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Abstract

Gas Chromatography coupled with Mass Spectrometry (GC-MS) has been broadly used for the 

detection of changes in metabolite levels in complex samples. Internal Standards (IS) spiked into a 

complex background at different concentrations help assess the capability of GC-MS in detecting 

changes in metabolite levels. This study uses a Latin square design to evaluate the ability of GC-

MS in full scan and Single Ion Monitoring (SIM) modes to detect changes among IS spiked into 

human plasma samples at varying concentrations. Statistical analysis of the data demonstrates the 

potential of GC-MS to detect true differences over a wide range of concentration levels.
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Introduction

Metabolomics studies small molecules (molecular weight < 1800 Da) that define the 

metabolic status of a biological system. This technique provides a simultaneous assessment 

of numerous metabolites that can help the characterization of phenotypic profiles and also 

the quantification of individual metabolites. Untargeted and targeted metabolomic methods 

are used to evaluate the changes in levels of metabolites between biologically distinct 

groups. In untargeted metabolomics, spectral features representing known and unknown 

metabolites are processed chemo metrically to select metabolites with significant differences 

between the biological groups. In targeted metabolomics, compounds are first identified 

prior to quantification for difference detection. Mass spectrometry (MS) has been 

extensively used for both untargeted and targeted metabolomic studies because of its 
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accuracy, sensitivity, and coverage [1–3]. Chromatography is often coupled to mass 

spectrometry to achieve better separation of multiple compounds present in a complex 

matrix before their ionization. Both gas chromatography (GC) and liquid chromatography 

(LC) have been used in metabolomics studies to increase the metabolome coverage. In Gas 

Chromatography coupled to Mass Spectrometry (GC-MS), after separation by 

chromatography of vaporized compounds, a mass spectrometer is used to identify and 

quantify small molecule metabolites. GC-MS has been widely used in forensic science, 

environmental analysis, drug detection and to perform analysis specifically for the detection 

and identification of substances. Most recently, with the emerging metabolomics discipline 

in biofluid analysis, GC-MS is being used along with other analytical platforms (LC-MS and 

NMR) to achieve higher metabolome coverage by overcoming the challenge of separating 

and identifying metabolites with different polarity characteristics. One of the motivations for 

conducting metabolomic studies is the potential to diagnose disease status based on 

metabolites present in non-invasive bio specimens such as blood or urine. There is a growing 

need to identify biomarkers as measureable indicators, most importantly when trying to 

predict early stages of the disease in asymptomatic subjects [4–6]. An advantage of GC-MS 

over LC-MS for metabolomics analysis is the availability of commercial spectral libraries 

and structure databases that can be used for metabolite identification.

The reliability and utility of comparative metabolite profiling studies is critically dependent 

on an accurate and rigorous assessment of the quantitative changes [7]. An internal standard 

is a compound added to sample at a known concentration. It is typically similar, but not 

identical to the chemical species of interest in the sample, so that it can be identified during 

the analysis of the mass spectral data consisting of signals corresponding to the standards as 

well as those from the sample. We refer to adding known quantities of analyte (s) of interest 

(e.g., internal standards) into a sample as “spike-in”. The use of well distinguishable internal 

standards, spiked into a complex background, at different concentration levels allows us to 

assess the ability of GC-MS to accurately detect true changes in metabolite levels.

In a previous study [8], we conducted a spike-in experiment to evaluate computational 

methods to detect changes in protein expression levels measured by Liquid Chromatography 

combined with Mass Spectrometry (LC-MS). Two proteomic datasets were generated with 

presence or absence of internal standards spiked in human serum samples. Various software 

tools were evaluated in their ability to identify the true differences between the two datasets.

