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Abstract

The development of efficient text-mining tools promises to boost the curation workflow

by significantly reducing the time needed to process the literature into biological

databases. We have developed a curation support tool, neXtA5, that provides a search

engine coupled with an annotation system directly integrated into a biocuration work-

flow. neXtA5 assists curation with modules optimized for the thevarious curation tasks:

document triage, entity recognition and information extraction.

Here, we describe the evaluation of neXtA5 by expert curators. We first assessed the

annotations of two independent curators to provide a baseline for comparison. To

evaluate the performance of neXtA5, we submitted requests and compared the neXtA5

results with the manual curation. The analysis focuses on the usability of neXtA5 to

support the curation of two types of data: biological processes (BPs) and diseases (Ds).

We evaluated the relevance of the papers proposed as well as the recall and precision of

the suggested annotations.

The evaluation of document triage by neXtA5 precision showed that both curators agree

with neXtA5 for 67 (BP) and 63% (D) of abstracts, while curators agree on accepting

or rejecting an abstract ∼80% of the time. Hence, the precision of the triage system is

satisfactory.
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For concept extraction, curators approved 35 (BP) and 25% (D) of the neXtA5 anno-

tations. Conversely, neXtA5 successfully annotated up to 36 (BP) and 68% (D) of the

terms identified by curators. The user feedback obtained in these tests highlighted the

need for improvement in the ranking function of neXtA5 annotations. Therefore, we

transformed the information extraction component into an annotation ranking system.

This improvement results in a top precision (precision at first rank) of 59 (D) and 63% (BP).

These results suggest that when considering only the first extracted entity, the current

system achieves a precision comparable with expert biocurators.

Database URL: http://candy.hesge.ch/nextA5; https://nextprot.org

Introduction

Biomedical databases support many aspects of biological
research, from getting basic information about a gene or a
protein, to complex applications for data analysis. The use-
fulness of these databases critically depends on the amount
of information, its correct interpretation and the regular
updating of the content. For the vast majority of databases,
these curatorial tasks are done manually by curators with
expertise in the specific domain of interest of the database.
To give an appreciation of the scope of the task, the volume
of biomedical literature in PubMed, a free literature search
service developed and maintained by the National Center
for Biotechnology Information, currently containing 28
million citations, has increased at a sustained growth rate
of ∼4% over the past 20 years (1).

It has been stated repeatedly that manual curation is
inadequate to keep up with the volume of information pub-
lished (for example in (2)). Meanwhile, no fully automated
tools have been successfully implemented in the annota-
tion workflow of major databases. The essential features
required for a complete or at least partial replacement
of manual curation include accurate prioritization of the
literature to serve database-specific curation tasks, correct
detection of bioentities (named-entity recognition) as well
as recall and precision rates approaching manual curation.
Moreover, since best practices in curated databases require
the assignment of unique identifiers to entities derived
from biomedical ontologies, automated tools should be
able to convert natural language into these controlled lan-
guages. Tools able to perform those tasks can be used
to perform literature triage, bioentity identification and
normalization, relationship extraction [typically between
a gene product and a disease (D) or a biological process
(BP), for instance] and association of supporting evidence
qualifiers (3). These tools would facilitate and accelerate the
curation process, hence improving its cost-effectiveness and
throughput.

The ideal tool for retrieving biomedical information
would display a user-friendly interface, provide a powerful

search tool from databases containing up-to-date biomedi-
cal data, allow a search within specific sections of articles,
highlight terms of interest, display results that could be
filtered and ranked, create annotations and respond fast
following the request. Existing text-mining tools exhibit
some of these features but none have all the required func-
tionality, as we show in our analysis of currently available
text-mining-supported curation tools (Table 1). We assessed
Textpresso Central (4), PubMed (5), NextBio, PolySearch
(6), GoPubMed (7) and PubTator (8) and evaluated all
parameter listed in Table 1. We also looked at the workflow
of other text-mining tools, such as Argo (9–12), Egas (13),
EXTRACT (14), MetastasisWay (15), Ontogene (16) and
RegulonDB (17), but because they are dedicated to specific
biomedical fields (and not appropriate for our use cases),
we didn’t include them in our comparative study. The func-
tionalities important to the curation workflow must be close
in quality to that of manual annotation. However, direct
comparison is not always possible as automatic systems
exhibit characteristics that do not align one-to-one with
curation tasks as performed by humans. More importantly,
the digitalization of curation workflows may require to
challenge existing end-users’ practices and well-established
workflows (18); data stewardship and capture need revision
in order to also keep track of materials rejected by biocura-
tors (wrong annotations, irrelevant articles etc.). Neverthe-
less, for the annotations proposed by the system, a precision
of 60–70% seems a minimal—yet demanding—target to
meet the curators’ expectations. Similar quantitative targets
also apply to triage tasks. Considering that a 100% manual
triage is not achievable, any improvement over existing
tools is welcome. Indeed, triage tasks are a bottleneck and
cannot be performed without using general-purpose search
engines such as PubMed or Europe PubMedCentral (PMC).

neXtProt (19) is a knowledgebase focused on human
proteins, which complements UniProtKB (20) by extending
the content and tools, supporting use cases specifically rele-
vant to human proteins. neXtProt manually annotates var-
ious aspects of protein function, variants and phenotypes

http://candy.hesge.ch/nextA5
https://nextprot.org
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Table 1. Comparison of some existing text-mining tools

The performance of the main parameters important for the curation workflow is indicated by the degree of shading: white means feature not available; light grey, medium performance; and
dark gray, very good performance.

