
REVIEW ARTICLE
published: 21 May 2014

doi: 10.3389/fnins.2014.00115

Universality and diversity in the signal transduction
pathway that regulates seasonal reproduction in
vertebrates
Yusuke Nakane1 and Takashi Yoshimura1,2,3,4*

1 Laboratory of Animal Physiology, Department of Applied Molecular Biosciences, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan
2 Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Nagoya, Japan
3 Avian Bioscience Research Center, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan
4 Division of Seasonal Biology, Department of Environmental Biology, National Institute for Basic Biology, Okazaki, Japan

Edited by:

Ishwar Parhar, Monash University,
Malaysia

Reviewed by:

Valerie Simonneaux, Centre National
de la Recherche Scientifique, France
Eric Fliers, University of
Amsterdam, Netherlands

*Correspondence:

Takashi Yoshimura, Institute of
Transformative Bio-Molecules
(WPI-ITbM), Nagoya University,
Furo-cho, Chikusa-ku, Nagoya
464-8601, Japan
e-mail: takashiy@agr.nagoya-u.ac.jp

Most vertebrates living outside the tropical zone show robust physiological responses in
response to seasonal changes in photoperiod, such as seasonal reproduction, molt, and
migration. The highly sophisticated photoperiodic mechanism in Japanese quail has been
used to uncover the mechanism of seasonal reproduction. Molecular analysis of quail
mediobasal hypothalamus (MBH) revealed that local thyroid hormone activation within
the MBH plays a critical role in the photoperiodic response of gonads. This activation
is accomplished by two gene switches: thyroid hormone-activating (DIO2) and thyroid
hormone-inactivating enzymes (DIO3). Functional genomics studies have shown that
long-day induced thyroid-stimulating hormone (TSH) in the pars tuberalis (PT) of the
pituitary gland regulates DIO2/3 switching. In birds, light information received directly by
deep brain photoreceptors regulates PT TSH. Recent studies demonstrated that Opsin
5-positive cerebrospinal fluid (CSF)-contacting neurons are deep brain photoreceptors that
regulate avian seasonal reproduction. Although the involvement of TSH and DIO2/3 in
seasonal reproduction has been confirmed in various mammals, the light input pathway
that regulates PT TSH in mammals differs from that of birds. In mammals, the eye is
the only photoreceptor organ and light information received by the eye is transmitted to
the pineal gland through the circadian pacemaker, the suprachiasmatic nucleus. Nocturnal
melatonin secretion from the pineal gland indicates the length of night and regulates
the PT TSH. In fish, the regulatory machinery for seasonal reproduction, from light input
to neuroendocrine output, has been recently demonstrated in the coronet cells of the
saccus vasculosus (SV). The SV is unique to fish and coronet cells are CSF-contacting
neurons. Here, we discuss the universality and diversity of signal transduction pathways
that regulate vertebrate seasonal reproduction.
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INTRODUCTION
Animals that reproduce year-round (e.g., human beings and
mice) are so-called non-seasonal breeders. However, in most ani-
mals living outside of tropical zones, gametogenesis occurs during
a particular period of the year. This allows the animals to produce
offspring in a favorable season. Such animals are called seasonal
breeders. The timing of the breeding period is related to the
length of the gestation or incubation period. Animals that mate
in spring-summer (e.g., hamsters, quail, and medaka) are called
long-day breeders, whereas those that mate in fall-winter (e.g.,
sheep, emu, and salmon) are called short-day breeders.

INVOLVEMENT OF THE MEDIOBASAL HYPOTHALAMUS IN
THE REGULATION OF SEASONAL REPRODUCTION IN BIRDS
The photoperiodic responses of seasonally breeding birds are so
robust and rapid that they provide excellent models for the study

of seasonal reproduction. Avian gonads change size seasonally,
increasing or decreasing more than one hundred-fold within a
few weeks. For example, when Japanese quail (Coturnix japon-
ica) kept under short-day conditions are transferred to long-day
conditions, an increase in plasma gonadotropin (luteinizing hor-
mone: LH) concentration is observed by the end of the first
long day and spermatogenesis is accomplished within 2 weeks
(Nicholls et al., 1983). Because quail can be readily obtained from
quail farms, it has been frequently used for the study of photope-
riodism. Quail has been used as a model to explore the center
that regulates seasonal reproduction. Lesions of the mediobasal
hypothalamus (MBH), including the median eminence (ME)
and infundibular nucleus (IN), or the dorsal MBH result in low
plasma LH concentration and attenuate testicular growth under
long-day conditions (Sharp and Follett, 1969; Davies and Follett,
1975). Electrical stimulation of the MBH increases plasma LH

