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Simple Summary: The growth of a solid malignant tumor mass depends on the formation of new
blood vessels by endothelial cells. However, endothelial cells do not only provide conduits for blood
transportation, but also express numerous factors which promote the aggressiveness of cancer cells,
influence the immune response toward cancer cells and thereby contribute to tumor progression and
metastasis. This Review provides a comprehensive overview about such angiocrine factors and how
they orchestrate the tumor microenvironment.

Abstract: Tumor progression, therapy resistance and metastasis are profoundly controlled by the
tumor microenvironment. The contribution of endothelial cells to tumor progression was initially
only attributed to the formation of new blood vessels (angiogenesis). Research in the last decade has
revealed however that endothelial cells control their microenvironment through the expression of
membrane-bound and secreted factors. Such angiocrine functions are frequently hijacked by cancer
cells, which deregulate the signaling pathways controlling the expression of angiocrine factors. Here,
we review the crosstalk between cancer cells and endothelial cells and how this contributes to the
cancer stem cell phenotype, epithelial to mesenchymal transition, immunosuppression, remodeling
of the extracellular matrix and intravasation of cancer cells into the bloodstream. We also address the
long-distance crosstalk of a primary tumor with endothelial cells at the pre-metastatic niche and how
this contributes to metastasis.
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1. Introduction

A solid tumor mass consists not only of cancer cells, but of numerous other resident
and infiltrating cells and the extracellular matrix, which together form the tumor microen-
vironment (TME). The TME contains three main cell entities: fibroblasts, immune cells and
endothelial cells. It is widely accepted that the TME supports the survival of cancer cells
and is crucial for tumor progression and metastasis [1], and consequently there is increasing
interest in targeting the tumor stroma to improve the effectivity of cancer therapies [2].
However, the complex interplay between cancer cells and the surrounding stroma is still
incompletely understood.

In recent years the understanding of the role of endothelial cells (ECs) within the tumor
stroma has substantially changed. ECs can no longer be seen as simple building blocks for
new blood vessels (tumor angiogenesis), which nourish the tumor mass. Instead, ECs play
crucial roles in facilitating tumor growth, providing a large platform of membrane-bound
proteins as well as secreted factors interacting with cancer cells and other cells of the
TME. These perfusion-independent functions are referred to as “angiocrine functions” [3].
As such, ECs orchestrate several aspects of cancer progression and metastasis through
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angiocrine functions [4–7]. Notably, such angiocrine functions play essential roles during
development, organ regeneration and maintenance of organ homeostasis [3,8]. Therefore,
it appears very likely that cancer cells hijack such physiological programs to generate
a milieu that facilitates tumor growth. In this Review we summarize and discuss the
communication of ECs with other cell types within the TME through the membrane-bound
and angiocrine secreted factors and how this affects tumor progression.

2. Tumor Angiogenesis

The limited diffusion distance of oxygen requires that almost every cell of the body
is within 100 to 150 µm of a capillary [9]. Therefore, the growth of a solid tumor usually
requires the growth of new blood vessels from pre-existing ones [10]. This is achieved
by the re-activation of the quiescent resident vasculature by growth factors such as the
vascular endothelial growth factor (VEGF) secreted from cells within a hypoxic tissue. In a
physiological setting, the growth of new blood vessels would lead to oxygen and nutrient
delivery resulting in a reduced secretion of pro-angiogenic factors and the adoption of
a quiescent vascular phenotype. In tumors, however, there is often persistent vascular
growth factor secretion (e.g., due to mutations in cancer cells or by certain immune cells),
and this results in aberrant angiogenesis, leading to a chaotically structured vasculature
with impaired perfusion, cellular junctions integrity and poor coverage with mural cells
(pericytes and vascular smooth muscle cells). This poorly functional vasculature further
promotes hypoxia, immunosuppression and thereby tumor progression [11]. Here, we
do not intend to further discuss tumor angiogenesis, as this has been extensively done by
others [12–14]. However, it is important to mention that the immature tumor vasculature,
lacking proper coverage with mural cells, provides a large signaling platform which,
besides the release of soluble angiocrine factors, also enables ligand-receptor interactions
of membrane-bound proteins between ECs and cancer cells or other cells of the TME.

