
The Identification and Functional
Analysis of mRNA Localizing to
Centrosomes
Hala Zein-Sabatto and Dorothy A. Lerit *

Department of Cell Biology, Emory University School of Medicine, Atlanta, GA, United States

Centrosomes are multifunctional organelles tasked with organizing the microtubule
cytoskeleton required for genome stability, intracellular trafficking, and ciliogenesis.
Contributing to the diversity of centrosome functions are cell cycle-dependent
oscillations in protein localization and post-translational modifications. Less understood
is the role of centrosome-localized messenger RNA (mRNA). Since its discovery, the
concept of nucleic acids at the centrosome was controversial, and physiological roles for
centrosomal mRNAs remained muddled and underexplored. Over the past decades,
however, transcripts, RNA-binding proteins, and ribosomes were detected at the
centrosome in various organisms and cell types, hinting at a conservation of function.
Indeed, recent work defines centrosomes as sites of local protein synthesis, and defined
mRNAs were recently implicated in regulating centrosome functions. In this review, we
summarize the evidence for the presence of mRNA at the centrosome and the current
work that aims to unravel the biological functions of mRNA localized to centrosomes.
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INTRODUCTION

To generate spatial enrichments of specific proteins, cells deploy a variety of strategies, including
protein trafficking or local protein synthesis. RNA localization is the process by which mRNAs are
enriched at subcellular locales. Often, RNA localization is coupled to translational control, whereby
localizing RNAs are translationally repressed until they reach their final destinations. Thus, RNA
localization offers an efficient means to generate spatially defined gene enrichments (Martin and
Ephrussi, 2009).

Although perhaps best known for its role in developing embryos and oocytes, or highly polarized
cells, such as neurons, RNA localization is a fairly ubiquitous post-transcriptional mechanism of gene
regulation capable of altering acute cellular responses, like cell migration or division (Kislauskis et al.,
1997; Groisman et al., 2000; Holt and Bullock, 2009; Katz et al., 2012). For example, the first
observation of a localized mRNAwas of β-actinmRNA in an ascidian embryo, later also found at the
leading edge of migratory chicken fibroblasts (Jeffery et al., 1983; Lawrence and Singer, 1986). Many
excellent reviews about RNA localization are available (Jansen, 2001; Martin and Ephrussi, 2009;
Buxbaum et al., 2015; Das et al., 2021). Here, we wish to specifically address the topic of RNA
localization to centrosomes. While the localization of RNA to centrosomes is now irrefutable,
investigation into its biological significance is finally gaining momentum.

The centrosome is a structured organelle comprising the centrioles, a pair of microtubule-based
barrel-shaped structures at the center of the centrosome, and an encompassing protein matrix
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known as the pericentriolar material (PCM; Figure 1A) (Nigg
and Raff, 2009). Although not restricted or compartmentalized by
a membrane, the PCM is an organized yet dynamic structure that
regulates centrosomal function as the primary microtubule-
organizing center of most cells (Mennella et al., 2014;
Woodruff et al., 2014). Importantly, cell cycle-dependent
oscillations in centrosome structure and composition render
the centrosome responsive to cellular demands (e.g.,
ciliogenesis) or developmental contexts (Khodjakov and
Rieder, 1999; Palazzo et al., 2000; Nigg and Raff, 2009). Thus,
centrosomes must modulate their activities rapidly, and RNA
localization coupled to translational control represents one
efficient means to do so.

The presence of nucleic acids at the centrosome held dubious
importance despite several studies prior to the 2000s hinting at
mRNA association with the centrosomes (for historical overview,
we recommend (Marshall and Rosenbaum, 2000; Alliegro,
2011)). Progress in the field was hindered by conflicting
results arguing about the incidence and relevance of mRNA at
centrosomes. Early efforts to interrogate RNA at centrosomes
typically involved 1) co-purifying RNA from isolated
centrosomes, 2) detection of bulk RNA through non-specific
labeling, or 3) treating cells or isolated centrosomes with
RNase digestion and monitoring changes to centrosome size
and/or microtubule nucleation. The “hammer” approach of
RNase treatment led to contradictory findings (reviewed in
Marshall and Rosenbaum, 2000), and progress in the field
stalled. More refined and physiological approaches less prone

to artifacts are now being deployed to systematically investigate
defined mRNAs using a full suite of modern technologies. Recent
work offers the titillating first glance at RNA function at
centrosomes.