(19, 21). To do this, we have developed a curation tool, the
BioEditor, that allows curators to capture biomedical data.
Annotations are structured in triplets, in accordance with
the neXtProt BioEditor annotation data model. The triplets
are composed of a subject (the protein being annotated);
an object describing a gene ontology (GO) term, a D, an
interaction partner etc.; and a relation describing how the
subject and the object are related.

We have developed an automatic article-processing tool
that addresses our specific curation needs, neXtA5 (22, 23).
neXtA5 provides a search engine coupled with an annota-
tion system, directly integrated into the workflow of cura-
tors. Thus, neXtA5 assists curation with specific modules
optimized for the various curation tasks: document triage,
entity annotation and relationship extraction. The tool
performs literature retrieval and prioritization and creates
annotations. The curator queries the system by entering a
human gene name and an axis of interest. For the purposes
of this study, two axes were evaluated: GO BP as well as Ds.
The system returns a ranked list of abstracts and concepts
for the relevant axis for each of the papers. The curator can
select the relevant articles/gene/concept combination and
validate/refine/reject annotations proposed by the system.

In previous work, we have optimized the ranking algo-
rithm of neXtA5 for the triage task. The tool exhibits sig-
nificant improvements of 191–261% compared to PubMed
(22, 23). The present article describes the testing and evalua-
tion of neXtA5 by expert curators. To evaluate the accuracy
and performance of neXtA5, we submitted specific requests
and then compared the results obtained from manual cura-
tion to the results given by the neXtA5 application. The
analysis is focused on the usability of neXtA5 on two types
of annotations: BPs and Ds, respectively defined as GO
concepts (24, 25) and National Cancer Institute thesaurus
(https://ncit.nci.nih.gov/). We have evaluated the relevance

of the papers proposed as well as the recall and precision of
the concepts extracted.

Methods and results

neXtA5 software infrastructure

The neXtA5 system was developed with Java/JavaScript
technologies to improve the scientific literature curation
process as it is currently performed with neXtProt.

Publication retrieval and concept extraction. SIB Text Mining
houses the complete MEDLINE collection locally, updated
on a weekly basis, in an information system named BioMed,
that pre-indexes the collection using the Terrier and
ElasticSearch platforms (26, 23) according to vocabularies
relevant to the axes of interest. Again, here we focused on
GO BP and Ds. BioMed services support the maintaining
of several premier molecular biology databases, including
Europe PMC’s SciLite or UniProt’s UPCLASS (27–29).
Indexed papers are analyzed and concepts from the
ontology of interest are extracted and stored in the BioMed
database, as well as human gene names obtained from the
neXtProt application programming interface (API). Once
the information is stored, BioMed applies a combination
of weighting schemas, which includes a vector space model
representation (30), and the Okapi BM25 scoring function,
which was tuned and tested during Text Retrieval Confer-
ence (TREC) competitions (31). This results in two outputs:
(i) a ranked list of abstracts and (ii) for each abstract, a
ranked list of concepts for the axis of interest. The ranking
function is described in a previous publication (22).

Document prioritization. The list of documents provided by
the search engine is further ranked with a score based on

https://ncit.nci.nih.gov/)


Page 4 of 16 Database, Vol. 2018, Article ID bay129

a linear combination of factors; each of the search axis
was tuned specifically to fit the curation model of neXtProt
curators as detailed in (22, 23). This final score is calculated
on the basis of the search engine score, combined with
the range of concepts found in the paper and the term
frequency–inverse document frequency (TF–IDF).

User interface. We have implemented a web-based curation
interface that connects the BioEditor curation database
with a set of APIs. The first screen is dedicated to the user
input, with customized intake fields to refine the original
query. The second panel displays the result of the triage
function, with the final score granted to each document.
Finally, in a third screen, a list of automatically generated
annotations is proposed for each document. Each entry can
be accepted as it stands, rejected or modified as needed.
At the end, the curator can submit the annotation to the

BioEditor. The work can also be saved at any time and
completed subsequently. Indeed, the graphical user interface
(GUI) is also linked to a historical database that keeps track
of the curation process and results, which can also serve to
set out a relevance feedback. This history enables the system
to remember every processed publication and remove them
from upcoming searches (using the same query).

neXtA5 user interface

The workflow of the neXtA5 curation-support tool is
shown in Figure 1.

The neXtA5 user interface is designed to assist specific
biocuration tasks (Figure 2). The user performs a query,
which is a gene name and an annotation axis. Additional
features include the ability for users to exclude specific
references that will not be retrieved by the system (e.g. pub-

Figure 1. Activity diagram of the literature curation process using neXtA5.
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Figure 2. neXtA5 user interface for query page.

lications that were previously processed or publications of
low interest). Users can also provide keywords that must be
‘excluded’, for instance because they result in too many false
positives, or ‘added’, in which case they will receive more
weight during the ranking step, for the ranking. Finally,
advanced options allow the user to restrict the search based
on a range of publication dates, the maximum number of
publications to retrieve.

The output of the query is a list of publications, ranked
according to the relevance score developed in (22–23). The
list displays relevant information about the publication,
including the PMID, the title, the year of publication, the
relevance score and the annotation status. Different anno-
tation statuses are possible: ‘not done’, ‘partial’ (when some
but not all the annotations proposed by the system have
been reviewed by the curator) or ‘completed’ (when every
automatic annotation has been manually reviewed).