We would like to mention only briefly that, based on the concept of tumor angio-
genesis [15], anti-angiogenic cancer therapy has been developed and is nowadays the
standard care in several tumor entities [16]. Despite the promising and impressive efficacy
in prolonging progression-free survival, there is limited impact on overall survival. This
might be due to acquired resistance mechanisms, such as the recruitment of alternative
angiogenic pathways [17,18]. Very recently, fascinating data were reported showing that
the combination of immunotherapy with anti-angiogenic treatment improves the outcome
in patients with unresectable hepatocellular carcinoma [11,19]. The phase 3 IMBrave trial
investigated a treatment with antibodies against VEGF (Bevacizumab) and PD-L1 (Ate-
zolizumab) against the standard treatment with the tyrosine kinase inhibitor Sorafenib.
The overall survival at 12 months was 67.2% (95% CI, 61.3 to 73.1) with Atezolizumab-
Bevacizumab and 54.6% (95% CI, 45.2 to 64.0) with Sorafenib [19]. This promising finding
demonstrates that there are important functions of ECs that go beyond the formation
of new blood vessels. In the following chapters we will discuss these with a focus on
angiocrine functions.

3. Beyond Angiogenesis

Under physiological conditions, ECs coordinate organ development, regeneration and
homeostasis by angiocrine factors in an organ-specific manner [3,8,9]. There is increasing
evidence that cancer cells can take advantage of such functions to generate a microenvi-
ronment that promotes tumor progression. We will first summarize the angiocrine factors
which play a pivotal role in tumor models and subsequently discuss their roles in several
aspects of tumor progression, immunosuppression and metastasis.

3.1. Angiocrine Factors

A number of soluble and membrane-bound angiocrine factors that influence tumor
progression through action on the cancer cells themselves or on the local immune cells in the
TME were discovered in the last years (Table 1). Several of these can be grouped into: (i) EC
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adhesion proteins, like intercellular adhesion molecule 1 (ICAM1), vascular cell adhesion
molecule 1 (VCAM1), E-selectin and P-selectin, which are involved in the recruitment of
leukocytes but also in the transmigration of cancer cells across the vessel wall; and (ii)
chemokines, like interleukin-8 (IL-8 also known as CXCL8), monocyte chemotactic protein
1 (MCP1; also known as CCL2), stromal cell-derived factor 1 (SDF1; also known as CXCL12)
and other factors which influence the recruitment and polarization of immune cells [3,6].

Table 1. List of tumor-induced angiocrine factors and their described functions.

Angiocrine Factor 1 Function Reference

Ang-2 Invasion/metastasis; myeloid cell recruitment [20–23]

Biglycan TCs invasion/metastasis [24]

CCL2/MCP-1 Myeloid cells recruitment; tumor cell
extravasation [25]

CCL5 EMT; invasion [26,27]

CXCL1 Invasion [28,29]

CXCL8/IL8 Stemness; invasion; myeloid cell recruitment;
lymphocyte phenotype [25,28,30]

CXCL12/SDF-1 Stemness [31]

DLL4 Cancer cell proliferation; invasion [32,33]

EGF EMT [34]

Endothelin Cancer cell proliferation [35,36]

EphrinA1 Transendothelial migration [37]

FGF Stemness [38]

ICAM1 Myeloid cell recruitment/adhesion; lymphocyte
phenotype [39–41]

IGF1 Stemness [42]

IL6 Myeloid cell recruitment/activation; stemness;
lymphocyte phenotype [43,44]

Inf- γ Lymphocyte phenotype; T cell inhibition [45]

Laminin ECM; invasion/metastasis [46,47]

MMPs ECM [48]

Notch signaling/Jag1 Stemness; CSCs; immune cell recruitment;
metastasis [49–52]

PD-L1 T cell inhibition [53–55]

Selectin Myeloid cell recruitment; immune cell and
tumor cell transmigration/extravasation [56–62]

Shh Stemness [63]

Slit2 Cancer cell proliferation, intravasation,
metastasis [64,65]

Tim-3 T cell inhibition [66,67]

TSP-1 Pre-metastatic niche [68]
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Table 1. Cont.