Why mRNAs reside at centrosomes is a question under active
investigation. Increasing evidence, as we will discuss, supports the
idea that some mRNAs are locally translated at the centrosome
where their products are needed to tune centrosome activity. Still,
other models are possible. For example, local RNA might
contribute to centrosome structure or simply “hitch a ride” as
a cargo to be passaged on to specific cellular lineages (Lambert
and Nagy, 2002; Alliegro et al., 2006; Lerit and Gavis, 2011; Ryder
and Lerit, 2018; Woodruff et al., 2018). While these remain
intriguing possibilities, this review will focus on the
centrosome as a center for translational control, as supported
by recent advances.

DELIVERING THE MESSAGE: HOW RNAs
LOCALIZE

RNA localization is an efficient means to generate local
enrichments of protein activities, as a single mRNA may serve
as a template for the synthesis of multiple translation products.
Thus, localizing mRNA is more cost-effective in terms of cellular
resources than localizing individual proteins. Further, because
RNA localization is typically coupled to translational control,
RNAs packaged within transport granules, or ribonucleoprotein

FIGURE 1 | The centrosome as a center for translational control. (A) Cartoon schematic of centrosome organization showing a central pair of centrioles (magenta)
with 9-fold radial symmetry of microtubule triplets surrounded by subconcentric rings of PCM (yellow and orange toroids). Microtubule filaments (green lines) are
anchored with their minus-ends docked within c-tubulin ring complexes (grey circles) embedded within the PCM. A model mRNA (black) recognized by RNA-binding
proteins (stars) binding to its 3′-untranslated region (UTR; brown box) is shown undergoing active translation by ribosomes (purple circles). Nascent peptides (fiery
ribbons) emerge near the centrosome. Note, objects are not drawn to scale. (B) Image shows single molecule fluorescence in situ hybridization for plpmRNA (green) in a
prophase (DNA, magenta) syncytial Drosophila embryo. plp mRNA coalesces around centrosomes (yellow). Image below shows an inverted display of the mRNA
channel to maximize contrast. Bar: 5 μm. Image courtesy of Dr. Junnan Fang, Ph.D.
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(RNP) complexes, may be considered more inert as compared to
their protein products, such as cell fate determinants, proteolytic
enzymes, or other factors requiring precise, restricted activity
(Das et al., 2021).

RNA localization occurs primarily through three distinct
mechanisms: diffusion and entrapment, best exemplified by
nanos mRNA in the Drosophila oocyte (Forrest and Gavis,
2003); protection from degradation, as typified by Hsp83
mRNA in the Drosophila embryo (Ding et al., 1993); or active
transport, as observed for many RNAs, includingASH1mRNA in
budding yeast (Long et al., 1997; Takizawa et al., 1997; Bertrand
et al., 1998). Active transport involves the trafficking of a cargo,
such as an RNP, connected via adaptor proteins to molecular
motors, which translocate on actin or microtubule cytoskeletal
tracks (Bullock, 2011). Because centrosomes serve as sites of
microtubule nucleation with microtubule minus-ends embedded
within the PCM (Wu and Akhmanova, 2017), centrosomes are
structurally suited as a hub for mRNA transport. RNA
localization to the centrosome is, however, remarkably specific.
As evidenced by genome-wide screens, relatively few transcripts
reside at the centrosome (Lecuyer et al., 2007; Wilk et al., 2016;
Chouaib et al., 2020; Kwon et al., 2021; Safieddine et al., 2021).
The unique distributions of specific mRNAs rely upon cis-
sequences, nascent peptides, and/or structural motifs within
the RNA being recognized by trans-acting RNA-binding
proteins. Multiple events through the RNA lifetime, including
splicing, influence RNA localization patterns (Hachet and
Ephrussi, 2004; Palacios et al., 2004).