From this ranked list, the curator can select a paper
to curate that opens another page in the user interface
displaying the list of potential annotations identified by
neXtA5. The potential annotations are presented in table
form, showing the subject (which corresponds to the pro-
tein of interest), the relation, the object (concept) and the
evidence code (Eco). For each annotation, when the user

clicks on the ‘Show’ button (in the ‘Details’ column on the
right), the abstract appears, highlighting the sentence from
which the annotation was derived in blue and underlining
the concept (Figure 3). Here, three operations are possible,
from a pull-down menu in the ‘Action’ column; the curator
can accept, modify or reject the annotations created by
neXtA5. The curator can also change the relation linking
subject and object as well as the Eco (currently these are set
to default values in the interface); however, changes in the
relation or the Eco does not impact the type of action; if the
concept was not changed, then the annotation is considered
as ‘accepted’.

neXtA5 usability study

To evaluate the usability of neXtA5 as a curation support
system, we measured the recall and precision of the annota-
tions proposed by the system as compared to manual cura-
tion. The precision corresponds to the fraction of relevant
instances among the retrieved instances, while recall is the
fraction of relevant instances that have been retrieved over
the total number of relevant instances. Here, ‘instances’ can
correspond to either documents or concepts.
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Figure 3. neXtA5 user interface for curation. From the abstract of an article, neXtA5 extracts relevant concepts and displays a list of potential

annotations. Here, the annotations related to PIM1 for the BPs and extracted from the abstract of (32) are shown.

Four experienced curators from the neXtProt team
reviewed the neXtA5 output. The evaluation focused
on neXtA5 annotation for 12 different proteins: CDK2
(NX P24941), CSK (NX P41240), FYN (NX P06241),
IRAK4 (NX Q9NWZ3), LRRK2 (NX Q5S007), LYN
(NX P07948), PIM1 (NX P11309), RIPK2 (NX O43353),
SGK1 (NX O00141), STK11 (NX Q15831), SYK
(NX P43405) and ZAP70 (NX P43403). The proteins
were selected on the basis of having sufficient literature to
allow proper evaluation of the system, i.e. >100 papers in
a PubMed search, while avoiding the gene normalization
problem, i.e. the gene name is not used as a synonym for
another gene or as an acronym for a term used elsewhere
in the literature. Example of proteins we avoided includes
BTK (used in orthopedic papers as an acronym for ‘below
the knee’) and ABL1 (used for ABL1 and ABL2 in older
literature). The latter could have been controlled using the
date range, while the former can be handled by excluding
the word ‘knee’. Having a certain number of different
targets ensure that we cover a wide range of biological
research areas, to increase the number of distinct concepts
reported in the literature. This was aimed to control for
biases, for example in the concept extraction step (as certain
concepts have labels that are more difficult to extract by
automated tools) and in the gene name extraction step
(certain genes may have an abnormally high rate of false
positives or false negatives, for example if a synonym is
shared with another gene name or a concept or if the main
gene name is not widely used in the literature).

Moreover, we ensured that each abstract was reviewed
by two different curators, so as to have a measure of
confidence of the evaluation of the annotations proposed
by the automatic system, the rational being that when two

curators do not agree, an error by neXtA5 should be less
penalized.

Setting the baseline: inter-curator agreement

Since curation is a subjective process to some extent, before
comparing neXtA5’s performance as evaluated by curators,
we determined the agreement between different curators for
the tasks we evaluated for neXtA5.

Strategy for assessing agreement with respect to concept extraction.

Since the BP branch of the GO has nearly 30 000 classes,
the selection of 2 different terms by 2 curators does not
automatically imply a disagreement. The evaluation must
take into account how related two terms are to decide
whether two curators (or a curator and the automatic
system) recognized a similar concept or not. To do this, we
manually reviewed all annotated concepts (both by curators

Table 2. Semantic classification of concepts annotated by the

curators or proposed by neXtA5

Semantic
classification

GO terms

1 Reactive oxygen species biosynthetic process
Reactive oxygen species metabolic process
ROS generation

2 S phase
DNA replication
Regulation of cell cycle

3 Autophagy
Autophagosome assembly
Autophagosome formation
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Figure 4. Ancestor charts of the GO terms from semantic classification 2, shown in Table 2 [S phase (GO:0051320), DNA replication (GO:0006260)

and regulation of cell cycle (GO:0051726)], using https://www.ebi.ac.uk/QuickGO/.

and by neXtA5) for all abstracts and manually assigned
each concept to a semantic class, numbered from 1 to
n for each abstract. This is illustrated in Table 2. In this
example, curators identified 9 different GO terms, which
we classified into three semantic classes, labeled 1, 2 and 3.
Concepts falling in the same semantic class were considered
equivalent in our evaluation.

Here, we have decided to use a manually semantic
classification approach rather than using the hierarchi-
cal structure in the GO. While the hierarchy of the GO
could be used for this purposes (as in cases 1 and 3 in
Table 2), in other cases GO terms that represent the same
experiment correspond to completely different areas of the
tree, as shown in case 2 Table 2. We have grouped the
three GO terms S phase (GO:0051320), DNA replication
(GO:0006260) and regulation of cell cycle (GO:0051726)
into the same semantic classification group by manual clas-
sification, whereas these concepts belong to three different
branches of the GO, as shown in Figure 4.