Angiocrine Factor 1 Function Reference

VEGF family Angiogenesis; cancer cell proliferation; stemness;
myeloid cell recruitment; lymphocyte phenotype [69–71]

VCAM1 Myeloid cell recruitment/adhesion; metastasis [23,52,72]
1 Ang2: Angiopoietin-2, CCL2: C-C Motif Chemokine Ligand 2, CCL5: CC-chemokine ligand 5, CXCL1: C-X-C
Motif Chemokine Ligand 1, CXCL8: C-X-C Motif Chemokine Ligand 8, CXCL12: C-X-C Motif Chemokine Ligand
12, DLL4: Delta-like 4, EGF: Epidermal Growth Factor, FGF: Fibroblast Growth Factor, ICAM1: Intercellular
Adhesion Molecule 1, IGF1: Insulin-like growth factor 1, IL6: Interleukin-6, Inf-γ: Interferon-γ, MMPs: Matrix
metalloproteinases, ECM: Extracellular matrix, PD-L1: Programmed death-ligand 1, Shh: Sonic Hedgehog, Tim-3:
T-cell immunoglobulin and mucin-domain containing-3 (TIM-3), TSP-1: Thrombospondine-1, VEGF: Vascular
endothelial growth factor, VCAM1: Vascular cell adhesion protein 1.

3.2. Angiocrine Control of Cancer Progression

Cancer progression is a complex process involving cancer cell proliferation, acquisition
of different cancer cell phenotypes, such as stemness or epithelial to mesenchymal transi-
tion (EMT), degradation of the extracellular matrix (ECM), tissue invasion, intravasation,
extravasation, immunosuppression (Section 3.3) and formation of metastases. All of these
processes are influenced by angiocrine factors (Figure 1).
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Vascular endothelial growth factor, VCAM1: Vascular cell adhesion protein 1.

3.2.1. Cancer Cell Proliferation

Blood vessel formation is essential for tumor growth, as it depends on a proper
nutrient and oxygen supply. VEGF is not only a master regulator of angiogenesis [10]
and the immune response [73] but can also stimulate tumor cell proliferation in breast
cancer [74] and acute myeloid leukemia models [75]. It remains poorly understood whether
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endothelial-secreted VEGF is involved in these processes. However, there is evidence that
the endothelial expression of VEGF-C promotes leukemic cell survival and proliferation by
activating VEGF receptor-3 on cancer cells [69]. Endothelin is an angiocrine factor which
regulates the vascular tone under physiological conditions. However, it can also promote
ovarian carcinoma cell proliferation [35,36]. Moreover, endothelial Delta-like 4 (DLL4),
which is important for controlling blood vessels formation through activating Notch1
receptors [76], can bind to Notch3 receptors on tumor cells to support their survival [32].
Interestingly, ECs can also release angiocrine factors such as Slit2, which inhibit cancer
cell proliferation and motility [64]. Future work will have to assess to which extent the
release of angiocrine factors contributes to cancer cell proliferation and whether this could
be targeted to enhance chemotherapy.

3.2.2. Cancer Stem Cells (CSCs) and Chemoresistance

Stem cells are characterized by the capacity to self-renew and the ability to differentiate
into diverse specialized cell types. It is assumed that a subpopulation of stem-like cells
within tumors, known as cancer stem cells (CSCs), which exhibit characteristics of both stem
cells and cancer cells, have the ability to seed tumors when transplanted into an animal
host. There is increasing evidence suggesting that CSCs are resistant to conventional
chemotherapy and radiation treatment. The adoption of the CSC phenotypes appears
to depend on signals from neighboring cells which are capable of forming a stem cell
niche [77]. Intriguingly, under physiological conditions, ECs are responsible for the self-
renewal and repopulation of hematopoietic cells, for instance through Notch signaling,
fibroblast growth factor-4 (FGF-4) and CXCL12 cytokine expression [78,79], indicating that
at least in the bone marrow ECs are capable of forming stem cell niches. It is therefore not
surprising that ECs, through their membrane-bound or angiocrine secreted factors, also
play a role in the acquisition of the CSC phenotype. Indeed, tumor ECs can induce the
expression of genes involved in the CSC phenotype [80]. Similar to its functions within
hematopoietic stem cell niches, the expression of Notch ligands such as Jagged-1 on ECs
promotes the CSC phenotype in colorectal [49] and breast cancer [50,51] by activating
Notch receptors. Moreover, ECs promote a stem-like phenotype of glioma cells through the
secretion of Shh and activating the Hedgehog pathway in cancer cells [63] or by secreting
the basic fibroblast growth factor (bFGF) [38]. VEGF can be released by ECs to promote
the CSC phenotype through its receptor Neuropilin-1 on skin cancer cells [70]. There is
also evidence that EC-derived cytokines are involved in adopting a CSC phenotype. The
most prominent examples are IL-8 and CXCL12 in glioblastoma [30] and gastric cancer [31].
Furthermore, IL-6 secreted by tumor ECs is responsible for the generation of a small
sub-population of CSCs in head and neck squamous cell carcinomas [43].