YOU’VE GOT MAIL: mRNA AT THE
CENTROSOME

While non-specific labeling approaches and biochemical
purification allowed early researchers to discover RNA at the
centrosome, technological advances, including those in mRNA
detection and transcriptomics, facilitated the identification of
transcripts at the centrosome. Traditional in situ hybridization,
which permits subcellular resolution of RNA distributions,
remains a mainstay approach to localize mRNAs to
centrosomes (Raff et al., 1990; Groisman et al., 2000; Lambert
and Nagy, 2002; Kingsley et al., 2007; Lecuyer et al., 2007;
Sepulveda et al., 2018; Bergalet et al., 2020). Single molecule
fluorescent in situ hybridization approaches offer superior
resolution and quantitative advantages (Figure 1B; Femino
et al., 1998; Raj et al., 2008; Chouaib et al., 2020; Ryder et al.,
2020; Ryder and Lerit, 2020; Kwon et al., 2021; Safieddine et al.,
2021). Together, such approaches resolved the localization of
specific mRNAs to centrosomes in diverse model systems,
including Ilyanassa, Spisula, Drosophila, Xenopus, zebrafish,
and mammalian cell lines (Raff et al., 1990; Han et al., 1997;
Lambert and Nagy, 2002; Alliegro et al., 2006; Lecuyer et al., 2007;
Sepulveda et al., 2018). Genetically encoded RNA aptamer tags,
such as the MS2/MCP system, permit visualization of
endogenous RNA dynamics in live cells (Bertrand et al., 1998).
Recently, CRISPR/CAS-9 genome engineering was utilized to
integrate MS2 stem loops into endogenous loci of the

centrosome-localized ASPM and NUMA1 mRNAs to monitor
physiological and dynamic live trafficking. This study revealed
ASPM and NUMA1 mRNAs undergo directed transport toward
centrosomes at velocities consistent with an active transport
mechanism. Once localized, the RNAs remain anchored near
centrosomes (Safieddine et al., 2021). As a whole, these
localization-based approaches revealed several specific mRNAs
are enriched at centrosomes in Drosophila and mammalian cells,
showcasing the localization of mRNA to centrosomes as an
evolutionarily conserved phenomenon.

While seeing is believing, transcriptomics approaches offer
added insight for unbiased discovery of centrosome enriched
mRNAs and subsequent bioinformatics analysis of shared
features, including consensus motifs (Blower et al., 2007;
Sharp et al., 2011). Presently, transcriptomics approaches
remain relatively underutilized in identifying centrosome-
specific mRNAs. Expanding transcriptomics approaches may
uncover a consensus motif sufficient for mRNA targeting to
centrosomes, or conserved motifs overrepresented in
centrosome-localized RNAs. Nevertheless, recent advances in
proximity RNA profiling, spatial transcriptomics, and related
approaches will surely expand the parts list of mRNAs
enriched at centrosomes (Jan et al., 2014; Li et al., 2018; Fazal
et al., 2019; Alon et al., 2021; Engel et al., 2021; Rao et al., 2021).
Once centrosome-associated mRNAs are identified, they must be
validated by localization and, ideally, subjected to functional
analysis.

PRIORITIZING MESSAGES IN THE INBOX

The use of genome-wide RNA localization screening strategies
identified conservedmRNAs residing at centrosomes of divergent
species (Table 1). Such transcripts should be prioritized for
functional analysis, as the conservation of their localization
argues for functional relevance. Many of these mRNAs show
unique distributions that correlate with cell cycle stage, arguing
RNA localization to the centrosome is a dynamic process
(Figure 2). Most RNAs appear to preferentially enrich at
prophase centrosomes, while relatively few RNAs reside at
centrosomes during mid-to-late mitosis (metaphase (+),
Figure 2). Moreover, these marked preferences for RNA
localization to interphase/early mitotic centrosomes are
conserved in human and Drosophila cells, perhaps to support
the local synthesis of centrosomal proteins required before
mitosis (Sepulveda et al., 2018; Ryder et al., 2020; Ryder and
Lerit, 2020; Safieddine et al., 2021). Consistent with this idea,
localization of RNAs to centrosomes generally precedes or
correlates with the time at which they are translated
(Tanenbaum et al., 2015; Safieddine et al., 2021).

Additional conserved targets are informed by transcriptomic
analysis of mRNAs associated with taxol-stabilized microtubules
from Xenopus and cultured mammalian cells, which identified
>100 common transcripts (Blower et al., 2007). Further, several of
the transcripts identified as associating with taxol-stabilized
microtubules are shared among those RNAs localizing to bona
fide centrosomes, including cyclin B1 (CCNB1/cyc B), ninein
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(NIN), hyaluronan-mediated motility receptor (RHMMR/
HMMR), and nuclear mitotic apparatus protein 1 (NUMA1)
mRNAs, indicative of partial overlap among these datasets
(Blower et al., 2007; Sharp et al., 2011; Pascual et al., 2020).
Such congruency is consistent with dynamic, microtubule-
dependent localization.