(i) Inter-curator agreement test for precision of document retrieval. We
first evaluated the inter-curator agreement with respect to
the relevance of abstracts proposed by neXtA5, the so-called
literature triage task. For this task, we determined the frac-
tion of the first top-ranking 20 papers proposed by neXtA5

that were deemed relevant by both curators (assessed by
whether or not they had identified relevant concepts in the
abstract). The criteria for selecting an abstract as relevant
for annotation were that it had information indicating that
there was data in the full text paper relevant to the axis of
interest. To exclude papers with general statements (rather
than actual data), we specified the following guidelines:
exclude statements from titles and from the introductory
part of the abstract (highlighted in Figure 5); and do not
capture any ‘hypothesis’ type information, such as ‘We
hypothesized that the protein X performs process Y.’ Exam-
ples of such sentences include ‘Since activation of Ras onco-
genes is a common oncogenic event leading to the activation
of multiple effector pathways, we explored if Ras could
induce Fyn expression.’ (33); ‘The fact that IRAK4, another
IRAK family member necessary for the IL-1 pathway, is able
to phosphorylate IRAK in vitro suggests that IRAK4 might
be the IRAK kinase.’ (34); ‘The mechanism of activation for
IRAK4 is currently unknown, and little is known about the
role of IRAK4 kinase in cytokine production, particularly in
different human cell types.’ (35); ‘In this study, we analyzed
the relative PTPN22 and CSK expression in peripheral
blood from 89 RA patients and 43 controls to deter-
mine if the most relevant PTPN22 (rs2488457, rs2476601
and rs33996649) and CSK (rs34933034 and rs1378942)

https://www.ebi.ac.uk/QuickGO/
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Figure 5. neXtA5 user interface for curation. One of the guidelines for the curators to select relevant documents was to not consider statements from

titles and from the introductory part of the abstract. Here, the introduction of the abstract of (37) related to FYN function (BP axis) is highlighted in

yellow.

Table 3. Inter-curator agreement analysis

BPs Ds

Papers accepted by both curators 162 67% 152 63%
Papers rejected by both curators 39 16% 48 17%
Papers rejected by just one curator 41 17% 42 20%
Total papers analyzed 242 242

polymorphisms may influence on PTPN22 and CSK expres-
sion in rheumatoid arthritis (RA).’ (36).

Of the 12 proteins, a total of 242 abstracts were analyzed
for each axis (for 12 targets, we expected to analyze 240
abstracts; however, in some cases abstracts with the same
score were presented in a different order, which led to
the annotation of 2 additional abstracts). As shown in
Table 3, in 83% of cases for BP and in 80% of cases for
D, both curators made the same decision with respect to
the relevance of an abstract for the axis of interest.

(ii) Inter-curator agreement test for precision of concept retrieval. The
precision of concept retrieval corresponds to the number of
relevant terms extracted in each document. We assessed this
by determining the rate at which both curators extracted
the same concepts from an abstract. Again, specific cura-
tion guidelines were given: when similar descriptors are
proposed, use the most accurate one, i.e. choose preferen-
tially the child term than the parent term (for example,

reject the annotation suggesting ‘Neoplasm’ when ‘Ovar-
ian carcinoma’ is also mentioned in another annotation);
annotations describing techniques (such as ‘immunohisto-
chemistry’) are acceptable as indication of experimental
data in the full text paper; and annotations describing
negative evidence are included as relevant for annotation.
If a concept was modified from the original concept, it had
to be within the same branch of the ontology.

For this task, 45 abstracts of the BP axis and 51 abstracts
of the D axis were annotated by two curators with BP and D
terms, respectively (while the expected number of annotated
papers for this task is 48, the actual number varies because
the papers chosen by different curators for annotation may
differ). This corresponds to a minimum of four abstracts by
curator and by protein, with a few additional abstracts to
ensure that at least two curators reviewed each abstract (the
additional abstracts correspond to cases where curators
made different decisions with respect to the relevance of
an abstract for an axis). For the 45 abstracts annotated
for the BP axis by both curators, at least 1 common term
was found in 42 abstracts (93% of abstracts, Figure 6A).
The overall average inter-curator agreement rate with
respect to concepts, i.e. the average proportion of concepts
annotated by both curators relative to all concepts found
by either curator, was of 60%. For the D axis, out of the 51
abstracts annotated by both curators, the 2 curators found
at least 1 common term in 48 abstracts (94% of abstracts;
Figure 6B). The overall average inter-curator agreement
rate with respect to concepts was of 87%.
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Figure 6. Inter-curator agreement with respect to concepts in BP (A) and D (B) axes showing the proportion of common concepts found by both

curators. The number indicated is the number of common concepts identified by both curators (0–4 for BP; 0–6 for Ds).

Hence, the inter-curator agreement is ∼80% with respect
to relevance of abstracts, regardless of the axis (Table 3),
and curators find at least 1 common concept in over 90%
of the abstracts (Figure 6). On average, 60% of the concepts
in an abstract were identified by both curators for BP
and 87% for Ds. This may reflect the greater complexity
of GO compared to D terminology, which likely hampers
annotation consistency.

neXtA5 evaluation

We then evaluated the precision and the recall of the neXtA5

system. We evaluated the precision both at the level of
the document retrieval and information extraction and the
recall (as compared) with the manually extracted terms
(as the set of expected true positives).

(i) neXtA5 precision for document retrieval. Using the data from
task (i) for inter-curator agreement, we can derive the frac-
tion of the abstracts retrieved by neXtA5 and that curators
assessed as relevant for the axis of interest. We find that
both curators agree with neXtA5 for 67% of the abstracts
suggested in the BP axis and for 63% of the abstracts in the
D axis. Moreover, for 15% of the abstracts, both curators
judged that the abstract was not relevant for the axis of
interest (Table 3).