CSCs are associated with chemoresistance [77], and in mouse models, cancer treatment
with chemotherapy upregulated IGF1 expression in tumor ECs, which activated IGF1
receptors on cancer cells, making them resistant to chemotherapy [42]. As such, there is
evidence that angiocrine factors contribute to the adoption of the CSC phenotype and
potentially also to chemoresistance. Future studies are needed to elucidate whether these
factors are suitable for drug targeting and how this would affect cancer progression.

3.2.3. Epithelial to Mesenchymal Transition

The epithelial to mesenchymal transition (EMT) of cancer cells describes a highly
dynamic and reversible process in which cancer cells of epithelial origin lose some of their
typical features, like cell-cell and cell-matrix adhesion, and gain migratory and invasive
properties which are typical of mesenchymal cells. This is associated with profound
changes in gene transcription. The EMT of cancer cells increases their metastatic potential
and resistance toward chemotherapy [81]. Tumor ECs are involved in providing factors
that influence EMT. For example, the EC-secreted EGF induces EMT transition in head
and neck cancer cells [34]. Furthermore, ECs enhance EMT, breast cancer cell migration,
invasion and metastasis by the release of the plasminogen activator inhibitor-1 (PAI-1) and
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the chemokine CCL5 [26]. At this moment, it is not yet clear whether angiocrine factors
are involved in the EMT of a variety of cancer cells or only under certain conditions and
cancer entities.

3.2.4. Invasion and Metastasis

Cancer invasion relies on the detachment from the basal membrane, remodeling
of cell-cell and cell-matrix adhesions and remodeling of the extracellular matrix. These
processes are also required for invasion into blood vessels (intravasation), which is a crucial
step in the metastatic cascade. Invasion and metastasis are facilitated by the EMT of cancer
cells [82]. Tumor ECs are involved in EMT (as described above) and play an active role in
different aspects of invasion and metastasis.

Extracellular Matrix (ECM) Remodeling

Changes in the ECM influence the motility and invasion of tumor cells. Matrix
metalloproteinases (MMPs) are a family of proteinases that degrade the components of the
ECM and thus play a major role in ECM remodeling. MMP activity is inhibited by specific
tissue inhibitors of metalloproteinases (TIMPs). Several cell types, including ECs, express
MMPs and TIMPs in a tumor mass [48]. ECs can influence ECM remodeling either by the
expression of MMPs such as MMP2 and MMP9 or by the release of cytokines like CCL2, IL-
8 and CXCL16, which act in a paracrine manner by upregulating the expression of MMPs in
other cell types, such as tumor cells [25]. Furthermore, endothelial DLL4-mediated Notch
signaling supports tumor cell invasion due to an increased MMP-9 expression by ECs [33].
Interestingly, tumor ECs from metastatic tumors showed a higher invasive potential than
tumor ECs from non-metastatic tumors, and this has been linked with higher expression
levels of gelatinase/collagenase IV, MMP-2 and MMP-9 [83].

Laminins are high-molecular weight glycoproteins, which are important components
of the ECM and the basal membrane. Changes in laminin expression patterns are implicated
in tumor cell migration and invasion. ECs secrete laminins, and this can facilitate the
migration of melanoma cells [46]. In renal cell carcinoma, laminin-α4 is highly expressed
in tumor blood vessels, and this correlates with a poor prognosis [47].