Among these conserved transcripts, the first mRNA identified
at centrosomes was cyc BmRNA. Raff and coworkers detected cyc
BmRNA associated with spindle poles in amicrotubule-dependent
manner and further localized cyc B mRNA to anucleated

centrosomes within syncytial Drosophila embryos (Raff et al.,
1990). Cyc B protein also localizes to centrosomes, where it is
required for mitotic progression (Minshull et al., 1989; Murray
et al., 1989; Murray and Kirschner, 1989; Hagting et al., 1998;
Huang and Raff, 1999; Wakefield et al., 2000). cyc B mRNA also
resides at the spindle poles in early Xenopus embryos (Table 1).

The first clue that local mRNA influences centrosome function
came from manipulating the RNA-binding protein responsible
for targeting cyc B mRNA to spindle poles, CPEB (cytoplasmic
polyadenylation element binding), which binds to cognate CPE

TABLE 1 | Conserved mRNAs localizing to centrosomes.

Gene name (synonyms) Species Sources

abnormal spindle-like microcephaly associated
(ASPM/asp)

human, Drosophila Sepulveda et al. (2018); Chouaib et al. (2020); Safieddine et al. (2021)

BICD cargo adaptor 1 (BICD1/BicD) human, Drosophila Kwon et al. (2021); Safieddine et al. (2021)
centrocortin (cen) Drosophila* Lecuyer et al. (2007); Bergalet et al. (2020); Ryder et al. (2020)
cyclin B (CCNB1/cyc B) Drosophila, Xenopus Raff et al. (1990); Groisman et al. (2000); Blower et al. (2007); Lecuyer et al. (2007); Ryder

et al. (2020)
hyaluronan-mediated motility receptor (HMMR) human, Xenopus Sharp et al. (2011); Chouaib et al. (2020); Safieddine et al. (2021)
ninein (NIN) human, Drosophila,

Xenopus
Lecuyer et al. (2007); Sharp et al. (2011); Kwon et al. (2021); Safieddine et al. (2021)

nuclear mitotic apparatus protein 1 (NUMA1) human, Xenopus Blower et al. (2007); Chouaib et al. (2020); Safieddine et al. (2021)
pericentrin (PCNT/PLP) human, Drosophila,

zebrafish
Lecuyer et al. (2007); Sepulveda et al. (2018); Chouaib et al. (2020); Ryder et al. (2020);
Safieddine et al. (2021)

Alphabetical list of mRNAs showing centrosome localization in two or more organisms from two or more independent studies, where “human” refers to human cell culture experiments. *,
Centrosomal localization of cen mRNA is observed in multiple species of Drosophila: melanogaster, simulans, and mojavensis and to a lesser extent in virilis (Bergalet et al., 2020).

FIGURE 2 | Cell cycle-dependent variances in mRNA distributions. Illustration of differential mRNA distributions of conserved centrosome-enriched mRNAs during
interphase, prophase, andmetaphase-to-latemitosis (metaphase (+)). Below, a graphical summary of mRNAdistributions at the same cell cycle stages as reported by (Sepulveda
et al., 2018; Ryder et al., 2020; Safieddine et al., 2021). The size and intensity of the circle correlates with the prevalence of mRNA localization; representative mRNAs are listed.
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cites within the cyc B 3′UTR. These experiments revealed that
altering cyc B mRNA localization to the centrosome causes
spindle morphogenesis defects and mitotic delay (Groisman
et al., 2000). Subsequent work revealed the CPE motif is over-
represented in datasets of mRNAs enriched on Xenopus and
human taxol-stabilized microtubules, raising the possibility that
CPEB proteins regulate other centrosome-enriched target
mRNAs (Blower et al., 2007). Consistent with this idea, CPEB
proteins localize to centrosomes and regulate the expression and
localization of the master regulator of centrosome maturation,
Plk1 (Groisman et al., 2000; Eliscovich et al., 2008; Pascual et al.,
2020). Depletion of CPEB1 in cultured mammalian cells reduces
total Plk1 protein expression and recruitment to centrosomes
(Pascual et al., 2020). CPEB proteins likely regulate other
centrosome-associated genes, including those with mRNAs
residing at centrosomes, as suggested by high-throughput
datasets obtained using Drosophila and mammalian cell
culture systems (Stepien et al., 2016; Pascual et al., 2020).