(ii) neXtA5 precision for information extraction. To determine the
fraction of relevant concepts that neXtA5 retrieved, we
manually evaluated each of the annotations proposed by
neXtA5 for the 20 first abstracts, for each of the 12 tar-

get proteins (in cases where all concepts were rejected,
additional abstracts were annotated until we reached 20
evaluated abstracts). Again, each abstract was evaluated
independently by 2 curators, for a total of 254 abstracts.
From these 254 abstracts, a total of 3175 annotations were
proposed by the neXtA5 system. For the BP axis, curators
approved or modified the proposed descriptor (a modifi-
cation is a change of term within the same branch of the
GO) for 35% of the terms; hence, 65% of the descriptors
were considered as non-relevant. For the D axis, curators
approved or modified the proposed descriptors for 25% of
the cases and rejected 75% of the descriptors (Table 4).

neXtA5 recall for annotations

To assess recall, curators manually extracted descriptors
(independent of the neXtA5 information extraction mod-
ule) from the first 4 abstracts for each of the 12 target
proteins, as described in task (ii). Again, two curators
performed the task for each abstract. We evaluated neXtA5

with two different criteria: (i) based on the descriptors only
identified by both curators or (ii) based on the descriptors
identified by either curator. That latest assessment is the
best evaluation for an automated system; if a descriptor is
identified manually, regardless of whether this assignment
may be disputable, we don’t expect an automatic system to
be capable of such nuanced judgement.

For the BP axis, neXtA5 successfully identified 27%
of the descriptors found by both curators and 36% of
the terms identified by either curator (Supplementary Data
Table 1). For the D axis, neXtA5 identified 42% of the terms

https://academic.oup.com/database/article-lookup/doi/10.1093/database/bay129#supplementary-data
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Table 4. Precision analysis for BP and D axes

Total number of descriptors analyzed Accepted Modified Rejected Precision

BP 3175 699 (22%) 413 (13%) 2061 (65%) 35%
Ds 4967 1094 (22%) 146 (3%) 3727 (75%) 25%

Table 5. Average number of terms found by curators (common terms and total terms)

and by neXtA5 for BP and D axes

BPs Ds

Number of concepts identified by at least one curator and neXtA5 1.1 1.2
Manual curator (average number of concepts/papers) 2.4 1.5
neXtA5 (average number of concepts/papers) 6.2 6.0

found by both curators and 68% of the terms identified by
either curator.

Discussion

Improvement of the manual annotation

Our results show an inter-annotator agreement (IAA) of
∼80% with respect to relevance of abstracts, regardless of
the axis (Table 3), and curators found at least 1 common
concept in over 90% of the abstracts (Figure 6). There is
little data in the literature where inter-curator agreement
was evaluated, so it is difficult to judge whether this is
expected. A recent study, showing the mining of clinical
attributes of genomic variants using Egas, a web-based plat-
form for text-mining-assisted literature curation, presented
an overall IAA of 74% (13), while 2 other studies investigat-
ing the text-mining assisted biocuration workflows in Argo
exhibited an IAA of 68.12% or varying between 67% and
84% (9, 10). Looking at some events of divergent decisions
by the two curators, it seems that in most cases there was
a drift from the curation guidelines and that if we return to
the guidelines we can more often agree on the decision.

Performance of neXtA5

We have developed neXtA5, a system that enhances the
biocuration workflow by prioritizing research articles for
specific tasks, and evaluated its performance with respect to
document triage, precision and recall compared with man-
ual annotation. These parameters are essential to develop
a tool that can be used in the daily workflow of curated
biological databases. We evaluated the effectiveness of the
system to support the curation of GO BPs and Ds.

With respect to document retrieval, neXtA5 proposes
∼15% of documents that are not relevant for the task at
hand. This is quite acceptable, given that neXtProt curators

routinely use PubMed to retrieve literature, which returns
a much higher fraction of non-relevant documents, because
it does not allow to specify a general domain of interest
but only keywords. Moreover, this 15% is also similar
to the rate at which curators disagree with each other
with respect to the relevance of a document (17–20%;
Table 3), thus suggesting that the current triage effectiveness
is approaching a theoretical upper bound.

For the concept extraction task, neXtA5 had a precision
rate of 35% for BP and 25% for D and a recall rate of
27% for BP and 42% for D. It must be noted that neXtA5

retrieves 2.6 times more descriptors compared to curators in
the BP axis (Table 5). Indeed, neXtA5 finds an average of 6.2
concepts per abstract for the 45 abstracts annotated by both
curators for the recall test, while curators find 2.4 terms and
1.1 common terms on average. In the D axis, neXtA5 finds
an average of 6 concepts per abstract for the 45 abstracts
annotated by both curators, while curators find 1.5 terms
and 1.2 common terms on average. Therefore, neXtA5 finds
four times more concepts than curators for the D axis. This
high level of identified descriptors contributes to the low
precision rate of neXtA5.

While the precision and recall performance do not yet
allow for completely automated annotation, the fraction
of relevant terms certainly makes the system a valuable
enhancement to manual curation tasks.

Potential improvements of neXtA5

While doing the evaluations, and based on their extensive
experience in annotation, we noticed some recurring issues
that should be addressed to enhance the performance of
neXtA5.