www.frontiersin.org May 2014 | Volume 8 | Article 115 | 1

http://www.frontiersin.org/Neuroscience/editorialboard
http://www.frontiersin.org/Neuroscience/editorialboard
http://www.frontiersin.org/Neuroscience/editorialboard
http://www.frontiersin.org/Neuroscience/about
http://www.frontiersin.org/Neuroscience
http://www.frontiersin.org/journal/10.3389/fnins.2014.00115/abstract
http://community.frontiersin.org/people/u/147715
http://community.frontiersin.org/people/u/13624
mailto:takashiy@agr.nagoya-u.ac.jp
http://www.frontiersin.org
http://www.frontiersin.org/Neuroendocrine_Science/archive


Nakane and Yoshimura Seasonal reproduction in vertebrates

concentration (Konishi et al., 1987) and testicular growth (Ohta
et al., 1984). Birds are receiving light information within the
brain and local illumination of the MBH induces testicular devel-
opment, suggesting the presence of deep brain photoreceptors
within the MBH (Homma et al., 1979). In addition, expression
of the neuronal activation marker, c-Fos, was observed within the
ME and IN in response to a single long-day stimulus (Meddle and
Follett, 1995, 1997). Therefore, the MBH is considered to be the
center for seasonal reproduction in birds.

LOCAL THYROID HORMONE ACTIVATION DRIVEN BY PARS
TUBERALIS THYROTROPIN IS THE KEY FOR ELICITING
PHOTOPERIODIC RESPONSE IN BIRDS
Lack of genome information had been a barrier to avian research
for long time. However, differential subtractive hybridization
analysis has revealed that long-day stimuli induce mRNA that
encode type 2 deiodinase (DIO2) in the ependymal cells
(ECs) (also known as tanycytes) lining the ventro-lateral walls
of the third ventricle within the MBH (Yoshimura et al.,
2003) (Figure 1). DIO2 is a thyroid hormone-activating enzyme
that converts prohormone thyroxine (T4) to bioactive 3,5,3′-
triiodothyronine (T3). Subsequently, long day suppression of
type 3 deiodinase (DIO3) was reported. DIO3 is a thyroid
hormone-inactivating enzyme that converts T4 and T3 to inac-
tive metabolites rT3 and T2. These reciprocal gene switches,
DIO2/3, appear to be the key for regulation of seasonal repro-
duction in quail (Yasuo et al., 2005). Indeed, T3 was up-regulated
by these gene switches in the MBH under long-day condi-
tions. In addition, ICV administration of T3 mimicked long
day-induced testicular growth under short-day conditions and
infusion of DIO2 inhibitor blocked testicular growth under long-
day conditions (Yoshimura et al., 2003). It is well established
that thyroid hormone is essential for brain development and is
also critical for adult brain plasticity (Bernal, 2005). Indeed, T3

is reported to cause morphological changes in gonadotropin-
releasing hormone (GnRH) nerve terminals and glial cells in
the ME (Yamamura et al., 2006). Most GnRH nerve terminals
are covered with glial cells and do not touch the basal lamina
of the perivascular space of portal capillaries under short-day
conditions. Under long-day conditions, however, many GnRH
nerve terminals are in direct contact with the basal lamina. T3

implantation under short-day conditions mimics these morpho-
logical changes and results in testicular development (Yamamura
et al., 2006). These findings suggest that local activation of thy-
roid hormone within the MBH is a critical event for the seasonal
regulation of GnRH secretion.

The availability of genome sequences in avian species has
provided an opportunity to employ a functional genomics
approach to photoperiodism research. Using a functional
genomics approach, long-day induction of TSHB mRNA, which
encodes the β subunit of thyroid-stimulating hormone (TSH),
was observed in the par tuberalis (PT) of the pituitary gland.
This TSHB induction preceded DIO2/3 switching by about 4 h.
Localization of TSH receptor (TSHR) was observed in the ECs
where DIO2/3 are expressed, suggesting that PT TSH may act
on the TSHR expressed in the ECs to regulate DIO2/3 switch-
ing. Indeed, ICV infusion of TSH drives DIO2/3 switching and

FIGURE 1 | Signal transduction pathway regulating seasonal

reproduction in birds. Light information received by deep brain
photoreceptors is transmitted to the pars tuberalis (PT) of the pituitary
gland, a regulatory hub for seasonal reproduction. Long day-induced
thyrotropin (TSH) in the PT acts on ependymal cells to induce a thyroid
hormone-activating enzyme, DIO2. The bioactive thyroid hormone, T3 is
converted by DIO2 from the prohormone, T4. T3 regulates seasonal
morphological changes in GnRH nerve terminals and glial processes,
thereby regulating or modulating GnRH secretion.

testicular growth, even under short-day conditions (Nakao et al.,
2008) (Figure 1). However, the transport system of PT TSH to the
ECs remains unclear.