In this study, we used five isotopically labeled internal standards to create five mixtures to be 

spiked into the complex sample background of human plasma. Each mixture contained the 

five internal standards at varying concentrations following a 5-by-5 Latin square array 

[9,10]. Prior to metabolite extraction, the five mixtures of IS were spiked into five aliquots of 

plasma samples derived from five healthy individuals. The samples were then analyzed 

using three GC-MS platforms, (i) An Agilent GC coupled to a LECO TOF mass 

spectrometer (GC-TOF-MS); (ii) An Agilent GC coupled with an Agilent single quadrupole 

mass spectrometer (GC-qMS) operated at full scan; and (iii) The GC-qMS operated in 

Single Ion Monitoring Mode (GC-SIM-MS). When generating data in full scan mode, a 

wide range of masses was acquired (scan range m/z 50–600). In SIM mode, instead, the 

mass spectrometer was set to monitor specific ion fragments gaining higher sensitivity due 
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to the ability of the mass spectrometer to dwell for a longer time. The data acquired from 

these platforms were used to detect known differences among internal standards spiked into 

the background at varying concentrations. A set of plasma endogenous metabolites was also 

monitored for quality assessment.

The results of this study demonstrate the capability of GC-MS, operating both in full scan 

and SIM modes, to detect internal standards spiked into plasma samples. By assessing the 

quantitative changes among five different mixtures of IS and their reproducibility among five 

healthy control subjects, it is shown that GC-MS can detect changes in the levels of 

isotopically labeled internal standards spiked-in human plasma samples at varying 

concentrations.

Methods

Materials

Deuterium labeled internal standards were purchased from CDN isotopes (Pointe-Claire, 

QC, Canada). These include L-phenyl-d5-alanine-2,3,3,-d3 (D-1241), L-glutamic-2,3,3,4,4-

d5 acid (D-899), L-alanine-2,3,3,3-d4 (D-1488). Glycine–d5 (175833), myristic acid–d27 

(366889), the fatty acid methyl ester standards, C8 (260673), C9 (245895), C10 (299030), 

C12 (234591), C14 (P5177), C16 (P5177), C18 (S5376), C20 (10941), C22 (11940), C24 

(87115), C26 (H6389), C28 (74701), methoxyamine hydrochloride (226904) and pyridine 

(360570) were purchased from Sigma Aldrich (St. Louis, MO, USA). C30 (T0812) was 

purchased from TCI chemicals (Portland, OR USA-T0812). MSTFA (TS-48910) was 

purchased from Thermo Scientific (Waltham, MA, USA). HPLC grade 2-propanol, 

acetonitrile and water were used for metabolites extraction. Helium was purchased from 

Robert Oxygen (Rockville, MD, USA).

Sample collection

Blood samples were obtained from five healthy individuals recruited at Georgetown 

University who provided informed consent to the study as approved by the University 

Institutional Review Board. Through peripheral venipuncture, blood was drawn into 10 mL 

BD Vacutainer sterile vacuum tubes in the presence of EDTA anticoagulant. The blood was 

immediately centrifuged at 1000 g for 10 min at room temperature. The plasma supernatant 

was carefully collected and centrifuged at 2500 g for 10 min at room temperature. After 

aliquoting, plasma was kept frozen at −80°C until use.

Experimental design and sample preparation

Figure 1 illustrates the experimental design of the spike-in study. Each spike-in mixture 

(Mix1–Mix5) contained five internal standards (Glycine–d5 (Gly), Glutamic acid-2,3,3,4,4-

d5 (Glu), Alanine-2,3,3,3-d4 (Ala), Phenylalanine-phenyl-d5–2,3,3,-d3 (Phe), and Myristic 

acid d27 (Myr) at varying concentration levels was dissolved in 1 mL of working solution 

composed of acetonitrile, isopropanol, and water (3:3:2). To evaluate the effect of the matrix, 

we looked into the Total Ion Chromatogram (TIC) for one of the plasma runs of the spike-in 

experiment (Figure 2). As shown in the figure, the peaks that correspond to the peak 

intensities of the internal standards are smaller than most of the high intensity peaks 
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corresponding to the plasma metabolites. For each IS, we specified a concentration level 

(C0) on the basis of ion intensity measurements detected by GC-MS with S/N ≥ 10 for 13 

different concentration levels of each IS ranging from 0.0049 to 20 μM. As shown in Figure 

3, unlike the other four IS, the intensities of Gly did not follow the concentration trend at the 

low concentration levels. Based on this, we selected the spike-in concentration for Gly from 

the high concentration range. The final spike-in concentration levels for the five IS used in 

the spike-in experiment ranged from 0.6–32.8 μM.