Heterogeneity of neXtA5 concept extraction by

annotation target

We noticed significant heterogeneity in the precision of con-
cept extraction among the different targets. For instance,
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Table 6. Precision analysis for BP (A) and D (B) axes

A BPs B Ds
Number of terms
analyzed per protein

Precision Number of terms
analyzed per protein

Precision

LRRK2 247 49% LYN 398 41%
SGK1 301 43% SYK 570 36%
SYK 262 40% ZAP70 250 31%
IRAK4 236 39% PIM1 444 30%
LYN 265 38% FYN 402 23%
FYN 343 36% RIPK2 194 23%
PIM1 327 35% IRAK4 351 22%
CDK2 333 33% CDK2 504 21%
RIPK2 145 32% LRRK2 452 19%
CSK 318 29% SGK1 491 19%
STK11 156 27% STK11 635 18%
ZAP70 242 17% CSK 276 18%

in the BP axis, only 17% of the terms proposed for ZAP70
by neXtA5 were accepted or modified by the curators
compared to 49% of the terms proposed for LRRK2
(Table 6).

This discrepancy might be due to synonyms that cause
problems (formation, growth etc.), terms that are too vague
(signaling, signal transduction, signaling cascade, regula-
tion, carcinogenesis, tumor, autoimmune D etc.), techni-
cal terms (RNA interference, RNAi, knockout mice etc.)
or non-relevant terms for the axis of interest (pathogen-
esis, memory, methylation, phosphorylation, localization,
point mutations, gene variant, accumulation, sensitivity
etc.; Table 7).

A few concepts considered by the annotators (∼4%)
were chosen from terms not indexed by the name entity
recognition module. This minor inconsistency from the
input may have contributed to some discrepancy in the
results between the manual and neXtA5 annotations.

Highly rejected terms

We have also noticed for both axes that certain terms
are frequently rejected, while others are always rejected
(highlighted terms; Table 7, Supplementary Data Table 2).
Those include synonyms with multiple semantic meanings
(formation, growth etc.), terms that are too vague (signal-
ing, signal transduction, regulation, developmental process,
carcinogenesis, tumor, autoimmune D, genome instability,
outcome etc.), technical terms (RNA interference, RNAi,
knockout mice, staining etc.) or non-relevant terms for
the axis of interest (such as pathogenesis, memory, methy-
lation, phosphorylation, dephosphorylation, localization,
point mutation, accumulation, sensitivity etc.). One possible
approach to alleviate this problem would be to put these

terms on a black list and not propose them as annotations.
Ideally, those terms would also be excluded from the pri-
oritization step, which would also have the advantage of
improving the triage step.

Improvements to the user interface

In addition to improving the document triage and con-
cept extraction algorithms, the users have noticed several
improvements to the user interface that would facilitate the
workflow.

In the current neXtA5 user interface, annotations are
displayed according to the position of the descriptor in
the text. This was one of the initial specifications of the
project, to improve readability and allow curators to know
exactly where concepts were extracted from the text. How-
ever, while neXtA5 is able to suggest relevant descriptors,
those descriptors are spread over many irrelevant or trivial
descriptors. After performing the usability study, we real-
ized that being able to rank the evidences could deliver
a complementary view. In the current GUI, the two types
of views are available and the default remains the linear
view, which seems somehow more intuitive. We do consider
that such complementary revisions are somehow expected
as outcome of usability studies.

It would therefore be much more efficient from an inter-
action point of view to display annotations based on their
estimated relevance. We have experimented with improve-
ment to the ranking function of the specific axes. The impact
on the performance resulting from these changes in the
ranking function seems promising. This additional assess-
ment was performed using TREC EVAL tool (38), and the
results relate the relevance of the annotations proposed by
the system at top ranks (P0 for the precision at first rank and
P5 for the precision on the five first descriptors returned).

https://academic.oup.com/database/article-lookup/doi/10.1093/database/bay129#supplementary-data
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Table 7. List of rejected terms by the curators in BP (A) and D (B) axes

Table 7A List of rejected terms by the curator in biological process axis
Unique concept Proposed concept Proposed synonym Rejected Modified Accepted Total

GO:0023052 Signaling Signaling 154 56% 63 23% 56 21% 273
GO:0032502 Developmental process Developmental process 112 86% 13 10% 5 4% 130
GO:0065007 N/A Biological regulation 110 81% 26 19% 0 0% 136
GO:0016310 Phosphorylation Phosphorylation 110 48% 55 24% 66 29% 231
GO:0007165 Signal transduction Signal transduction 90 76% 11 9% 17 14% 118
GO:0006351 Transcription and

DNA-templated
Transcription and
DNA-templated

88 79% 6 5% 18 16% 112

GO:0009058 Biosynthetic process Biosynthetic process 83 80% 19 18% 2 2% 104
GO:0040007 Growth Growth 74 80% 16 17% 2 2% 92
GO:0010467 Gene expression Gene expression 55 76% 1 1% 16 22% 72
GO:0006915 Apoptotic process Apoptotic process 44 52% 4 5% 36 43% 84
GO:0009405 N/A Pathogenesis 42 100% 0 0% 0 0% 42
GO:0051726 Regulation of cell cycle Regulation of cell cycle 40 82% 2 4% 7 14% 49
GO:0007049 Cell cycle Cell cycle 37 65% 4 7% 16 28% 57
GO:0006954 Inflammatory response Inflammatory response 36 62% 2 3% 20 34% 58
GO:0006283 Transcription-coupled

nucleotide-excision
repair

TCR 34 77% 9 20% 1 2% 44

GO:0016246 N/A RNA interference 31 100% 0 0% 0 0% 31
GO:0008283 Cell proliferation Cell proliferation 31 60% 1 2% 20 38% 52
GO:0009056 Catabolic process Catabolic process 26 59% 10 23% 8 18% 44
GO:0033673 N/A Negative regulation of