INVOLVEMENT OF DEEP BRAIN PHOTORECEPTORS IN
AVIAN SEASONAL REPRODUCTION
Although the eye is the only photoreceptor organ in mammals,
photoreceptive organs in non-mammalian vertebrates include
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eyes, pineal organs, and deep brain photoreceptors. Photo-
capability in the deep brain was first demonstrated in European
minnows, in which it controls changes in skin color (von Frisch,
1911). Subsequently, evidence of a deep brain photoreceptor
that regulates seasonal reproduction in ducks was reported.
Blind ducks continue to show photoperiodic responses, whereas
enveloping the heads of ducks with black caps blocks testicu-
lar responses (Benoit, 1935). Moreover, injection of India ink
under the scalp in pinealectomized sparrows abolishes the pho-
toperiodic response (Menaker et al., 1970). Both pinealectomized
and blinded quail are reported to undergo gonadal development
in response to light cues (Siopes and Wilson, 1974). In addi-
tion, photo-stimulation of the hypothalamus using light fiber
and light-emitting beads prompts testicular development in spar-
rows (Yokoyama et al., 1978) and Japanese quail (Homma et al.,
1979). It has been confirmed that a broad spectrum of light
penetrates into the brains of various vertebrate species (Hartwig
and van Veen, 1979; Foster and Follett, 1985; Oishi and Ohashi,
1993).

Many groups have tried to identify deep brain photore-
ceptors. Several rhodopsin family proteins (e.g., rhodopsin
(RH), melanopsin (OPN4), and vertebrate ancient (VA)-opsin)
were reported to be localized in the avian deep brain region
(Silver et al., 1988; Wada et al., 1998; Chaurasia et al., 2005;
Halford et al., 2009). In addition, a novel opsin called Opsin
5 (OPN5: also known as neuropsin) was recently reported to
be localized in the paraventricular organ (PVO) within the
MBH (Nakane et al., 2010; Yamashita et al., 2010). This is
intriguing because lesions around the PVO block the pho-
toperiodic responses of gonads in Japanese quail (Sharp and
Follett, 1969). Immunohistochemical analysis of OPN5 revealed
its presence in the cerebrospinal fluid (CSF)-contacting neu-
rons (Figure 2A). The CSF-contacting neurons in the PVO
have long been a candidate deep brain photoreceptor because
the retina and pineal organ evaginate from the diencephalon
(around the third ventricle where the PVO is located) and
the CSF-contacting neurons resemble photoreceptor cells in the
developing retina (Vigh-Teichmann et al., 1980). Functional
analysis demonstrated that OPN5 is a short-wavelength sen-
sitive photopigment (Nakane et al., 2010; Yamashita et al.,
2010) and long-day stimulation with short-wavelength light
triggered testicular growth in eye-patched and pinealectomized
quail (Nakane et al., 2010). Therefore, OPN5-expressing, CSF-
contacting neurons in the PVO may be deep brain photore-
ceptors that are important for seasonal reproduction in birds
(Figures 1, 2A).

In summary, a series of quail studies have uncovered the
signal transduction cascade that regulates seasonal reproduc-
tion, from photoreceptors to neuroendocrine output, in birds
(Figure 1). That is, light information received by deep brain
photoreceptors (e.g., OPN5, RH, OPN4, VA-opsin, etc.) is trans-
mitted to the PT and long-day induced TSH secreted from
the PT acts on TSHR to regulate DIO2/3 switching in the
ECs. Bioactive T3 converted from T4 by DIO2 causes mor-
phological changes in GnRH nerve terminals and glial pro-
cesses in the ME, thereby regulating seasonal changes in GnRH
secretion.

