Hindawi Publishing Corporation
International Journal of Biomedical Imaging
Volume 2014, Article ID 947539, 12 pages
http://dx.doi.org/10.1155/2014/947539

Research Article

Ischemic Stroke Detection System with a Computer-Aided
Diagnostic Ability Using an Unsupervised Feature Perception

Enhancement Method

Yeu-Sheng Tyan,"** Ming-Chi Wu,"? Chiun-Li Chin,* Yu-Liang Kuo,>*

Ming-Sian Lee,* and Hao-Yan Chang*

ISchool of Medicine, Chung Shan Medical University, No. 110, Section 1, Jianguo North Road, Taichung 40201, Taiwan
Department of Medical Imaging, Chung Shan Medical University Hospital, No. 110, Section 1, Jianguo North Road,

Taichung 40201, Taiwan

?School of Medical Imaging and Radiological Sciences, Chung Shan Medical University, No. 110, Section 1,

Jianguo North Road, Taichung 40201, Taiwan

*School of Medical Informatics, Chung Shan Medical University, No. 110, Section I, Jianguo North Road, Taichung 40201, Taiwan

Correspondence should be addressed to Chiun-Li Chin; ernestli@csmu.edu.tw

Received 21 July 2014; Revised 2 November 2014; Accepted 11 November 2014; Published 9 December 2014

Academic Editor: Richard H. Bayford

Copyright © 2014 Yeu-Sheng Tyan et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

We propose an ischemic stroke detection system with a computer-aided diagnostic ability using a four-step unsupervised feature
perception enhancement method. In the first step, known as preprocessing, we use a cubic curve contrast enhancement method
to enhance image contrast. In the second step, we use a series of methods to extract the brain tissue image area identified during
preprocessing. To detect abnormal regions in the brain images, we propose using an unsupervised region growing algorithm to
segment the brain tissue area. The brain is centered on a horizontal line and the white matter of the brain’s inner ring is split
into eight regions. In the third step, we use a coinciding regional location method to find the hybrid area of locations where a
stroke may have occurred in each cerebral hemisphere. Finally, we make corrections and mark the stroke area with red color. In
the experiment, we tested the system on 90 computed tomography (CT) images from 26 patients, and, with the assistance of two
radiologists, we proved that our proposed system has computer-aided diagnostic capabilities. Our results show an increased stroke

diagnosis sensitivity of 83% in comparison to 31% when radiologists use conventional diagnostic images.

1. Introduction

Stroke, also known as a cerebral vascular accident (CVA), is
the most common and the most threatening cerebrovascular
condition and is one of the main factors contributing to the
increase in global mortality. Statistics tell us that twenty-
five to thirty million of the five billion people living around
the world have suffered a stroke [1]. Stroke has ranked
third among the ten leading causes of death in Taiwan for
many years, with approximately 10,000 people in Taiwan
dying from stroke every year. Mayer et al. [2] reported that
the patients who have survived a stroke typically became
impaired in their mobility and thus require the expenditure of
alarge amount of family, social, and medical resources. Stroke

can be divided into two types: ischemic and hemorrhagic [3,
4], both of which are major causes of morbidity and mortality
worldwide. In recent years, it has become clear that systemic
inflammation may enhance atherogenesis [5, 6], which leads
to stroke.

With respect to stroke risks, various computer-aided
diagnosis (CAD) systems have been developed to assist
physicians in the diagnosis and treatment of stroke patients
[7-9]. These systems have made possible the detection of
early CVA signs and have contributed to the improved
diagnostic accuracy for acute strokes.

Current stroke detection devices such as computed
tomography (CT) and magnetic resonance imaging (MRI)
can help an experienced radiologist to determine whether or
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not a patient has suffered a stroke, but if a general radiologist
makes an erroneous judgment, this may cause the patient to
miss the best time for treatment [10]. Therefore, enhancing
the quality of the diagnostic image is a critical way to help the
physician make a proper diagnosis or image recognition.