To evaluate the ability to detect changes in metabolite levels over a range of concentrations, 

we generated GC-MS data from different mixtures following a Latin square array design 

[10] as illustrated in Table 1. C0 was selected for each IS based on the initial experiment, 

and C1 to C5 were determined by multiplying C0 by 0.5, 0.67, 1, 1.5, and 2 fold, 

respectively. We spiked-in five mixtures of isotopically labeled standards to human plasma 

collected from five healthy volunteers. Plasma metabolites were extracted after adding each 

mixture to 30 μL of plasma. After vortexing, samples were centrifuged at 14,500 g for 15 

minutes at room temperature. The supernatant was then divided into two, 460 μL each, for 

analysis by GC-TOF-MS and GC-qMS systems. Each supernatant was then concentrated to 

dryness in speedvac. The dried samples were kept at −20°C until derivatization prior to 

analysis by GC-MS. Our sample preparation method including derivatization can be found 

in reference [11]. Samples were acquired by GC-TOFMS, GC-qMS, and GC-SIM-MS. For 

quality assessment, we included the following three approaches in the experimental design: 

(i) A Retention Index (RI) standard mixture at the beginning and at the end of the GC-MS 

data acquisition. The standard was prepared by mixing a series of Fatty Acid Methyl Esters 

(FAMEs). Specifically, FAMEs, including C8, C9, C10, C12, C14, C16, C18, C20, C22, 

C24, C26, C28 and C30 linear chain length were dissolved in chloroform at a concentrations 

of 0.8 mg/mL (C8–C16) and 0.4 mg/ml (C18–C30). 100 μL of each FAME standard was 

mixed together and 1.2 mL of chloroform was added for a final volume of 2.5 mL (FAME1). 

A ratio of 1:19 FAME1/Hexane was mixed prior to analysis by GC-MS. (ii) Blank samples 

were prepared by adding the derivatization agent to an empty tube and following the same 

steps as the other spike-in samples. (iii) A pooled QC sample, obtained by taking an equal 

volume from each prepared sample, was run multiple times at the beginning of the queue for 

column conditioning.

GC-MS data acquisition and preprocessing

The metabolites extracted from the plasma samples spiked with IS were analyzed by GC-

TOFMS, GC-qMS in full scan mode, and GC-qMS in SIM mode. The three datasets 

acquired by these platforms are denoted in this paper as GC-TOF-MS, GC-qMS, and GC-

SIM-MS, respectively. A detailed description of our GC and MS methods for both platforms 

can be found in [11]. The data generated by GC-TOFMS and GC-qMS were converted to the 

standard netCDF format. ChromaT of was used to preprocess the data generated using GC-

TOF-MS. Metabolite Detector [12] and SIMAT [13] was used to preprocess GC-qMS and 

GC-SIM-MS. The data acquired by GC-TOF-MS and GC-qMS were preprocessed by 

utilizing Retention Indices (RI). In Metabolite Detector, RI values are calculated for every 

detected analyte based on RI and RT values of FAMEs mixture run at the beginning of the 

analysis. These values are used to correct the alignment of metabolites across multiple run. 
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ChromaT of allows the calculation of analytes’ RI though a calibration curve. These values 

were used for narrowing the library search results, thereby reducing the number of false 

putative identifications. Putative identifications were determined based on spectral matching 

using the Fiehn library.

For GC-SIM-MS, the RTs of a subset of the targets with very high similarity scores were 

detected and compared against those in the Fiehn library to estimate the difference between 

expected and observed elution times. Following that, we used SIMAT [13] to read the CDF 

files and extract the EIC guided by the estimated RT from the previous step. The algorithm 

uses an RT window centered at the expected elution time of the analyte of interest and 

searches the neighborhood area for all detected peaks at monitored masses. The quantifier 

fragment is used to perform the search and all qualifiers peaks are found based on the 

location of the quantifier peak. Also, smoothing of the EICs and baseline correction are 

performed before peak detection. Then, the peak width and the Area Under the Curve (AUC) 

of each EIC are calculated. Finally, a similarity score is calculated based on the expected 

SIM spectra from the library to evaluate the goodness of identification. Specifically, a mixed 

measure is used to calculate the similarity score based on weighted dot product and average 

pairwise ratios between fragments. All EICs are checked by visual inspection to avoid 

identification errors.