FIGURE 2 | Family of cerebrospinal fluid (CSF)-contacting neurons. (A)

Schematic drawings and picture of OPN5 positive CSF-contacting neurons
in the paraventricular organ (PVO) of quail. (B) Schematic drawing and
picture of coronet cells in the salmon saccus vasculosus (SV). The SV
consists of coronet cells (C) and supporting cells (S). Globules of coronet
cells are based on 9 × 2 + 0 cilia. (C) Schematic drawing and picture of a
mammalian retina and photoreceptor. The outer segments of rod and cone
cells are also based on 9 × 2 + 0 cilia. ∗third ventrile. RPE, retinal pigment
epithelium, OS, outer segment, IS, inner segment, ONL, outer nuclear layer,
INL inner nuclear layer, GCL, ganglion cell layer. Scale bars indicate 20 μm.

SIGNAL TRANSDUCTION CASCADE FOR SEASONAL
REPRODUCTION IN MAMMALS
Thyroidectomy blocks the transition of seasonal reproductive
state in sheep (Moenter et al., 1991), and it has been known for
several decades that thyroid hormone is involved in the regula-
tion of mammalian seasonality (Nicholls et al., 1988). However,
its precise mode of action was unknown. After the discovery of
photoperiodic DIO2/3 switching in birds, photoperiodic regu-
lation of DIO2 and/or DIO3 within the MBH was reported in
a number of mammalian species, such as hamsters (Watanabe
et al., 2004, 2007; Revel et al., 2006; Barrett et al., 2007; Freeman
et al., 2007; Yasuo et al., 2007a), rats (Yasuo et al., 2007b),
mice (Ono et al., 2008) and even in short-day breeding sheep
(Hanon et al., 2008) and goats (Yasuo et al., 2006). Therefore,
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local thyroid hormone activation within the MBH is consid-
ered to be central in the regulation of seasonal reproduction in
mammals (Figure 3). However, in marked contrast with birds,
the eye is the only photoreceptor organ. Light information is
transmitted to the pineal gland through the circadian pacemaker,
the suprachiasmatic nucleus (SCN). In mammals, photoperiodic
information is decoded based on the duration of melatonin secre-
tion by the pineal gland (Reiter, 1980; Yamazaki et al., 1999).
Therefore, pinealectomy abolishes seasonal responses and mela-
tonin administration mimics the effect of short photoperiod in
mammals. Thus, melatonin is considered to play a determin-
istic role in mammalian seasonal reproduction (Reiter, 1980).
Although melatonin controls DIO2/3 switching, melatonin recep-
tors are absent in the ECs where DIO2/3 are expressed (Schuster
et al., 2000; Song and Bartness, 2001). In contrast, melatonin
receptors are densely expressed in the PT (Williams and Morgan,
1988; Wittkowski et al., 1988; Reppert et al., 1994; Klosen et al.,
2002; Dardente et al., 2003). Therefore, it was predicted that TSH
secreted from the PT may mediate the melatonin action to reg-
ulation of DIO2/3 switching in mammals. This hypothesis was
tested using TSHR and melatonin receptor knockout mice (Ono
et al., 2008; Yasuo et al., 2009). Melatonin administration had
no effect on DIO2/3 switching in the TSHR and MT1 melatonin
receptor null mice, whereas melatonin affected DIO2/3 switch-
ing in MT2 null mice. This suggests that melatonin acts on the
MT1 melatonin receptor to regulate DIO2/3 switching through
the TSH-TSHR signaling pathway in mammals (Figure 3).

The RF-amides such as kisspeptin, a ligand for the G pro-
tein coupled receptor, GPR54, and RFamide-related peptide 3
(RFRP-3) are involved in the regulation of GnRH secretion
(Clements et al., 2001; Kotani et al., 2001; Muir et al., 2001;

Ohtaki et al., 2001; Clarke et al., 2008). Seasonal regulation of
kisspeptin and RFRP-3 has been reported in hamsters (Revel et al.,
2006, 2008). Administration of TSH to Djungarian and Syrian
hamsters induces the expression of kisspeptin and RFRP-3 as
well as gonadal development under short-day conditions (Klosen
et al., 2013). T3 also provoked significant testicular growth and
kisspeptin expression in Siberian hamsters (Phodopus sungorus)
under short-day conditions (Henson et al., 2013). This sug-
gests that long-day induces TSH and, following the activation
of thyroid hormone by DIO2, regulates kisspeptin, RFRP-3 and
the hypothalamic-pituitary-gonadal (HPG)-axis in mammalian
species.