Pizurica et al. [11] described a robust wavelet domain
method for removing noise in medical images. While this
method has low-complexity characteristics, both in its imple-
mentation and execution time, the processed image becomes
blurred when using this method. It also requires higher
time requirements, so this method is not ideal for use in
stroke detection. Lin and Chin [12] proposed a new algorithm
for the detection and compensation of backlight images
which addresses the weaknesses of conventional backlight
image processing methods such as oversaturation and lack of
contrast. This method can produce high image contrast and is
used in medical image contrast enhancement [13]. Usinskas
etal. [14] used 18 joint textural features to search for ischemic
stroke patterns in CT slices, but the automated thresholding
for each image, at the time of this study, was not complete.

Lin and Liu [15] proposed a neural network technology
based on artificial intelligence which constructs a prediction
model to detect recurrent stroke. Although this model is
useful for discharged patients, certain difficulties remain in
tracking and collecting relevant patient information. Lee et al.
[16] proposed a method to find feature points that smoothens
CT images, analyzes the edge of the brain tissue, and then
applies a Gaussian-weighted distance model to obtain feature
points to reconstruct a 3D human brain model. This method
enables radiologists to find the likely stroke area quickly.
However, the disadvantage of this method is that patients
have to endure prolonged CT scanning that may delay critical
medical treatment for acute stroke patients and can result
in progression of the stroke. Rutczynska et al. [17] proposed
a method that uses regional growth in conjunction with
Gaussian mixture models (GMM) to calculate the maximum
expected value and then uses Bayes theorem to update the
maximum chance of finding the stroke area. This method
is only effective for large stroke region areas and fails to
effectively detect areas of early stroke. Chawla et al. [18]
developed an automated method to detect and classify lesions
as being an acute infarct, chronic infarct, or hemorrhage
at the slice level of noncontrast CT images. This method
consists of three main steps: image enhancement, detection
of midline symmetry, and classification of abnormal slices.
First, a windowing operation is performed on the intensity
distribution to enhance the region of interest. Then, domain
knowledge about the anatomical structure of the skull and
the brain is used to detect abnormalities both in a rotation-
and translation-invariant manner. Finally, a two-level classi-
fication scheme is used to detect abnormalities using features
derived in the intensity and the wavelet domains.

Regarding MRI applications and related literature,
Kesavamurthy and SubhaRani [19] used a variety of different
image analysis technologies to process brain tissue images
obtained from MRI technology and also depicted accurately
damaged areas of the brain tissue with a semiautomated
technology that improved clinical diagnosis and treatment.
In this paper, the author describes an edge detection
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method which uses a Canny edge detection algorithm to
extract damaged areas of brain tissue in order to accurately
distinguish the boundaries of the adjacent normal brain
tissues and skull.

Zhang et al. [20] proposed that object boundary def-
inition is an important task in brain image analysis. The
brain structure can be used to improve the disease detection
rate at earlier stages. Recently, a 3D active volume model
(AVM) was proposed which incorporates both gradient and
regional information to enhance robustness. However, the
segmentation performance of this model depends on the
position, size, and shape of the initialization, especially for
data with complex texture. Mangla et al. [21] explored the
edge regions of the human brain to observe and study the
incidence of stroke and recognized two types of border
zone infarcts: external (cortical) and internal (subcortical).
Strokes occurring in the white matter are most commonly
hemorrhagic. In contrast, ischemic strokes often occur in the
gray matter. The author proposed a combination of several
advanced techniques useful in identifying pathophysiologic
processes.

From a survey of the literature, the threat and seriousness
of ischemic stroke are widely recognized but, as yet, an
advanced diagnostic technique for ischemic stroke has not
been yet made available. Przelaskowski et al. [22] enhanced
the overall contrast of brain images, but his method does
not map the stroke position with high accuracy. Instead,
the stroke area can be highlighted after processing. But the
processing itself may blur out the stroke area and increase
the diagnostic time, leading to delays in treatment. Some
studies have used neural networks with high accuracy, but
they have not yet established that they can successfully
identify a stroke area in the improved image. As a result,
they use semiautomatic methods to determine the threshold
values of different images [23]. There remain some problems
in identifying the brain stroke area. First, high resolution
equipment is expensive. Secondly, the diversity of human
brain tissue increases the difficulty of diagnosis. Lastly, the
presence of an old brain stroke area can also make it difficult
to distinguish a new stroke area from the old one. These
problems often lead to delay in treatment and cause anxiety
and regret for families. To solve these problems, we propose
an unsupervised brain stroke detection system that can
accurately and quickly highlight the affected stroke area.