Latin square design

In combinatorics and in experimental design, a Latin square is an n × n array filled with n 

different symbols, each occurring exactly once in each row and exactly once in each column. 

The Latin square design is typically used for a situation in which there are two extraneous 

sources of variation. It allows for two blocking factors in controlling two sources of 

variability. If the rows and columns of a square correspond to the levels of the two 

extraneous variables, then in a Latin square each treatment appears exactly once in each row 

and column [9]. The data we acquired from both instruments were preprocessed and 

normalized using the intensities measured at defined concentration C0, for each internal 

standard and rearranged to follow the 5 × 5 Latin square experimental design (Table 1), with 

five rows and five columns, where each row represents an internal standard and each column 

is a mixture factor. The resulting 25 cells contain one of the five concentrations and each 

concentration can only occur once in each row and column. Deviations caused by two 

independent factors have been cancelled out of calculation of the effect of interest, leaving 

an evaluation of the principal effect unaffected by the nuisance effects. The model of the 

Latin Square design is assumed additive, that is, no interaction between factors (internal 

standards, mixture) and the treatment (concentrations). However, the degree of freedom for 

error is often too small because of the small size of the square. Thus, we considered 

replicating the Latin Square five times with five biological replicates for a total of 125 

observations. The internal standards and mixtures are kept the same and the same 

experimental method is used in each replication.

Statistical analysis

We consider the internal standards, mixture and concentration as fixed effects while the 

subject replicates are viewed as random effect. Estimation of the main effects and the 
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variance terms from the replicated Latin Square design can be done using a mixed effects 

Analysis of Variance (ANOVA) model. The statistical programming software R was used to 

fit the model:

Yhijk = μ + ηη + θi + φk + ρj + εhijk, h, i, j = 1, …5; k = C1, C2, C3, C4, C5
ρj N 0, τ2 εhijk N 0, σ2

where μ is the overall mean, ƞ is the row block effect, Ɵ is the column effect, φ is the 

treatment effect and ρ is the random replicate effect from a population with mean zero and 

variance τ2.

Results and Discussion

To understand the behavior of the IS among the 5 mixtures and 5 biological replicates, we 

extracted the main effects and the relevant variance from the replicated latin square design 

by applying the mixed effect Analysis of Variance (ANOVA) model. Table 2 shows the p-

values obtained from the ANOVA model for the data generated by GC-TOF-MS, GC-qMS, 

and GC-SIM-MS. As illustrated in the table, significant differences were observed among 

the five concentrations adjusting for the effects of mixtures and IS. For each IS, we were 

able to measure the change in concentration spiked into the mixtures. This change in levels 

is also exemplified using heatmaps for all three datasets and the design matrix (Figure 4). 

Figure 5 depicts the fold changes measured at 5 Concentrations (C1–C5) for each internal 

standard across all subjects. As can be gathered from the figure, for each internal standard 

we were able to measure the change in concentration spiked into the mixtures. In addition, 

we performed a t-test between the peak intensities at different concentrations for each IS. 

Using the data acquired by GC-TOF-MS, we observed statically significant changes in 

concentration levels for all the internal standards. The data acquired by GC-SIM-MS also 

detected the changes in concentration levels, but they were for the most part marginally 

significant. Through the data acquired by GC-qMS, we were able to detect significant 

changes for Myr and Gly at all concentrations. However, the change in concentration levels 

for Phe was not significant in the low concentration range (0.5 and 0.67). On the other hand, 

although GC-qMS detected Ala and Glu at each concentration, the changes in concentration 

levels were not statistically significant. The changes in concentration level for Myr were 

statistically significant in data acquired by all three platforms. The main effect of 

concentration is illustrated in Figure 6 using the conditional mean and standard error of 

concentration for each level. As shown in the figure, differences exist among the 

concentration levels when controlling the other effects. Thus, the replicated Latin Square 

design is applicable to test the main effect of varying concentrations in this experiment.