SIGNAL TRANSDUCTION CASCADE FOR SEASONAL
REPRODUCTION IN FISH
Fish also show marked seasonal changes in physiology and behav-
ior. Medaka (Oryzias latipes), are long-day seasonal breeders, and
their gonads develop in response to elongated day-length (Koger
et al., 1999). Salmonids, short-day seasonal breeders, show dis-
tinct photoperiodic responses, such as migration and parr-smolt
transformation. Smoltification is closely linked to thyroid hor-
mone (Robertson, 1949; Nishikawa et al., 1979). Although all
fishes examined have had higher circulating levels of melatonin
during the night than during the day, there are few reliable data
consistent with a major physiological role for melatonin in the
seasonal reproduction of fish (Urasaki, 1976; Garg, 1989; Masuda
et al., 2005; Borg, 2010). This is in marked contrast to mammals,
but is similar to birds. Fish do not have anatomically distinct PTs,
a regulatory hub of seasonal reproduction in birds and mam-
mals. Thus, the signal transduction pathway for fish seasonal
reproduction remains unknown.

FIGURE 3 | Universality and diversity of signal transduction pathways

that regulate seasonal reproduction in vertebrates. (A) Eyes are the
only photoreceptor organ in mammals. Light information is transmitted
through the suprachiasmatic nucleus (SCN) to the pineal gland.
Photoperiodic information is encoded by the pattern of melatonin
secretion from the pineal gland. Melatonin regulates the “springtime

hormone,” TSH, in the pars tuberalis (PT) of the pituitary gland. (B) In
contrast to mammals, light information is directly received by deep brain
photoreceptors in birds and is then transmitted to the PT to induce TSH.
(C) In fish, all of the machinery required for seasonal reproduction (from
photoreceptors to neuroendocrine output) is located in the saccus
vasculosus (SV).
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A recent study of masu salmon (Oncorhynchus masou masou)
revealed that key elements for vertebrate seasonal reproduction,
such as photopigments, TSH, TSHR, and DIO2, are expressed
in the saccus vasculosus (SV). The SV is an organ only observed
in fish and is located at the floor of the hypothalamus, posterior
to the pituitary gland. Although its existence was first described
in the 17th century (Collins, 1685), its physiological function
remained a mystery for several centuries. In the SV, a folded EC
layer makes a chamber that is directly connected to the third ven-
tricle. Abundant sinusoidal vessels cover the whole external sur-
face of the SV. The EC layer of the SV mainly consists of coronet
cells and supporting cells (Sueiro et al., 2007). The coronet cells
have morphologically specialized features; globules occupy the
apical cellular structures of these cells (Figure 2B). Each globule
has 9 × 2 + 0 cilia, as do photoreceptors in the retina (Figure 2C)
and CSF-contacting neurons in the PVO (Figure 2A). The coro-
net cells also possess manifold primary vesicles (Jansen et al.,
1982; Vigh and Vigh-Teichmann, 1998). Therefore, the coronet
cells are considered to be CSF-contacting neurons.

Immunohistochemical analysis has revealed localization of
photopigments (OPN4 and SWS1), TSH, and DIO2 in coronet
cells (Nakane et al., 2013). The expression of these photoperi-
odic regulatory mechanisms within the SV implies that the SV
plays a pivotal role as a seasonal sensor in fish. Indeed, isolated
SVs respond to photoperiodic changes in in vitro and ablation of
the SV prevents photoperiodically-induced gonadal development
(Nakane et al., 2013). This suggests that coronet cells have mul-
tiple functions, including photoreception and neuroendocrine
output (Figure 3).

CONCLUSION REMARKS
The mechanisms of seasonal time measurement were a mystery
for long time. However, recent studies have uncovered the sig-
nal transduction pathway that regulates seasonal reproduction in
birds, mammals, and fish. These studies revealed the universality
(i.e., signal transduction machineries) and diversity (responsible
cells or organs) of these mechanisms among vertebrate species
(Figure 3). This is similar to the structural and functional evo-
lution of the pineal organ (Korf, 1994; Falcón et al., 2009). In
non-mammalian vertebrates, the pinealocyte contains photore-
ceptors, the circadian clock, and neuroendocrine output in the
form of melatonin. In marked contrast with non-mammalian
vertebrates, the mammalian pinealocyte is specialized as a neu-
roendocrine organ for melatonin secretion. This is why the pineal
organ is generally referred to as the pineal gland in mammals. As
expressed by Ernst Haeckel’s phrase “ontogeny recapitulates phy-
logeny,” the rat pineal gland responds to light during the postnatal
period (Zweig et al., 1966; Tosini et al., 2000; Fukuhara and Tosini,
2003). Because multi-functionality is considered to be a general
feature of ancient cell types (Arendt, 2008), coronet cells appear
to be the ancestral vertebrate seasonal sensors.
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