2. Material and Methods

Figure 1shows our proposed detection flowchart for ischemic
stroke. It is divided into four processing steps: preprocessing,
brain tissue extraction, meaningful area extraction, and
highlight stroke area.

2.1. Preprocessing. In a low-contrast conventional brain CT
image, as shown in Figure 2(a), the image contrast is insuf-
ficient. Using our method, we first input a brain CT image
like the one shown in Figure 2(a) to our system. To perform
preprocessing, we use the cubic curve contrast enhancement
method [13, 24] to improve the image contrast and make its
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FIGURE 1: System flowchart for ischemic stroke detection.

texture clearer. Figure 2(b) shows the cubic function of the
contrast enhancement curve. From this cubic curve, we can
determine the coordinates (A, B) of the inflection point and
then enhance the image contrast.

Equation (1) shows the cubic curve equation, where
x represents the pixel value of the original image and y
represents the pixel value of the intensified image. Because
the curve passes through the origin (0, 0), d can be omitted

y=f(x)=ax3+bx2+cx+d. (1)

Before calculating the correlated coefficients, a, b, and ¢, we
use (2) to determine the x coordinate, A, of the inflection
point

A=miptsh+07 (mxtal-mintl). @

In (2), A represents the x coordinate of the inflection point,
I represents the image, and x is any one of the pixel values in
the image. Then, based on (3), we can calculate the contrast-
enhanced cubic curve

c=1-ax(255)%—bx 255,

b> =3 xa-(255)7% x3a> =255 x3 xaxhb, 3)

1
a= .
(255)% =3 x 255 X A + 3 x A2

Figure 2(c) shows the resulting image after performing image
contrast enhancement. From this figure, we can clearly see
every tissue and region in the brain CT image.

2.2. Brain Tissue Extraction. After visualization, the next step
is to identify and remove those parts of the image that are
nonbrain tissue, such as the skull, nearby areas, and other
areas not affected by the stroke. First, we take advantage of
the obvious differences in values between the skull and the
brain tissue and use the Otsu method to calculate an optimal
threshold value to obtain the most appropriate threshold. We
then remove obvious skull images and noise. Next, we use
an anisotropic filter for blurring processing, which enables
us to reduce noise and increase the brightness of regional
differences in the image, according to (4) [25]. An example of
the image we obtain by this method is shown in Figure 3(a)

I(xy) = Z:r:l—l ;:171 I(x+i,y+j)G(xy)
:;171 Z;;lflG(x,y)

_|\/G§ +G§|2 W
2Kk2 ’

G(x,y) =exp

(Gu6,) = (212, 210,

I(x, y) represents an original image, G(x, y) represents
the Gaussian kernel function, and k is the variance of
the Gaussian mask. These are chosen on the basis of the
magnitude of the gradient computed in a 3 x 3 window.

Finally, we use the morphology erosion and expansion
method to remove any remaining subtle skull images to
obtain complete brain tissue images and to proceed with
image segmentation. The results are shown in Figure 3(b).

2.3. Meaningful Area Extraction. In this step, we distinguish
the gray-white matter interface, which is the most common
region for a stroke to occur. To do so, we use brain area
segmentation and partition techniques.

2.3.1. Brain Area Segmentation. Professional radiologists
know that the CT value of the brain tissue edge around a
stroke area slightly differs from that of normal brain tissue.
These differences are not easily detected for an inexperienced
radiologist. To identify these slight differences, we use edge
detection technologies and an unsupervised region growing
algorithm (URGA) to make the differences more obvious. In
edge detection, there is a qualitative change in the CT stroke
image, so we want to identify the edge of the stroke area.
We obtain image edge information by using the Canny edge
detector to determine the optimal edge detection algorithm.
This is an optimal edge detector that achieves good detection,
good localization, and minimal response time, making it our
method of choice for finding the edge of brain tissue. Our
results are shown in Figure 4. Next, we propose the use of an
URGA to segment the image as follows.

