs mature after positive
and negative selection in the thymus and can be
enriched by TCRs that recognize self-antigens; periph-
eral-induced Treg cells can be differentiated from Th0
cells on exposure to IL-2 and TGF-β.[121] Treg cells have
been identified as CD4+CD25+Foxp3+ T cells, and Foxp3
is a key transcription factor.[122] Foxp3 is involved in the
expression of several key genes, such as IL2Rα and
cytotoxic T-lymphocyte-associated antigen-4 (CTLA-4),
and interacts with other factors, such as GATA3 and runt-
related transcription factor 1, to maintain the character-
istics of Tregs.[123–125] Ectopic expression of Foxp3 can
enable CD4+CD25− conventional T cells to acquire
immunosuppressive function.[126] However, Foxp3 is
expressed transiently in Th0 cells following TCR stim-
ulation, but it is undeniable that not all Th0 cells undergo
Treg differentiation and acquire immunosuppressive
function.[127] Studies have shown that the differentiation
and function of Treg cells are dependent on Foxp3
expression and Treg-specific hypomethylation, which are
2 independent processes.[128,129] In addition, various
posttranslational modifications of proteins can modulate
Foxp3 transcriptional activity, such as phosphorylation,
ubiquitination, and acetylation.[130,131]

Treg cells exert immunosuppressive effects mainly
by secreting inhibitory cytokines and expressing inhib-
itory cell-surface molecules and competitive inhibitory
cytokines.[132] The inhibitory cytokines secreted by
Tregs are mainly TGF-β and IL-10. TGF-β plays an
important role in the maintenance of Treg cells. As
mentioned, TGF-β participates in Treg differentiation.
Tregs produce TGF-β, which can upregulate Foxp3
expression through the TGF-β-Smad pathway
and establish positive feedback to support Treg
differentiation[133]; IL-10 inhibits various cytokines, such
as IL-2, IFN-γ, and GM-CSF, to inhibit Th1 and Th17
differentiation.[134,135] Treg cells highly express the
inhibitory receptor CTLA-4, which plays an important
role in immunosuppression. CTLA-4 acts on its ligands
CD80/CD86 expressed by APCs, inhibiting the cos-
timulatory interaction between CD80/CD86 and CD28
and thereby preventing the activation of T cells.[136]

Tregs can also mediate the apoptosis of Tim-3+ T cells
through Galectin-9 binding to Tim-3.[137] IL-2 is an
important cytokine involved in the proliferation and
differentiation of effector T cells (Teffs). Treg cells
express CD25 (IL-2Rα), which can competitively con-
sume IL-2 and exert immunosuppressive effects.[138] In
addition, low-dose IL-2 preferentially activates Treg
differentiation due to the high IL-2 affinity of CD25+ Treg
cells, and Treg cell-based IL-2 therapy may play a role
in the treatment of autoimmune diseases[139] (Figure 2).

Current studies have shown that the frequency and
function of Treg cells change significantly in AIH. These
changes are conflicting in different studies, but it is
plausible that altered Tregs are not sufficient to control
inflammation in AIH.[10,140] Adoptive Treg transfer and
increased Treg/Teff ratio attenuate hepatic hepatitis in
different AIH models.[33,39–41] The percentage of Treg
cells in PBMCs of ANA/SMA+ or LKM1+ AIH patients was
significantly lower than that of normal controls, and even
lower at diagnosis than in remission stage, but the
inhibitory function to IFN-γwasmaintained.[42] In addition,
the suppressive effect of Treg cells on CD8+ T cells was
significantly weakened, and CD8+ T cells were hyper-
responsiveness at diagnosis. Tregs inhibited the prolif-
eration of CD8+ T cells and induced the production of IL-4
by CD8+ T cells at remission.[43] Another study reported
that in addition to a reduction in numbers, Treg cells from
AIH patients had a diminished ability to produce
TGF-β.[44] In AIH-SLE/MTCD, the number and function
of Foxp3+ Treg were abnormal, and CD4+CD25−IFN-γ+
and CD4+CD25−IL-17+ T cells were significantly
increased.[28] CD127 is usually presented on activated
Teffs, while Tregs are usually CD127low/−.[10] Peiseler
et al[45] reported that compared with active AIH patients,
the frequency of CD4+CD25highCD127low Tregs
decreased in PBMCs of AIH patients in remission.
Longhi and colleagues found a decrease in CD127−