In summary, the presented studies indicate that ECs are involved in ECM remodeling,
but very little is known of the extent to which this is causally linked to tumor progression.

Transendothelial Migration

Metastasis requires that tumor cells enter blood or lymph vessels (intravasation), to be
transported to distant sites where they again need to cross the vessel wall (extravasation).
Both transmigration steps are facilitated by the binding of tumor cells to endothelial adhe-
sion molecules. Therefore, changes in the expression levels of vascular adhesion molecules
influence the efficiency of transmigration and metastasis. For example, E-selectin, which
under physiological conditions is required for leukocyte adhesion to ECs, can also bind
certain tumor cells [57] and thereby promote transendothelial cell migration [56,58] or the
homing of circulating tumor cells in the liver [59,60]. The activation of the endothelium by
inflammatory or cancer-derived factors can lead to the shedding of E-selectin into the blood-
stream. This interacts with CD44 on circulating tumor cells and promotes their adhesion
and migration strength [61]. E-selectin also acts as a homing receptor in the hematogenous
dissemination of lung [84], prostate [85] and breast cancer [86]. The expression of E-selectin
on blood vessels in the bone promotes the mesenchymal-to-epithelial transition of dissemi-
nated tumor cells and the activation of Wnt signaling, which drives the stemness of cancer
cells. This results in increased bone metastasis [87]. In this regard, E-selectin inhibition may
interfere with the homing of metastatic cancer cells in the lung [88] or with the survival of
myeloid leukemia cells within the vascular niche [89].

Besides E-selectin, vascular adhesion molecule-1 (VCAM1) is crucial for leukocyte
and tumor cell transmigration. VCAM1 is expressed by ECs and bound by tumor cells
expressing integrin alpha4beta1 (VLA4). VCAM1 expression increases with inflammatory
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stimuli. This increases the migration of melanoma cells across activated EC layers [72] and
promotes lung colonization. Endothelial Notch1 signaling upregulates VCAM1 expression,
which promotes the adhesion of tumor cells to the endothelium, extravasation and lung
colonization, as shown by using VCAM1-blocking antibodies [52].

Likewise, intercellular adhesion molecule-1 (ICAM1) expression on ECs plays a role
in the adhesion of lung carcinoma to ECs [41], promoting the invasion and metastasis of
breast cancer cells [90] and liver metastasis of colorectal cancer cells [39,40]. ICAM1 can
also be shedded from the endothelium into the blood stream and interact with cancer cells
to enhance their pro-metastatic potential [91,92]. Interestingly, anti-ICAM1 treatment has
been proposed to interfere with tumor progression in multiple myeloma [93,94], lung [95]
and breast cancer [96], showing that the targeting of angiocrine factors might be a valid ther-
apeutic option. Furthermore, the endothelial CCR2 signaling induced by colon carcinoma
cells facilitates extravasation due to an increase in vascular permeability [97].

Not only membrane-bound adhesion molecules, but also EC-derived cytokines are
involved in promoting cancer cell transmigration. For instance, the angiocrine factors
CXCL1 and CXCL8 induce tumor cell invasion [28]. Both chemokines have also been
described to enhance the transmigration and invasiveness of different cancer cell lines in
3-D collagen fiber matrix assays [29]. The angiocrine factor CCL5 promotes the downregu-
lation of the androgen receptor (AR) in tumor cells, which accelerates the disassembly of
focal adhesions, enhancing prostate cancer invasion. Hence, the inhibition of CCL5/CCR5
signaling decreased metastasis in orthotopic mouse models [27].

Tumor ECs can promote invasion and metastasis also by other factors apart from
adhesion molecules and cytokines. Biglycan is a small proteoglycan, whose activity trig-
gers tumor cell migration by nuclear factor-κB and extracellular signal-regulated kinase
1/2 signaling. Biglycan expression was found to be upregulated only in tumor ECs of
highly metastatic tumors [24]. Notably, ECs can also regulate the transendothelial migra-
tion of cancer cells through the endothelial ligand EphrinA1, which binds to Ephrin-Type-A
receptor 2 (EPHA2) on cancer cells [37]. Very recently, it was shown that disseminated
cancer cells secrete RNA to trigger Slit2 secretion, which promotes cancer cell migration,
intravasation and metastasis [65].