Step 1. Obtain an edge map using I, = I ® G, where G is
a Gaussian filter, I is an original image, and ® represents
convolution.
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FIGURE 2: (a) The original brain image, (b) the cubic curve of the contrast enhancement method, and (c) the resulting image obtained after
performing contrast enhancement.

FIGURE 4: Edge of brain tissue image.
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FIGURE 5: (a) Histogram obtained after performing URGA Step 2, with noise values framed in circles, and (b) the histogram after performing

the mean filter.

Step 2. Calculate the histogram H (i) with the original image
I,, in which the counted points are those nearby each edge
point in the edge map I,.

Step 3. Denoise in the H (i) using a mean filter, where H(i) is
the histogram obtained in Step 2.

Step 4. Obtain the peak value H(i) and set i as a seed. The
condition of obtaining H (i) is as follow.

If Yo Yo osign(HG + j + 1) - H(i + j)) = —4 and
Yioh Yo sign(H(i - j) = H(i - j— 1)) = 4, where Vi € R.

Step 5. Call the region_growing algorithm (i,I), where
((I(x, ) =T) > (u = I(x, ).

Step 6. Repeat Steps 1to 5 until P(7) is empty, and return the
segmented regions on the brain tissue image I.

The aim of the URGA is to improve the traditional region
growing algorithm which cannot automatically provide seed
values. These seed values are extracted around the edge
but not in the cerebrospinal fluid (CSF) area. Figure 5(a)
shows the histogram obtained after performing Step 2 in
the URGA. In this figure, the position of the red arrows
indicates the noise positions. Figure 5(b) shows the histogram
after performing the mean filter, where the noises have been
removed and the red arrows indicate the peak positions. We
regard these peaks as seed values. After obtaining the seed
values, we continue with the region growing until the original
image is completely segmented. Figure 6 shows the resulting
image after executing URGA.

2.3.2. Brain Area Partition. After brain area segmentation,
the next step, as reported by the radiologist consulted in
this study, is for doctors to identify suspected stroke regions
by comparing differences between the left and right side
brain tissues. This knowledge should then be entered into our

FIGURE 6: Image obtained after executing the URGA.

proposed system. To do so, we first use an image projection
method to determine the maximum enclosing rectangle
measurements in the brain tissue images, and, then using
this rectangle as a basis, we use the center of the rectangle’s
length and width as the center coordinates of the brain
tissue, thereby partitioning the brain tissue into four parts.
We then distinguish the gray-white matter interface. Gray
matter regions of normal brains are located in the periphery
of the brain tissue and are brighter due to their higher cell
density. In contrast, white matter is darker. So in our study
we segment [21] the gray and white matter using a technique
known by general radiologists, to generate an elliptic curve
to determine the boundary between the gray and white
matter.

The center point of the internal and external ellipse is the
same, but the length of the minor axis of the external rectangle
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TABLE 1: Results of coinciding regional locations for different cases.

Example 1

Example 2 Example 3

Original image

Step one

Step two

FIGURE 7: Image showing region partitions.

is proportionally 2/3. Finally, we partition the brain tissue
images into eight regions, as shown in Figure 7.

2.4. Highlight the Stroke Area. Physicians tell us that stroke
occurs mostly in either the left or right side of the brain.
Medical statistics show that the probability of stroke occur-
ring in both the left and right sides of the brain is under
20%. The average brightness in the stroke area is less than

the surrounding areas [26]. Therefore, we calculate the
brightness values of all areas for comparison and then identify
the positions and color and modify the image to make the
possible stroke areas more obvious. By doing so, we can assist
physicians to better observe and identify stroke areas and
improve diagnostic accuracy.

2.4.1. Coinciding Regional Locations. After partitioning the
brain tissue images into eight regions, we next calculate the
average brightness for each of the eight partitioned regions.
Based on the knowledge that most strokes occur in one side
of the brain only, we determine which area of the left or
right brain is most likely to have experienced a stroke. To do
so, we compare the calculated average brightness values for
these eight regions. Finally, to identify regional locations for
a stroke, we determine which areas have smaller brightness
values by comparing the corresponding left and right side
areas of the brain.