Tregs and an increase in CD127+ Tregs in AIH. CD127−

Tregs showed a suppressive effect on Teffs, whereas
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CD127+ Tregs showed increased TNF-α over IL-10
production and increased TLR4 expression.[141] The
expression of CD39 in Treg cells is decreased in AIH,
and silencing estrogen receptor-α or AhR repressor can
promote AhR signaling and upregulate immunosuppres-
sive adenosine.[119] In addition, the levels of Tim-3 in Treg
cells Galectin-9 and CD4+ Teff cells were significantly
decreased in AIH.[142] A lower Treg frequency and Treg/
Teff ratio may be associated with a higher recurrence
rate of AIH. As a clinical standard treatment for AIH,
corticosteroids and azathioprine have significant inhib-
itory effects on Tregs.[45,143] Taubert et al[143] found a
reduction in the frequency of portal vein Tregs in AIH
patients undergoing treatment. In addition, patients with
biochemical remission have a higher Treg/Teff ratio than
those who do not achieve remission. Liberal et al[144]

found reduced responsiveness of Treg cells to IL-2 and
reduced IL-10 production in AIH-1. Diestelhorst et al[145]

showed that AIH patients who did not achieve biochem-
ical remission with corticosteroid therapy had associa-
tions with IL-2 deficiency and impaired Tregs. Based on
the high affinity of Tregs for IL-2, Buitrago-Molina and
colleagues treated EAH mice with complexed IL-2/anti-
IL-2. After treatment, the frequency of Tregs and the ratio
of Tregs/CD4+ T cells in the PBMCs, spleen, and liver
were significantly increased, and the ALT level was
significantly decreased.[146] In addition, IL-2 therapy
significantly improved the suppressive effect of cortico-
steroids on Tregs. The study by Lim and colleagues
demonstrated the therapeutic potential of low-dose IL-2
in AIH. low-dose IL-2 treatment increased the frequency
of Tregs and the sensitivity of Tregs to IL-2 in patients
with refractory AIH, and there was no significant change
in other immune cells.[147] Overall, restoring Treg
frequency and function will be a feasible measure for
the treatment of AIH.

Th9 cells and AIH

IL-9 was initially considered to be a cytokine produced
by Th2 cells, but a unique CD4+ T-cell subset producing
IL-9 was subsequently found and identified as Th9
cells.[148] Th9 differentiation requires balanced stimula-
tion by TGF-β and IL-4, and PU.1 and interferon
regulatory factor 4 are key transcription factors in Th9
differentiation.[149] Studies have shown that both PU.1
and interferon regulatory factor 4 can directly act on the
IL9 promoter to promote IL-9 transcription.[150,151] Bal-
anced costimulation by IL-4 and TGF-β is crucial in Th9
differentiation.[152,153] As previously mentioned, IL-4 and
TGF-β are key cytokines required for Th2 and Treg cell
differentiation, respectively. TGF-β can activate PU.1
and induce Th9 differentiation[154]; TGF-β can also
activate Smad2 and Smad3 through the TGF-β-Smad
axis and then interact with interferon regulatory factor 4
to activate the promoter of IL9.[155,156] However, TGF-β

activates Foxp3, an inhibitor of Th9 differentiation,
causing Th0 cells to differentiate into Tregs.[157] IL-4
activates STAT6, leading to the production of IL-9 in
Th2 and Th9 cells.[158] STAT6 can also inhibit Foxp3
and relieve the negative effect of TGF-β on Th9
differentiation.[159] The IL-2-STAT5 axis is also involved
in Th9 differentiation, and the Th9 promoter has STAT5-
binding sites.[160,161]

IL-9 and IL-10 are the main effector molecules of Th9
cells. IL-10 is a potent anti-inflammatory factor. IL-9
binds to its receptor IL-9R to exert its effects.[162] IL-9R
is composed of an α chain and γ chain, and the α chain
specifically binds to IL-9, while the γ chain is a common
chain that is also present in IL-2, IL-4, IL-7, IL-15, and
IL-21 receptors.[46] After IL-9 binds to IL-9R, JAK is
activated, which subsequently leads to the activation of
downstream STAT1/3/5.[163,164] IL-9 has pleiotropic
effects on different immune cells, such as mast cells,
T cells, and B cells, and is involved in various immune
and autoimmune diseases[165] (Figure 3).