AT YOUR (POSTAL) SERVICE:
RNA-BINDING PROTEINS AND
RIBOSOMES AT THE CENTROSOME
Besides CPEB proteins, other RNA-binding proteins, ribosomes,
and translation initiation factors also localize to centrosomes
(Figure 1A). Further, some RNA-binding proteins are implicated
in PCM maintenance or other centrosome functions.

One multifunctional regulator of RNA metabolism is the
RNA-binding protein Gle1, best described for its role in
mRNA transport (Alcazar-Roman et al., 2006; Weirich et al.,
2006), but also implicated in translation initiation and
termination through DEAD-box proteins (Bolger et al., 2008).
Gle1 localizes to the centrosome and the basal body of cilia,
colocalizing with Pericentrin (PCNT) and also required for the
recruitment of PCNT and NIN proteins to the centrosome.
Further, gle1 depletion impairs microtubule organization and
ciliary function (Jao et al., 2017). Given its established role in
mRNA transport and translation, Gle1 may promote PCNT and
NINmRNA recruitment to the centrosome, as recent studies note
enrichment of these two transcripts at the centrosome through a
translation-dependent mechanism (Sepulveda et al., 2018;
Chouaib et al., 2020; Kwon et al., 2021; Safieddine et al., 2021).

Although not particularly enriched at centrosomes, Fragile-X
Mental Retardation Protein (FMRP) is an RNA-binding protein
contributing to centrosome functions and normal mitotic
progression. FMRP is encoded by the Fmr1 gene, which, when
mutated, is associated with Fragile-X Syndrome (FXS), the most
common heritable form of intellectual disability and autism
spectrum disorder (Santoro et al., 2012). Loss of FMRP results
in disordered microtubules and altered microtubule-dependent
intracellular trafficking, which likely influences the
pathophysiology of FXS (Yao et al., 2011). Among the putative
RNA targets of FMRP, several overlap with CPEB (Costa et al.,
2005; Udagawa et al., 2013). FMRP regulates mitotic progression
in many tissues, as loss of Fmr1 leads to elevated rates of neural
stem cell proliferation, resulting in impaired neurogenesis in

Drosophila and, remarkably, in induced pluripotent stem cells
(iPSCs) derived from FXS patients (Callan et al., 2010; Raj et al.,
2021).

Recent work implicates FMRP as important for the regulation
of the centrosome-localized cen mRNA in Drosophila (Ryder
et al., 2020). cenmRNA was first localized near spindle poles by a
genome-wide RNA localization screen (Lecuyer et al., 2007).
Importantly, centrosomal localization of cen mRNA is
conserved among various Drosophila species, despite millions
of years of evolutionary distance (Table 1; Bergalet et al., 2020).
Cen is required for embryonic development, as loss of cen impairs
centrosome separation, spindle morphogenesis, and actin
cleavage furrow formation, leading to embryonic lethality (Kao
and Megraw, 2009). Concurrent work showed cen mRNA
assembles into large pericentrosomal RNPs that colocalize with
Cen protein during later syncytial embryonic stages (Bergalet
et al., 2020; Ryder et al., 2020). Furthermore, puromycylation-
proximity ligation assay (puro-PLA) experiments suggest Cen is
locally translated near centrosomes (Bergalet et al., 2020). Loss of
Fmr1 increases the localization of cen mRNA to Drosophila
embryonic centrosomes and enhances translation of Cen
protein, suggesting FMRP functions to attenuate cen mRNA
localization and translation. Consistently, reduction of cen
dosage is sufficient to partially rescue mitotic spindle defects
observed in Fmr1 mutants; moreover, cen mRNA and protein
associate with FMRP, implicating cen mRNA as an important
FMRP target. Finally, mistargeting cen mRNA to the anterior
cortex is sufficient to block cenmRNA and protein recruitment to
distal centrosomes and recruits excess FMRP (Ryder et al., 2020).
Mislocalized cen mRNA disrupts microtubule organization and
induces elevated rates of mitotic errors, showcasing local dosage
of cen mRNA as a key contributor to centrosome functions
(Bergalet et al., 2020; Ryder et al., 2020).