After identifying four areas with smaller average bright-
ness values, we divide them into three cases, as shown in
Table 1, according to their different distribution positions. In
the first case, the four areas with smaller average brightness
values are all on the same side. In this case, we can then
determine the presence of a possible stroke area in either the
left or right brain tissue from the smaller average brightness
values that are identical. The second case has three areas with
smaller average brightness values on the same side and one
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FIGURE 8: The flowchart of coinciding regional location.

area with a smaller average brightness value on the other side.
In this case, a judgment must be made.

The difference in brightness that can be distinguished
by the naked eyes is 20 grayscales, which is equivalent to a
brightness value of 4 [27]. Therefore, we set the differences
of average brightness values to 4 in our study. Next, we
calculate and compare the differences between areas having
the same and different smaller average brightness values. If
the difference in one area’s brightness from that of the others
is less than 4, we merge this area with the other three areas
so that all four are designated as having smaller average
brightness values in the left or right area. If the difference
of one area’s brightness is greater than or equal to 4, then
we designate this area as being dissimilar to the other three
areas on the same side. In the third scenario, areas can be
further divided into two different distributions, wherein if
two areas have similar smaller average brightness values and
two other areas also have similar smaller average brightness

values, then we must determine if the two area pairs with
similar smaller brightness values are on the same side of the
brain. If both pairs are on the same side of the brain, then
we need to calculate the differences in the brightness values
between the two. Having determined the location of the pair
with the larger difference, we then merge the pair with the
smaller difference with the pair with the larger difference so
that the positions of these four areas coincide. This enables us
to determine possible stroke areas. For the upper and lower
parts of the brain tissue that are not on the same side, we
calculate the differences in brightness between the left and
right half-brain tissue areas for the upper and lower brain.
Once we have determined the areas with smaller average
brightness values that have the larger differences, we merge
the small difference areas and then merge the large difference
areas. We do this repeatedly for both the upper and lower
brain areas, until the four regional positions coincide. The
entire judgment flowchart is shown in Figure 8.



2.4.2. Advanced Correction. From the position coincidence
results, we then know whether the stroke occurred in the
left or the right side of the brain. However, the system
must further identify the stroke areas. In discussion with
physicians, we learned that CT values between 30 and 36
indicate possible stroke regions. We are also informed that a
stroke is more likely to occur in a dark area of the CT image
than in the general brain tissue areas shown by the CT. So,
we use 30% of the front of the brain tissue and temporarily
assign CT values in this tissue as possible stroke area CT
values. Next, we compare the colored images with the original
images. If the CT value in the original lies within the 30%
stroke area value, we mark it in red. If a value is not in this
range, we restore the colored area to the original image value.
Using this technique, physicians can better determine stroke
areas and increase their diagnostic accuracy.

3. Experimental Results

For CT images, we used the Digital Imaging and Com-
munications in Medicine (DICOM) format. We used an
image resolution of 512 x 512, 4-bit color to store the
metainformation and 12-bit color to view CT images at the
12-bit grayscale level. One pixel is equivalent to 0.2 mm.

In this experiment, we selected 90 CT and MRI images
from 26 stroke patients, each with a stroke size in the range
of 25 to 30mm?. In our study design, one MRI image
was selected by a radiologist. While ischemic stroke areas
are obvious in MRI images, MRI testing is expensive and
requires a lot of time. In general, people visit a doctor when
concerned about possible symptoms of stroke. They do not
typically take the initiative to undergo CT or MRI testing.
Therefore, we do not have images from nonstroke patients.
However, we did use MRI images to validate the accuracy of
our proposed system. Next, we divided the experiment into
three topics for exploration. First, we compared our proposed
method with an existing method, proposed by Przelaskowski
et al. [22]. Next, two radiologists tested our proposed system
with respect to its potential for use as a computer-aided
diagnostic technique. Finally, we used a statistical measure
and an empirical discrepancy error measure known as object-
level consistency error (OCE) [28], to evaluate our proposed
system.