Although we did not anticipate any changes in the intensity of the endogenous metabolites 

since the only compounds varying in concentrations were the spiked-in internal standards, 

we evaluated the behavior of plasma metabolites in the data acquired by GC-TOF-MS and 

GC-qMS by calculating their Coefficients of Variation (CVs) across runs within the same 

subject and across the five subjects. As expected, we observed smaller CVs, ranging 

between 1–3% compared to the CVs calculated for the IS (Table 3). A high degree of 
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linearity is also observed for signal intensity versus concentration of the endogenous 

metabolites. This linearity in signal response, together with a high degree of reproducibility 

reflected in low median and mean CVs demonstrates the potential of GC-MS instruments to 

detect changes in metabolite levels.

Conclusion

In our study, we demonstrated the ability of three platforms/instrument methods (GC-TOF-

MS, GC-qMS, and GC-SIM-MS) to capture significant changes in the levels of internal 

standards spiked in human plasma over a pre-defined range of concentrations. The changes 

in concentration levels measured by the GC-TOF-MS are more consistent and statistically 

significant for all the internal standards, compared to those measured by the GC-qMS and 

GC-SIM-MS. The use of Latin square design for situations where there is more than one 

source of variation provided greater power to evaluate the differences in the spiked-in 

concentrations. It also allowed us to conduct the spike-in experiment with small number of 

runs. This spike-in experiment demonstrates the potential application of GC-MS instruments 

in detecting differences in metabolite levels over specified concentration levels. Future work 

will focus on determining dynamic range, particularly, the ability to detect metabolites with 

lower concentrations.
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Abbreviations:

AUC Area Under the Curve

EIC Extracted Ion Chromatogram

TIC Total Ion Chromatogram

TMS Trimethylsilyl

GC-MS Gas Chromatography Coupled with Mass Spectrometry

GC-qMS Gas Chromatography Coupled with Single Quadrupole Mass 

Spectrometer

GC-TOFMS Gas Chromatography Coupled with Time of Flight Mass 

Spectrometer

SIM Selected Ion Monitoring

RI Retention Index

IS Internal Standard

NMR Nuclear Magnetic Resonance Spectroscopy
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Figure 1: 
Overview of the spike-in experiment.
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Figure 2: 
Total Ion Chromatogram (TIC) for one of the plasma runs of the spike-in experiment.
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Figure 3: 
Ion intensity measurements of five IS at 13 concentrations.
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Figure 4: 
Heatmaps of the normalized intensities for the five IS acquired across all samples and 

mixtures using (A) GC-TOF-MS, (B) GC-qMS, (C) GC-SIM-MS, and (D) the actual 

concentrations/design.
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Figure 5: 
Fold-change measured at 5 concentrations (C1–C5) for each internal standard for data 

acquired using (A) GC-TOF-MS, (B) GC-qMS, and (C) GC-SIM-MS.
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Figure 6: 
Conditional means of concentration for each level with standard error in five replicates for 

(A) GC-TOF-MS, (B) GC-qMS, and (C) GC-SIM-MS.
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Table 1:

Latin square design.

Spiked-ln IS Concentration (μMol)

IS C1=0.5C0 C2=0.67C0 C3=1C0 C4=1.5C0 C5=2C0

Gly 3.9 5.2 7.8 11.7 15.61 Mix 1

Ala 6.71 8.95 13.42 20.14 26.85 Mix 2

Glu 8.22 10.95 16.43 24.65 32.86 Mix 3

Phe 0.9 1.2 1.8 2.71 3.61 Mix 4

Myr 0.61 0.82 1.22 1.83 2.45 Mix 5
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Table 2:

P-values of mixed effects ANOVA models for data acquired by GC-TOF-MS, GC-qMS, and GC-SIM-MS in 

Latin-square design.

GC Instrument & Mode IS Mixtures Concentration

GC-qMS (SIM) 0.1683 0.4459 <0.001

GC-TOFMS (Full scan) 0.0937 0.015 <0.001

GC-qMS (Full scan) 0.9478 0.5907 <0.001
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Table 3:

Coefficient of variation among the endogenous metabolites monitored when compared to the IS.

GC-TOF-MS GC-qMS GC-SIM-MS

L-valine* 0.01 - 0.06

L-proline 0.03 0.03 0.04

L-glutamic acid 0.02 0.06 0.02

citric acid 0.02 0.02 0.02

alpha tocophereol*- - 0.02

IS (mean) 0.04 0.05 0.06

*
Endogenous metabolite missing in one or more dataset.
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