Lastly, angiopoietin-2 (Ang2), which is stored in Weibel Palade bodies of ECs, is
a highly interesting angiocrine factor controlling tumor progression. Ang2 levels have
been related to poor prognosis, for example in melanoma [98]. Ang2 blockage showed a
reduction of tumor progression, angiogenesis and metastasis [20,22,99–102]. Moreover, the
blockage of the angiopoietin receptor Tie1 strongly impeded transmigration and metas-
tasis [103]. In fact, a combination of Ang2 and Tie1 blockage improves antiangiogenic
therapy [104]. Recently, a landmark study demonstrated that the Ang–Tie pathway is
crucial in controlling lymphatic metastasis and that this can be prevented by antibody
treatment in mouse models [21].

In summary, it became clear that several membrane-bound and soluble angiocrine
factors promote the transmigration and metastasis of tumor cells. Some of these factors
could even be targeted by drugs, and this resulted in promising results at least in animal
models. However, we still lack knowledge about the detailed mechanism whereby cancer
cells, or other cells within the tumor stroma, or even systemic factors, influence ECs so
that these express higher levels of such metastasis-promoting angiocrine factors. Such
understanding will however be key for future translation into clinical studies.

3.2.5. Pre-Metastatic Niche

When tumor cells travel through the blood stream, they first interact with ECs during
colonization at distant sites. There is increasing evidence that tumor-derived signals
change transcriptional programs in ECs and immune cells at distant sites to facilitate
later metastatic spreading [105]. This concept of a pre-metastatic niche is still under
debate. However, there are clear hints that ECs contribute to the homing and survival of
circulating tumor cells [106–108]. For instance, disseminated breast tumor cells reside in
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close proximity to ECs at distant sites and endothelial-derived thrombospondin-1 (TSP-1)
maintain breast cancer cell quiescence for a long period. However, upon activation of these
ECs and the subsequent angiogenic sprouting, this angiocrine effect is suppressed, allowing
the formation of tumor nodules [68]. In addition, the presence of a subcutaneous tumor in
mice can over-activate Notch1 signaling, not only in ECs within the tumor, but also at sites
as distant as the lungs. This increases endothelial VCAM1 expression, which facilitates
cancer cell homing and the formation of secondary tumors [52]. During ageing, platelet-
derived growth factor (PDGF)-B expression levels increase, regulating the quiescence of the
dormant disseminated tumor cells and influencing therapy resistance in bone metastasis.
Therefore, bone metastasis probability increases with age [109].

These studies indicate the importance of the ECs also for the preconditioning of the
metastatic niche. However, much more needs to be learnt about the factors by which a
primary tumor communicates with ECs at distant sites.

3.3. Angiocrine Control of the Immune Response

The infiltration of immune cells into the TME is of striking importance for tumor
progression and metastasis, as cancer cells often generate an immunosuppressive mi-
lieu [110,111]. Leucocyte infiltration into the tumor requires interactions with several
EC receptors, selectins, ICAM1 and VCAM1 [112]. As described above, some of these
molecules can also be used by tumor cells during transmigration.

3.3.1. Myeloid-Derived Suppressor Cells (MDSCs) and Tumor-Associated
Macrophages (TAMs)

Myeloid derived suppressor cells (MDSCs) comprise a heterogeneous group of im-
munosuppressive immature myeloid cells which inhibit T cell and natural killer (NK) cell
activity. In physiological conditions, myeloid progenitor cells differentiate into mature
myeloid cells like macrophages and dendritic cells (DC), whereas, in pathological condi-
tions like cancer, the differentiation of myeloid progenitor cells is impaired, leading to the
formation of MDSCs [113]. The majority of tumor-associated macrophages (TAMs) also
has an anti-inflammatory phenotype which promotes tumor progression [114]. Several
chemotactic cytokines are known to recruit MDSCs and TAMs into the microenviron-
ment [114–116]. Here, we only focus on angiocrine factors and how these contribute to
immune cell infiltration into tumors.