At present, there is still a lack of research on Th9
cells in AIH. However, several studies have reported
that Th9 cells and IL-9 play pathogenic roles in multiple
sclerosis, SLE, experimental autoimmune encephalo-
myelitis, and other autoimmune diseases.[166–168] Qin
et al[169] explored the level of Th9 cells in liver fibrosis
caused by HBV or chronic hepatitis B. In this study, the
levels of Th9 cells and IL-9 were significantly increased
in both patients and mice with liver fibrosis. Moreover,
after IL-9 was inhibited, liver fibrosis and the levels of
proinflammatory Th1 and Th17 cells were decreased in
mice.[169] This study may reveal a partial role for Th9
cells in AIH, as liver fibrosis and cirrhosis are also later
features of AIH.[2] However, more relevant studies are
still needed to confirm the specific role of Th9 cells in
AIH. As mentioned, the anti-inflammatory cytokine IL-10
is also produced by Th9 cells.

Th22 cells and AIH

Th22 cells were identified in 2009 as a CD4+ T-cell
subset characterized by IL-22 secretion.[170] Th22 cells
also secrete IL-26, TNF-α, and IL-13 but do not express
IFN-γ, IL-4, or IL-17.[171] In addition, Th22 cells express
the chemokine receptors CCR4, CCR6, and CCR10.[172]

Th22 differentiation requires the involvement of multiple
cytokines and transcription factors. The cytokines
involved in inducing Th22 differentiation mainly include
IL-6, TNF-α, IL-1β, IL-21, and IL-23.[173] TGF-β is an
inhibitor of Th22 differentiation.[173] AhR is a major
transcription factor regulating Th22 differentiation, and
T-bet and RORγt are also involved in regulating Th22
differentiation.[174,175]

Th22 cells exert their effects by secreting IL-22. IL-22
receptor is composed of IL-22R1 and IL-10R2.[47] IL-
22R1 has a high affinity for IL-22 and is not expressed in

8 | HEPATOLOGY COMMUNICATIONS



lymphoid tissues, so IL-22 can only indirectly regulate
immune cells through signaling.[48,49] IL-22 binds to IL-
22R and activates JAK and tyrosine kinase to sub-
sequently exert its effects through JAK-STAT, extrac-
ellular signal-regulated kinase 1/2, and other signaling
pathways.[50,173,176] Th22 cells play both anti-inflamma-
tory and proinflammatory roles in tumors, cardiovascu-
lar diseases, and immune diseases[171] (Figure 3).

Both IL-10R2 and IL-22R1 are expressed in hep-
atocytes, and IL-22 binds to its receptor to induce the
activation of JAK-STAT, MAPK, p38, and other
pathways.[49,177,178] The results of current studies on
Th22 cells and IL-22 in AIH are contradictory. Behfarjam
et al[179] described elevated AHR mRNA levels in the
serum of AIH patients. Liang et al[33] found that the
serum IL-22 level was significantly increased in
activated AIH patients and positively correlated with

ALT and aspartate aminotransferase levels in patients.
Experimental AIH mice showed an increased hepatic
Th22 cell frequency, increased serum IL-22 levels, and
sustained replication of AhR.[33] The levels of Th22 cells
and IL-22 were found to decrease after the use
of immunosuppressive drugs.[33] However, Zenewicz
et al[180] found that IL-22 reduced the destruction of
hepatocytes by the immune response during acute liver
inflammation and that IL-22 deficiency sensitized
hepatocytes in mice to liver inflammation. Pan et al[181]

found that hepatocyte IL-22 overexpression could treat
Con A-induced liver injury by activating STAT3 and
promoting the expression of the antiapoptotic proteins
Bcl-2 and Mcl-1. A single-cell RNA-sequencing analysis
revealed that IL-22 expression was elevated in Con
A-induced AIH and was further increased after treat-
ment with the AhR agonist 2,3,7,8-tetrachlorodibenzo-p-