Next, we designed two user programs for use by the
radiologists in our study, the interfaces of which are shown
in Figures 9 and 10. The aim of the first program is to
enable radiologists, based on their professional experience,
to select a brain stroke area from the four (or eight) areas
drawn in our image. The program then saves this result to
use during a follow-up assessment. The second program also
allows radiologists to select the brain stroke area, but this time
the radiologist also refers to the results from our proposed
method. In this way, we tested whether or not the new
information would change the judgment of the radiologists.
Finally, we compare two classes of stroke patient brain images:
the CT and the MRIL

The objective of the third program, whose interface is
shown in Figurell, is to allow radiologists to manually
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FIGURE 9: User interface for recording radiologists’ assessment based
on the original image (Test 1).

W EARES

FIGURE 10: User interface for recording radiologists’ decision after
seeing the image results of our proposed system (Test 2).

FIGURE 11: Typical user interface for obtaining an assessment by
a professional radiologist. The left side shows a stroke patient CT
image and the right side shows the corresponding MRI image of the
same patient.

determine the corresponding relationship between the CT
and MRI images. Przelaskowski et al. [22] used a thresholding
selection method to extract a brain tissue image using
a dyadic wavelet transform, whose transform kernel is a
biorthogonal filter bank with 5/3 taps of low pass filters,
to enhance image contrast and remove noise. The resulting
image is then converted to the spatial domain so the brain
stroke area can be highlighted in the resulting image. We used
the program provided by Przelaskowski to test a brain CT
image obtained by the hospital of our school and compared
the results of our proposed method with those obtained by
the Przelaskowski method. The two participating radiologists
also used this alternate program. They reported that the
program did not easily facilitate the determination of the
brain position of the stroke. The comparison results are
shown in the middle column of Tables 2 and 3.
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TABLE 2: Images from successful testing (left-to-right): original image, wavelet-based processing method for improved acute stroke detection,

and increased visual perception brain stroke detection system.

Original image

Wavelet-based processing methods for
improving acute stroke detection [22]

Our proposed method

Table 2 shows brain imaging test results from four dif-
ferent stroke patients. In the left column is original image,
in the middle is the image result from using wavelet-based
processing methods for improved acute stroke detection, and
in the right column are the image results using our proposed
method. These results show that the use of edge detection
and region growing for segmentation and colored marking
enables the clear identification of the stroke area.

Table 3 shows the detection examples where our proposed
system failed. After careful observation and statistical analy-
sis, we found two reasons for these failures. The first was due
to brain structure and the other had an old stoke area on one
side of the brain, causing lower brightness values unrelated to
the new stroke.

The locations of stroke can be clearly seen in MRI images,
as shown in Figure 11. To validate the accuracy of our pro-
posed method, two radiologists tested our proposed method
in two experiments: Test 1 (Figure 9) and Test 2 (Figure 10).
The results show whether the radiologists changed their
opinions after seeing the image results from our proposed
system. The radiologists also stated their belief that the

number of divided regions in the brain CT image would affect
their assessments. As a result, we assigned two different total
numbers of regions. In one image, the brain is divided into
our proposed eight regions. The other image is divided into
four regions, at the suggestion of the radiologists. As reported
by the radiologists, brain strokes typically cross two regions.
Hence, we integrated the eight regions in Figure 9 into four
regions. Table 4 shows the results, in which there were two
success rates between Tests 1 and 2 and one changed rate
between Tests 1 and 2. We calculated the first success rate
by dividing the number of images, in which the brain stroke
area from the original image was correctly identified by the
number of all the images. At this point, the two radiologists
had not referenced the image result from our proposed
system, and the success rate of radiologists 1 and 2 were 47%
and 51% in images with four brain regions, respectively. The
success rates of radiologists 1 and 2 were 33% and 40% in
the images with eight brain regions, respectively. Next, we
calculated the second success rate by dividing the number
of images, in which the brain stroke area was correctly
identified after seeing the image result from our proposed
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TABLE 3: Images in failed testing (left-to-right): original image, wavelet-based processing methods for improved acute stroke detection, and

increased visual perception brain stroke detection system.

Original image

Wavelet-based processing methods for
improving acute stroke detection [22]

Our proposed method

TaBLE 4: Effectiveness of acute ischemic stroke detection in images
with four brain areas.