In C. elegans, the RNA-binding protein SZY-20 localizes to the
centrosome, suppresses embryonic lethality of the PLK4 ortholog,
zyg-1, and restricts centrosome size by impairing recruitment of
the PCM components SPD-2, SPD-5, and c-tubulin; ultimately
limiting microtubule-nucleation (Song et al., 2008). Similar
findings were observed for Ataxin-2 (ATX-2), a conserved
RNA-binding protein associated with spinocerebellar ataxia in
humans, which associates with SZY-20 (Stubenvoll et al., 2016).
ATX-2 itself localizes to centrosomes and is required for mitotic
spindle orientation and successful mitosis (Gnazzo et al., 2016).
Further studies are needed to identify relevant mRNA targets of
SZY-20 and ATX-2 to understand how they influence
centrosome activity.

In response to growth factor stimulation, the RNA-binding
protein Hu Antigen R (HuR) is phosphorylated and localizes to
centrosomes, relaxing its repression of cyclin AmRNA translation
and permitting centrosome amplification characteristic of cancer
cells (Filippova et al., 2012; Filippova et al., 2015). The HuR
model is one example of how RNA-binding proteins influence
centrosomal function by recruiting and stabilizing mRNA at the
centrosome until needed for local translation.

Another major protein complex influencing RNA
localization and converging on centrosomes is the exon
junction complex (EJC). The EJC comprises three protein
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subunits (Magoh, EIF4A3, and RBM8A (Y14)) and mediates
splicing, nonsense-mediated decay, RNA localization, and
translation (McMahon et al., 2016). During mouse
neurogenesis, loss of Magoh leads to errant mitotic spindle
orientation in neuronal progenitors and spindle
morphogenesis defects associated with incomplete
centrosome separation. Similar phenotypes are observed by
depleting other EJC components in cultured mammalian
cells. Consequently, Magoh loss results in reduced neural
stem cells and precocious neurogenesis, leading to
microcephaly (Silver et al., 2010). Further, haploinsufficiency
of either Magoh, EIF4A3, or Y14 results in p53-dependent
microcephaly in murine models (Mao et al., 2016).

Underscoring this pathophysiology is the localization of EJC
components to centrosomes. In cultured mammalian cells, Y14 is
significantly enriched at centrosomes (Ishigaki et al., 2014). Likewise,
in mouse neural stem cells, EIF4A3 and Y14 localize to the basal body
at the base of primary cilia in a microtubule and dynein-dependent
manner (Kwon et al., 2021). Although both BICD2 and NINmRNAs
associatewith EIF4A3 andY14 proteins and localize to the ciliary base,
only NIN mRNA localization to the basal body is EIF4A3 and Y14-
dependent in RPE1 cells. Depletion of EIF4A3 and Y14 also decreases
localization of PCNT and c-tubulin proteins, resulting in impaired
microtubule organization and reduced ciliation, consistent with the
spindle defects previously observed by Silver and co-workers (Silver
et al., 2010; Kwon et al., 2021).

Proteomic analysis from isolated Drosophila centrosomes
identified additional translational initiation factors, like EIF4A,
and other RNA-binding proteins associated with centrosomes,
such as poly(A)-binding protein (Muller et al., 2010). Consistent
with a function in centrosome regulation, EIF4A localizes to
centrosomes and its depletion impairs recruitment of PCM
factors PCNT/PLP, Spd-2, and c-tubulin, but not centriolar
components. These phenotypes are likely unrelated to the role
EIF4A plays in translation initiation because disrupting initiation
by deleting other members of the EIF4F complex or inhibiting
translation elongation by cycloheximide did not diminish the
PCM (Muller et al., 2010). Further studies are needed to uncover
the mechanism by which EIF4A restricts centrosomal size. As
EIF4A promotes expression of oncogenes in pediatric leukemia,
understanding how it regulates centrosome activity may inform
human disease mechanisms (Wolfe et al., 2014).

Components of the EIF4F initiation complex associate and
colocalize with centrosomal OFD1. While OFD1 weakly binds
mRNA, the presence of BICC1, an RNA-binding protein also
found at the centrosome, allows OFD1 to mediate a stronger
association between eIF4F via eIF4E and several centrosomal
mRNAs that are implicated in ciliogenesis and renal cyst
formation (Iaconis et al., 2017). These studies support the
notion that centrosomes serve as hubs for translational control.