F IGURE 3 Processes of Th9, Th22, Tfh, Tph differentiation. pMHC-TCR and CD28-CD80/CD86 costimulation and various cytokines induced
different differentiation of Th0. Balanced stimulation with IL-4 and TGF-β induced PU.1 and IRF4 expression and Th9 differentiation. IL-21, IL-6, IL-
1β, IL-23, and TNF-α stimulated AhR expression and Th22 differentiation. IL-12, IL-21, IL-6, and ICOS promote c-Maf and Bcl-6 expression and
PD-1+CXCR5+ Tfh differentiation. IL-21, IL-6, IL-12, and ICOS promote c-Maf, Blimp-1 and Sox4 expression, and Tph differentiation. Abbrevi-
ations: AhR, aryl hydrocarbon receptor; APC, antigen-presenting cell; Bcl-6, B-cell lymphoma 6; Blimp-1, B lymphocyte maturation protein 1;
c-Maf, cellular musculoaponeurotic fibrosarcoma; CXCL13, CXC chemokine ligand 13; CXCR5, CXC chemokine receptor 5; Foxp3, forkhead box
P3; GATA3, gata-binding protein-3; ICOS, inducible costimulator; IRF4, interferon regulatory factor 4; JAK, Janus kinase; MHC, major histo-
compatibility complex; RORγT, retinoid-related orphan receptor-gamma t; Sox4, SRY-related high mobility group box 4; STAT, signal transducer
and activator of transcription; Tfh, T follicular helper; Tph, T peripheral helper.
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dioxin.[182] However, ALT levels decreased after 2,3,7,8-
tetrachlorodibenzo-p-dioxin treatment. Elevated AhR
expression also led to decreases in the Th17/Treg ratio
and the activation of CD4+ T cells, CD8+ T cells, B cells,
and NK cells.[182] Th22 cells may be a potential
therapeutic target in AIH, but more studies are needed
to clarify the exact mechanism by which Th22 cells are
involved in the pathogenesis and progression of AIH.

Tfh cells and AIH

In addition to secreting proinflammatory/anti-inflamma-
tory factors, CD4+ T cells also support B-cell proliferation
and differentiation, promoting humoral immunity.[183] Tfh
cells are a subset of CD4+ T cells present in the lymph
nodes and spleen that participate in the germinal center
(GC) formation, antibody class switching, and B-cell
differentiation and maturation.[184] Tfh cells characteristi-
cally express CXC chemokine receptor 5 (CXCR5),
inducible costimulator (ICOS), and B-cell lymphoma 6
(Bcl-6) and highly express programmed cell death
protein 1 (PD-1).[185] Bcl-6, IL-6, and IL-21 are essential
factors in Tfh differentiation.[186–188]

Tfh cells are regulated by different factors during
differentiation, migration, and interaction with B cells. Tfh
differentiation depends on IL-21, IL-6, and CD28-CD80/
CD86 costimulation.[189,190] IL-21 is the main cytokine
produced by Tfh cells and is also an important factor
regulating Tfh differentiation.[191] IL-21 can induce the
differentiation of Tfh cells and can directly regulate the
proliferation, maturation, and differentiation of B cells by
binding to IL-21R in B cells.[190] Both IL-21 and IL-6 can
activate cellular musculoaponeurotic fibrosarcoma (c-Maf)
through the JAK-STAT3 pathway, and c-Maf can upregu-
late IL-21 transcription.[189,192,193] c-Maf is also involved in
CXCR5 expression.[194] Tfh differentiation was shown to
be significantly impaired in mice deficient in IL-21 or
IL-6.[195,196] In addition, IL-12 and IL-27 are positive
regulators of Tfh differentiation, while IL-2 and IL-7 are
negative regulators of Tfh differentiation.[197–201] CD28
costimulation is necessary for Tfh differentiation, and
CD28−/− mice were found to have a Tfh differentiation
deficiency and impaired GC development.[202,203] CTLA-4
inhibits CD28 stimulation by binding to CD80/CD86, thus
inhibiting Tfh differentiation.[204,205] Bcl-6 is an essential
transcription factor regulating Tfh differentiation.[188] At
present, the pathway by which Bcl-6 promotes Tfh
differentiation is still unclear, but studies have shown that
ectopic expression of Bcl-6 in CD4+ T cells could lead to
increased expression of CXCR5, PD-1, and ICOS[188,194];
in addition, the absence of Bcl-6 inhibited Tfh
differentiation.[206] Bcl-6 is highly expressed in Tfh cells,
while Blimp-1 is highly expressed in CD4+ Teffs.[207] Bcl-6
and Blimp-1 are antagonistic to each other. Bcl-6 inhibits
Blimp-1 and transcription factors of Th1, Th2, and Th17
cells (T-bet, GATA3, and RORγt) to maintain Tfh

differentiation[208,209]; Blimp-1 downregulates Bcl-6 and
PD-1, inhibiting Tfh differentiation.[209,210] ICOS is induced
by CD28-CD80/CD86 costimulation and plays an impor-
tant role in Tfh differentiation by binding to its ligand
ICOSL.[211] Studies have shown that ICOS-induced PI3K
plays an important role in Tfh differentiation.[212,213] ICOS
can enhance the expression of Bcl-6, c-Maf, IL-21,
CXCR5, and CD40L and inhibit Blimp-1 and CCR7.[214]