kinase activity
26 100% 0 0% 0 0% 26

GO:0051179 Localization Localization 24 69% 10 29% 1 3% 35
GO:0008152 Metabolic process Metabolic process 22 88% 0 0% 3 12% 25
GO:0016049 Cell growth Cell growth 21 81% 1 4% 4 15% 26
GO:0045087 Innate immune response Innate immune response 19 76% 0 0% 6 24% 25
GO:0001816 Cytokine production Cytokine production 17 52% 1 3% 15 45% 33
GO:0008219 Cell death Cell death 16 57% 2 7% 10 36% 28
GO:0006412 Translation Translation 16 53% 1 3% 13 43% 30
GO:0042110 T cell activation T-cell activation 14 70% 0 0% 6 30% 20
GO:0051320 S phase S phase 13 46% 5 18% 10 36% 28
GO:0046903 Secretion Secretion 13 50% 7 27% 6 23% 26
GO:0006914 Autophagy Autophagy 13 65% 0 0% 7 35% 20
GO:0030154 Cell differentiation Cell differentiation 12 86% 2 14% 0 0% 14
GO:0032259 N/A Methylation 12 100% 0 0% 0 0% 12
GO:0006260 DNA replication DNA replication 11 55% 0 0% 9 45% 20
GO:0009293 N/A Transduction 11 79% 3 21% 0 0% 14
GO:0006810 N/A Transport 11 100% 0 0% 0 0% 11
GO:0046960 Sensitization Sensitization 11 92% 0 0% 1 8% 12
GO:0016311 N/A Dephosphorylation 10 100% 0 0% 0 0% 10

Table 7B (Ds) List of rejected terms by the curator in disease axis
Unique concept Proposed concept Proposed synonym Rejected Modified Accepted Total
C2991 D or Disorder Condition 148 89% 11 7% 8 5% 167
C3262 Neoplasm Tumor 100 66% 12 8% 39 26% 151
C45576 N/A Mutation 90 100% 0 0% 0 0% 90
C9305 Malignant neoplasm Cancer 90 74% 2 2% 29 24% 121
C3114 Hypersensitivity Sensitivity 50 94% 1 2% 2 4% 53
C3137 Inflammation Inflammation 49 73% 1 1% 17 25% 67
C18264 Pathogenesis Pathogenesis 46 96% 1 2% 1 2% 48
C120860 N/A Accumulation 43 100% 0 0% 0 0% 43
C18078 Carcinogenesis Tumorigenesis 36 71% 4 8% 11 22% 51

(continued).
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Table 7. (continued).

Unique concept Proposed concept Proposed synonym Rejected Modified Accepted Total

C26845 Parkinson’s D Parkinson’s D 33 79% 0 0% 9 21% 42
C19296 N/A Deletion 32 100% 0 0% 0 0% 32
C50753 N/A Staining 30 100% 0 0% 0 0% 30
C3324 Peutz–Jeghers syndrome Peutz–Jeghers

syndrome
29 83% 0 0% 6 17% 35

C14339 N/A Knockout mice 27 100% 0 0% 0 0% 27
C20200 N/A Outcome 26 100% 0 0% 0 0% 26
C45581 Gene amplification

abnormality
Amplification 26 96% 0 0% 1 4% 27

C3671 N/A Injury 25 86% 4 14% 0 0% 29
C53802 Adverse event associated

with the gastrointestinal
system

Gastrointestinal 25 83% 0 0% 5 17% 30

C42077 Cellular infiltrate Infiltration 24 89% 0 0% 3 11% 27
C17666 N/A Germline mutations 23 100% 0 0% 0 0% 23
C75004 Invasion Invasion 22 79% 1 4% 5 18% 28
C55998 N/A Platelets 19 100% 0 0% 0 0% 19
C3161 Leukemia Leukemia 19 79% 0 0% 5 21% 24
C53791 Adverse event associated

with infection
Infection 18 51% 14 40% 3 9% 35

C54685 Tissue adhesion Adhesion 17 94% 0 0% 1 6% 18
C94604 N/A Mouse model 16 100% 0 0% 0 0% 16
C39723 Immune system finding Immune system 16 94% 0 0% 1 6% 17
C19987 Cancer progression Cancer progression 16 89% 0 0% 2 11% 18
C4089 Polyposis Polyposis 16 89% 1 6% 1 6% 18
C93210 Inflammatory disorder Inflammatory Ds 16 76% 0 0% 5 24% 21
C19151 Metastasis Metastases 16 36% 5 11% 24 53% 45
C53809 Adverse event associated

with the vascular system
Vascular 15 88% 0 0% 2 12% 17

C17609 Tumor progression Tumor progression 15 83% 0 0% 3 17% 18
C3208 Lymphoma Lymphoma 15 68% 0 0% 7 32% 22
C16897 N/A Necrosis 14 100% 0 0% 0 0% 14
C27990 Toxicity Toxicity 14 93% 0 0% 1 7% 15
C36117 Invasive lesion Invasive 14 70% 2 10% 4 20% 20
C62200 N/A Point mutation 13 100% 0 0% 0 0% 13
C39725 Immunodeficiency Immunodeficient 13 93% 0 0% 1 7% 14
C120867 N/A Bacteria 13 72% 5 28% 0 0% 18
C102283 N/A Extracted 12 100% 0 0% 0 0% 12
C17354 N/A Frameshift mutation 12 100% 0 0% 0 0% 12
C28193 N/A Syndrome 12 100% 0 0% 0 0% 12
C2873 N/A Aneuploidy 12 100% 0 0% 0 0% 12
C45582 N/A Duplication 12 100% 0 0% 0 0% 12
C18016 Loss of heterozygosity Allelic loss 12 92% 0 0% 1 8% 13
C14174 N/A Metastatic 12 86% 2 14% 0 0% 14
C50774 Tissue degeneration Degeneration 12 86% 0 0% 2 14% 14
C2916 Carcinoma Carcinomas 12 80% 2 13% 1 7% 15
C3340 Polyp Polyps 12 75% 1 6% 3 19% 16
C2950 Cytogenetic abnormality Chromosomal

aberration
11 92% 0 0% 1 8% 12

C3117 Hypertension Hypertension 11 73% 0 0% 4 27% 15
C4872 Breast carcinoma Breast carcinomas 11 39% 0 0% 17 61% 28
C120945 N/A Inclusions 10 100% 0 0% 0 0% 10
C17212 N/A Cell transformation 10 100% 0 0% 0 0% 10

(continued).