READING THE MESSAGE: TRANSLATION
AT THE CENTROSOME

The enrichment of ribosomes, mRNA, and translation machinery
supports local translation at the centrosome and spindle poles, as

evidenced by local puromycylated ribosomes and azidohomoalanine
(AHA) to detect nascent peptides (Blower et al., 2007; Bergalet et al.,
2020; Pascual et al., 2020). Why is the centrosome a translationally
active site? To answer this question, we must first recognize that the
centrosome is a center of cellularmanagement. It plays amajor role in
organizing the microtubule network, nucleating the spindle fibers
during cell division, and forming the basal body in ciliated cells. These
functions depend on the size and composition of the PCM, which will
go through stages of expansion and shedding depending on the cell
cycle stage. Altering the composition of the PCM around the
centrosome at the mRNA level may be how the centrosome
smoothly transitions between its cellular responsibilities. Changing
local mRNA levels and translational status is an effective and efficient
method of control. When no longer required, the mRNA can then
easily be shuttled away in a translationally repressed state or degraded
until needed again.

In support of this hypothesis, ribosomes co-purify with
microtubules (Goldman and Rebhun, 1969), and ribosomal
proteins decorate centrosomes and spindle poles (Blower et al.,
2007; Sepulveda et al., 2018; Chouaib et al., 2020; Pascual et al.,
2020; Kwon et al., 2021). Persuasive evidence for polyribosomes
located near centrosomes comes from ultrastructural analysis; for
example, see figure 18 in (Sorokin, 1962) and Plate 10 in (Murray
et al., 1965). Similar findings are noted in recent 3D focused ion
beam scanning electron microscopy (FIB-SEM) renderings of
centrioles and basal bodies (Xu et al., 2017; Muller et al., 2021).
Some mRNAs, such as cyc B mRNA, localize to centrosomes
independent of translation; indeed, even the localization of
ribosomes to centrosomes is translation-independent (Blower
et al., 2007). However, many centrosome-enriched transcripts
rely upon the presence of intact ribosomes, as determined by
puromycin-sensitivity, consistent with a co-translational transport
mechanism. These include PCNT, ASPM, NUMA1, HMMR,
CEP350, NIN, BICD2, and CCDC88C mRNAs in cultured
mammalian cells (Sepulveda et al., 2018; Chouaib et al., 2020;
Safieddine et al., 2021) and cen, asp (ASPM),Girdin,mud (NuMA),
and BicD mRNAs in Drosophila (Bergalet et al., 2020; Safieddine
et al., 2021). Co-imaging nascent peptides using the SunTag system
along with endogenous, MS2-aptamer-tagged mRNAs beautifully
demonstrates transport of active polysomes translating ASPM and
NUMA1 transcripts as they move towards the centrosome
(Safieddine et al., 2021). The minus-end directed microtubule
motor dynein is implicated in the transport mechanism for
some of these mRNAs (e.g., PCNT; Sepulveda et al., 2018).
How commonly mRNAs are co-translationally localized by
dynein to the centrosomes is still an open question.

POSTSCRIPT

To date, the rate of discovering RNAs localizing to centrosomes
far outpaces their functional characterization, which remains a
key bottleneck in the field. Convincing evidence of a direct role
for mRNA at centrosomes comes from mistargeting or
misexpression analyses of cyc B and cen mRNAs (Groisman
et al., 2000; Bergalet et al., 2020; Ryder et al., 2020). These
experiments allow experimenters to decipher whether local
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mRNA or protein affect centrosome functions and should be
expanded in future studies. Additional approaches, including the
expression of non-translatable transcripts, deletion of identified
zipcodes, and mislocalization of aptamer-tagged RNAs will
likewise prove informative.

Advances in our ability to detect mRNA at the single-molecule
level in vivo, manipulate mRNA localization, and characterize
specific protein-mRNA complexes precipitated a recent explosion
of research investigating mRNAs at centrosomes, leading to novel
insights in a short time. It seems the biological function of mRNA
at the centrosome is finally being recognized as a significant
regulatory paradigm. However, much work remains to
understand which RNAs reside at centrosomes, how they get
there, and what, precisely, they are doing.
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