Activin A can also activate CXCR5 and inhibit CCR7 to
support Tfh differentiation.[215]

The localization of Tfh cells to B-cell follicles requires
high expression of CXCR5 and ICOS and low expres-
sion of CCR7.[51,52,212] CXCR5-expressing cells can be
attracted by the ligand CXCL13 expressed in B-cell
follicles, mediating the migration of T cells into the
interior of B-cell follicles and T–B-cell interactions.[52,53]

CCR7 encourages T cells to stay in the T-cell region of
GCs.[51] ICOS mediates Tfh cell migration by binding
with ICOSL on follicular bystander B cells.[212]

Signaling lymphocyte activation molecule (SLAM)/
SLAM-associated protein (SAP) and ICOS/ICOSL
signaling play an important role in T–B-cell interactions.
SLAM receptors colocalize with TCRs in activated T
cells, and on activation, a tyrosine residue in the
cytoplasmic SLAM tail is phosphorylated and bound to
SAP, subsequently activating SAP and triggering
complex signal transduction.[54,55] SAP deficiency can
lead to impaired GCs and inhibition of B-cell
proliferation.[56] SLAM/SAP signaling is also involved
in the regulation of ICOS. ICOS/ICOSL signaling is
important in maintaining Tfh polarization.[216] Down-
regulation of CXCR5 and upregulation of CCR7 induced
by ICOS inhibition could result in the reversal of Tfh
polarization and exit from B-cell follicles.[214] Due to the
importance of humoral immunity in adaptive immunity,
there is no doubt that Tfh cells play an important role in
immune function and autoimmune diseases (Figure 3).

Tfh cells and IL-21 are closely related to AIH. Ma et al
[217] found that hypergammaglobulinemia in Chinese
AIH patients was accompanied by a marked increase in
the PD-1+ICOS+IL-21+ Tfh cell population in PBMCs
and abnormal activation of B cells. Tfh cells and IL-21
have been positively correlated with serum effector B
cells, IgM, and IgG in AIH patients. Abe and colleagues
highlighted the role of IL-21 in AIH. An increase in the
IL-21 expression was observed in patients with different
stages of AIH, regardless of whether the patient was in
remission or experiencing severe AIH, and was
positively correlated with the severity of AIH.[218] IL-21
is also positively correlated with the CCR6-CCL20 axis
and CXCR3-CXCL9 axis and participates in the migra-
tion of immune cells expressing CXCR3 or CCR6.[218]

Aoki et al[219] generated a lethal AIH model by removing
the thymus of PD-1-deficient neonatal mice. In this
model, ICOS+IL-21+ Tfh differentiation was significant in
the GCs in the spleen, and inhibition of ICOS or IL-21
reduced Tfh differentiation. In addition, the authors
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identified CCR6+ Tfh cells and revealed the importance
of the CCR6-CCL20 axis in the migration of CCR6+ Tfh
cells to the liver.[219] Kimura et al[220,221] found that the
level of CCR7− Tfh cells was elevated in PBMCs of AIH
patients with low levels of IgG, which may be helpful for
early diagnosis of AIH. Ma et al[222] found that
Lactobacillus enhanced the therapeutic effect of pre-
dnisone in both AIH patients and experimental AIH
mice. Prednisone + Lactobacillus could significantly
improve the levels of IL-21 and Tfh cells in PBMCs of
AIH patients and reduce the expression of IL-21, Bcl-6,
and CXCR5 mRNA in the liver in mice.[222] In summary,
Tfh cells may be an indicator to predict the progression
and treatment of AIH, but more studies are necessary to
analyze Tfh cells and the functions of Tfh cell subsets
(Tfh1, Tfh2, and Tfh17) in the liver of AIH patients.