Angiopoietin-2 can be secreted by tumor ECs, which leads to an autocrine activation
of STAT3 signaling with secretion of CCL2 and higher expression of ICAM1 [23]. These
factors promote the infiltration of CCR2-expressing monocytes into the TME [115,117].
Moreover, sustained Notch1 signaling in ECs, induced by cancer cells, drives cytokine and
VCAM1 expression and the infiltration with myeloid cells, which facilitates metastasis [52].
Furthermore, E-selectin expression on ECs is required for myeloid cell infiltration in
different mouse tumor models [62]. Again, this is promoted by the interaction of tumor
cells with ECs, which leads to a higher E-selectin expression on tumor endothelium [62,118].

Lastly, there is increasing evidence that ECs can also impact on the polarization of
recruited immune cells. In glioblastoma, the tumor endothelium was shown to be the main
source of IL-6 secretion, which contributes to the adoption of an anti-inflammatory and
pro-tumorigenic macrophage phenotype [44]. As such, there is still little knowledge on
how ECs affect the polarization of tumor-infiltrating myeloid cells and how this contributes
to immunosuppression.

3.3.2. Tumor-Infiltrating Lymphocytes (TILs)

The cytotoxic function of tumor-infiltrating lymphocytes (TILs) is often impaired, for
example by the activation of programmed cell death-1 (PD-1) and cytotoxic T-lymphocyte-
associated protein-4 (CTLA4) receptors on T cells [53–55]. The expression of the respective
ligands not only on cancer cells but also on other cells of the TME contributes to immuno-
suppression [119]. The role of ECs in this regard is still poorly understood. However,
pre-clinal models [120] as well as recent clinical trials in hepatocellular carcinoma and
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non-small cell lung carcinoma demonstrated that antiangiogenic therapy targeting VEGF
synergizes with immunotherapy targeting the PD-1/PD-L1 axis [121,122]. It will be of
outstanding importance to unravel the mechanism responsible for this. In addition, there
is evidence for the angiocrine control of T cell activity in tumors. Tumor ECs can secrete
Inf-γ [45] and VEGF-A [71], which influence T cell responses. In addition, the induction of
T cell immunoglobulin and mucin domain-containing molecule 3 (TIM-3) expression on
ECs in lymphoma inhibits CD4+ T helper cell activity by the activation of the IL-6/STAT3
signaling pathway [66,67]. As such, there is some evidence that ECs play a role in adapting
immune responses in cancer.

4. Future Perspectives

During the last years it became clear that tumor ECs play a major role in tumor
progression and metastasis. Thereby, ECs are not only needed as building blocks for new
blood vessels, but also as a rich source of angiocrine factors acting on cancer cells and other
cells of the TME. Targeting specific angiocrine factors which orchestrate cancer proliferation,
stemness, EMT, invasion and immunosuppression may improve cancer therapy. However,
to achieve this, it will be of the utmost importance to unravel the mechanisms involved in
the activation of angiocrine signatures, to elucidate their detailed mode of action within
the TME and determine their exact contribution to tumor progression.

Anti-angiogenic therapies in combination with immune-therapy showed promising
outcomes for certain cancer entities [11]. In mouse models, several approaches blocking
angiogenic factors such as VEGF or Ang2 led to synergistic effects with immunotherapy.
This not only normalizes the tumor vasculature to a certain degree, but also improves
the infiltration with immune cells attacking cancer cells [123–125]. The IMBrave phase
3 trial demonstrated that such therapy can prolong the overall survival in patients with
unresectable hepatocellular carcinoma when compared to treatment with Sorafenib [19].
It can be speculated that this effect is at least in part mediated by angiocrine factors. It
will be of the utmost importance to unravel the angiocrine landscape in primary tumors
and metastases in a systemic manner during the complete course of tumor progression
in a large variety of cancer entities. These results should lead to the identification of key
angiocrine factors. Further analysis will elucidate their functions in great detail within the
tumor microenvironment and the metastatic niche. This should finally pave the way for
initiating clinical trials to specifically interfere with angiocrine factors promoting tumor
progression and metastasis.
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