Radiologist 1 Radiologist 2
Four Eight Four Eight
regions  regions regions  regions
Successful rate of Test 1 47% 33% 51% 40%
Successful rate of Test2 ~ 65% 60% 71% 64%

system, by the number of all the images. The success rates of
radiologists 1 and 2 were 65% and 71% for images with four
brain regions, respectively. The success rates of radiologists
1 and 2 were 60% and 64% for images with eight brain
regions, respectively. Finally, the change rate is the percentage
of different identification results between assessments based
on seeing the original image only, and those made after
also seeing the image results from our proposed system. The
change rates of radiologists 1 and 2 were 57% and 63% for

images with four brain regions, respectively. The change rates
of radiologists 1and 2 were 55% and 60% for images with eight
brain regions, respectively.

The successful recognition rates of our proposed system
for images having four and eight brain regions were 90% and
83%, respectively. From Table 4 results, we can observe three
phenomena. Firstly, radiologists confirm that it is not easy to
identify stroke areas in the brain from the original images.
Secondly, the ratio of a radiologist successfully determining
stroke areas increased. Finally, we see from the results that our
proposed system effectively enhances the radiologists’ ability
to determine areas of stroke.

In medical diagnostic procedures, experimental accu-
racy must be rigorously evaluated prior to its acceptance.
Therefore, in addition to the above results, we performed
the following four statistical evaluations commonly applied
in medical imaging. These include the TPN (true positive
number), the TNN (true negative number), the FNN (false
negative number), and the FPN (false positive number). We
also used five performance factors to compare and validate
the results generated by our two radiologists. These include



International Journal of Biomedical Imaging 11
TABLE 5: Evaluation results of our proposed system in DR, FAR, and CR.

TPN FPN TNN FNN DR FAR CR Specificity Precision

51 6 26 7 87.93% 18.75% 85.55% 81.25% 89.47%

TaBLE 6: CE error detection results of our proposed system.

LCE GCE
0.1011 0.1509

OCE
0.8678

Procedure rate

specificity, precision, detection rate (DR), false alarm rate
(FAR), and the correction classification rate (CR), calculated
using (5), where DR is sensitivity/recall and CR is accuracy

r TNN
Specificity = ————,
TNN + FPN
. TPN
Precision = —,
TPN + FPN
TPN
DR= ———, (5)
TPN + FNN
FAR= PN
TNN + FNN
CR TPN + TNN
~ TPN + FNN + TNN + FPN’

From the results shown in Table 5, we understand that our
proposed system rates higher than 81% in DR, CR, specificity,
and precision. However, the FAR value is too high.

Finally, we used the OCE to determine the evaluation
error for the segmentation algorithm resolution at the object
level. This method is superior for determining previous errors
and can correctly identify whether there are an excessive
number or too few split cases. It is also more sensitive than
other methods in splitting the difference between results. The
OCE results are less refined than natural scenes in which there
is a high level of difficulty in increased task recognition. The
results, shown in Table 6, show the global consistency error
(GCE) and the local consistency error (OCE) [28].

Our proposed system, as presented in this paper, was
developed and tested using MATLAB on Windows 8 com-
puter with an Intel core i5-4200H 2.8 GHz processor and
8 GB of RAM and a method processing time of 1s.

4. Conclusions

Ischemic stroke is the partial blockage of blood vessels in the
brain that subsequently leads to brain tissue damage and can
cause further brain damage,necrosis, and even death. This
paper proposes an ischemic stroke detection system using
a computer-aided diagnostic ability based on an unsuper-
vised feature perception enhancement methodfor detecting
ischemic stroke areas in brain CT images. This method may
help radiologists to effectively diagnose stroke areas in a
short time, while also reducing error rates. In addition, our
proposed computer-aided diagnosis system was tested by two
radiologists. The system mainly uses an unsupervised region

growing algorithm to segment CT images into important
areas and then uses a coinciding regional location method
to highlight the stroke areas. Based on our experimental
results from testing real CT images, the sensitivity of stroke
diagnosis by radiologists increased to 83% from 31% when
using conventional detection images.
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