Tph cells and AIH

In addition to Tfh cells in secondary lymphoid tissues,
other CD4+ T cells in peripheral tissues contribute to
B-cell activation and antibody production; these cells
are known as Tph cells.[223] Tph cells were originally
identified in rheumatoid arthritis and shown to express
the Tfh hallmarks IL-21, ICOS, c-Maf, and high levels of
PD-1.[224] However, unlike Tfh cells, Tph cells express
low levels of Bcl-6 and do not express CXCR5, which
makes Tph cells a specific CD4+ T-cell subset.[224]

Tph cells express low levels of Bcl-6 and high levels
of Blimp-1.[225] Studies have shown that Bcl-6-deficient
and CXCR5-deficient mice can still produce specific
antibodies.[226,227] The independence of Tph cells from
Bcl-6 highlights the importance of Bcl-6 in Tfh differ-
entiation. High levels of Bcl-6 promote CXCR5 expres-
sion and Tfh differentiation, as well as Tfh cell migration
to B-cell follicles and GC formation.[185,228] Tph cells with
low levels of Bcl-6 cannot enter B-cell follicles, and they
express chemokine receptors such as CCR2, CCR5,
and CCR9, which promote Tph cell migration into
different peripheral tissues.[229,230] SRY-related high
mobility group box 4 is another transcription factor
critical for Tph differentiation, which is stimulated by
STAT3 and promotes CXCL13 production.[57,231]

CXCL13 recruit CXCR5+ B cells to induce plasmacytoid
differentiation in situ[232] (Figure 3).

Tfh and Tph cells can both regulate B-cell proliferation
and differentiation through c-Maf and IL-21. c-Maf can
promote the expression of IL-21, and IL-21 can directly
regulate the proliferation and differentiation of B cells by
binding to IL-21R in B cells.[190,233,234] Tfh and Tph cells can
both regulate B-cell proliferation and differentiation through
c-Maf and IL-21. c-Maf can promote the expression of IL-
21, and IL-21 can directly regulate the proliferation and
differentiation of B cells by binding to IL-21R in B
cells.[190,233,234] Tph cells can promote B-cell differentiation
and antibody production in rheumatoid arthritis and SLE,

but few studies have been conducted in AIH.[235,236]

Renand et al[237] found that PD-1+CXCR5−CD4+ T cells
were enriched in PBMCs of patients with active AIH or
remission and that activation of humoral immunity and
antibody production in AIH mainly depended on
CD45RA−CD27+PD-1+CXCR5−CD4+ T cells but not on
PD-1+CXCR5+CD4+ T cells. The factors regulating the
differentiation relationship between Tph and Tfh cells are
not fully understood, and further studies are needed to
identify common and specific targets and pathways.

CONCLUSION

CD4+ T cells are unique and important components of
adaptive immunity, and different CD4+ T-cell subsets
play unique roles. In this manuscript, we describe the
characteristics of the CD4+ Th1, Th2, Th17, Th22, Th9,
Treg, Tfh, and Tph T-cell subsets and changes in the
frequency and function of CD4+ T-cell subsets in AIH
(Figure 4). Autoantigens mediate abnormal changes in
the frequency and function of these CD4+ T-cell subsets
in the liver immune microenvironment. CD4+ T-cell
subsets promote liver autoimmune inflammation and
regulate the progression of AIH through cytokine
secretion and other mechanisms. Notably, current
studies showed some contradictions, such as changes
in the frequency and function of Th2, Treg, and Th22
cells in AIH. The factors leading to these contradictions
may include genetic factors, epigenetic factors, and
environmental factors, leading to different changes in
different AIH populations. However, these contradictions
seem to be acceptable. No matter how Th2 and Treg
change, the overall Th1/Th2 and Teff/Treg ratio are
imbalanced, reflecting the imbalance of cellular
immunity/humoral immunity and immune promotion/
suppression. Th22 and Th9-related studies are still less
and their special roles need to be further explored in the
pathogenesis of AIH.

As first-line long-term immunosuppressive therapy for
AIH has serious side effects, safer targeted therapies are
urgently needed. Based on the critical role of CD4+ T-cell
subsets in autoimmunity, targeting CD4+ T-cell subsets
seems to be a potential therapeutic approach for AIH.
However, due to the effectiveness of clinical first-line
treatment, the complexity of autoimmune targets, the
side effects of related biological agents and other factors,
current clinical progress of targeting CD4+ T-cell subsets
in the treatment of AIH is still poor. Current studies mainly
target TNF-α and IL-2.[238] Studies have shown that
infliximab, an anti-TNF-α monoclonal antibody, can
achieve laboratory remission in refractory AIH patients,
but some patients develop severe infectious
complications.[239] In addition, ~1 in 120 AIH patients
treated with infliximab experienced hepatotoxicity. There-
fore, further clinical studies are necessary to evaluate the
efficacy and safety of anti-TNF-α in the treatment of
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AIH.[240] Encouragingly, low-dose recombinant IL-2 was
shown to improve Treg cells and clinical and biochemical
parameters with minimal side effects in 2 AIH
patients.[241] This makes it possible to target Tregs, while
more studies addressing how to increase the specificity
and persistence of IL-2-stimulated Tregs are needed.

It should be pointed out that this manuscript is limited
to reviewing the changes of CD4+ T-cell subsets related
transcription factors, cytokines, chemokines, related
ligands, and signaling pathways in AIH, but does not
explore their specific mechanisms in AIH. In addition,
because the acquisition of intrahepatic CD4+ T cells in
AIH patients requires an invasive liver biopsy, there are
few studies on the function of intrahepatic CD4+ T cells
in AIH patients. In addition to CD4+ T cells, other
immune cells, such as CD8+ T cells, B cells, macro-
phages, and NK cells, also play an important role in the
regulation of the AIH liver immune microenvironment.

These interactions constitute a complex immune
regulatory network, and more in-depth studies are
needed to identify these interactions and potential
cross-talk mechanisms and reveal the complex immune
dysregulation in AIH.

In conclusion, the abnormal frequency and function
of CD4+ T-cell subsets play key roles in AIH. The
differentiation and function of CD4+ T cells are affected
by genetic factors, genetic epigenetic factors, and
environmental factors. Current studies revealed abnor-
mal changes in several CD4+ T-cell subsets in AIH,
while the specific mechanisms of several CD4+ T-cell
subsets in AIH are still unclear. CD4+ T cells and other
immune cells constitute a complex AIH immune
regulatory network. Based on the in-depth understand-
ing of the frequency, function, migration, antigen
specificity, and plasticity of CD4+ T-cell subsets in
AIH, further studies are needed to explore the

F IGURE 4 Roles of different CD4+ T cells in AIH. (A) Th1 produces IFN-γ and TNF-α, promoting the homing of Th1 to the liver and the
apoptosis of hepatocytes. (B) Th2 produces IL-4, IL-5, and IL-13 that promote B-cell differentiation and induce antibody class switching to IgG1
and IgE. The Th1/Th2 ratio is imbalanced in AIH. (C) Th17 cells produce proinflammatory cytokines such as IL-17 and GM-CSF, which increase
the positive feedback expression of IL-6 and Th17. CCR6 promotes Th17 migration to the liver. (D) The decrease of Foxp3+ Treg in AIH leads to
the decrease of TGF-B, IL-10, and CTLA-4 and the imbalance of Th17/Treg ratio. (E) Th9 cells produce IL-9, which acts on IL-9R, activates JAK-
STAT1/3/5, and promotes the proinflammatory effect of Th1, Th17, and other immune cells. (F) Th22 produces IL-22, acts on IL-22R in
hepatocytes, and exerts effects through JAK-STAT, MAPK, p38, and other pathways. (G, H) IL-21+ICOS+CXCR5+ Tfh and IL-21+ICOS+CXC13+

Tph cells recruit CXCL13+ B and CXCR5+ B cells, respectively, and promote antibody class switching to IgG and IgM. Abbreviations: Bcl-6, B-cell
lymphoma 6; CCL20, chemokine (C-C motif) ligand 20; CCR6, C-C chemokine receptor 6; CTLA-4, cytotoxic T-lymphocyte-associated antigen-4;
CXCL13, CXC chemokine ligand 13; CXCR5, CXC chemokine receptor 5; PD-1, programmed cell death protein 1; Sox4, SRY-related high
mobility group box 4.
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interactions and cross-talk mechanisms between CD4+

T-cell subsets and other immune cells. These studies
will help determine the complex mechanisms and key
targets of CD4+ T-cell subsets involved in the pro-
gression of AIH, providing theoretical guidance in
identifying new biomarkers of AIH and discovering
more effective and safer therapeutic targets to replace
the current long-term immunosuppressive therapy,
which is known to have serious side effects.
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