Page 14 of 16 Database, Vol. 2018, Article ID bay129

Table 7. (continued).

Unique concept Proposed concept Proposed synonym Rejected Modified Accepted Total

C18133 N/A Missense mutations 10 100% 0 0% 0 0% 10
C3101 N/A Inherited D 10 100% 0 0% 0 0% 10
C3174 N/A Chronic myelogenous

leukemia
10 100% 0 0% 0 0% 10

C48189 N/A Genome instability 10 100% 0 0% 0 0% 10
C48275 N/A Fatal 10 100% 0 0% 0 0% 10
C8509 Primary neoplasm Primary tumor 10 71% 0 0% 4 29% 14

Terms always rejected are highlighted in grey. The list is limited to terms proposed at least 30 times by the system. The proposed label does not necessarily correspond to the primary class
label; it may be the term synonym identified by neXtA5.

Table 8. Results of learning to rank applied to annotations

Baseline Re-ranking

P0 P5 P0 P5
BPs 0.48 0.28 0.63 0.35
Ds 0.48 0.17 0.59 0.22

For GO BP, we used a machine-learning approach
to improve the ranking of the annotations displayed by
neXtA5. We used GOCat, a large multiclass multilabel
categorizer (39), that exploits more than 100 000 curated
citations from the Gene Ontology Annotation (GOA)
database (https://www.ebi.ac.uk/GOA/downloads) and
aims at inferring GO annotations for any textual input
(abstracts, sentences etc.) it receives. As GOCat learns
from GOA, the proposed GO concepts are modeling
a manual curation task. The GOCat system showed
highly competitive results during the BioCreative 2014
competition, which explored a GO automatic annotation
task (40). In neXtA5, GOCat output is used to promote GO
descriptors identified in the input text. Thanks to GOCat,
neXtA5 improves performances from 0.48 to 0.63 in P0
(+31%) and from 0.28 to 0.35 for P5 (+25%) (Table 8).

For Ds, we used a simple TF–IDF scoring function
to estimate the importance of every single annotation.
The basic assumption is that important concepts from
the curator perspective tend to occur repeatedly in the
corpus of texts (i.e. the meaningful entities detected by
neXtA5 would be repeated through the abstracts). How-
ever, these high-frequency concepts may also be regular
English words; therefore, the raw frequency of occurrence
must be balanced by the inverse document frequency,
i.e. the frequency of the concept in a large sample of
MEDLINE. As presented in the Table 8, this simple
approach results in a significant precision gain of +23%
at first rank.

Perspective

Our results show that the neXtA5 system performs well
enough to improve the manual curation workflow. The
average consensus between curators covers 60% of the
concepts for the BPs and 87% for the Ds. neXtA5 is then
intended to reach similar performance, and prior experi-
ments already show that the exclusion of specific terms and
the re-ranking of annotations highly impact on its precision
without negatively impacting the recall.

From abstracts to full-text articles

neXtA5 was developed and optimized using abstracts. The
analysis of full-text articles is necessary for this tool to
be usable in a production setting. Full-text papers pose
many problems (3), most are only available in pdf for-
mat that should be Optical character recognition (ORC)
preprocessed and some are not even available due to the
journal access policy. Certain sections, most notably the
introduction and the discussion, have a lower interest for
the curation, respectively due to the type of information
and to the redundancy. For these reasons, the abstract is
probably the most useful part of a research article to per-
form article prioritization. This is not the case for concept
extraction; the neXtProt curators (as well as most other
curated databases) extract data directly based on experi-
mental results, so it is mandatory that the full text of the
paper be reviewed. One middle-way solution would be to
allow curators to paste text in a form, which would then be
used for concept extraction from neXtA5. This would avoid
the problem of automatic recognition of article’s sections
that is notoriously difficult (41) while making use of the
strengths of the system to recognize concepts.

Perspectives for neXtA5

The results of this study convinced us that neXtA5 is a
valuable addition to our curation pipeline, and we are

https://www.ebi.ac.uk/GOA/downloads
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in the process of implementing neXtA5 in the BioEditor
curation tool. We are now considering the customization
of the curation-support platform to support other use cases
of other manually curated resources, such as the detection
of positional information (post-translational modifications
and variants). These use cases focus more heavily on triage
that is both the most mature component of the platform
and the most needed service for professional curators. Fur-
ther developments are ongoing to apply the system to a
wider range of curated databases, including core resources
of Elixir (https://www.elixir-europe.org/) such as DisProt
(42), that will require developing text-mining services to
recognize lesser studied entities such as sequence positions.
The annotation services will also be expanded to support
the annotation of full-text contents. Indeed, while triage is
performed mostly on abstracts, the authoring of curated
annotations does require the use of full-text contents.

Finally, we are committed to develop neXtA5 according
to state-of-the-art methodologies. Our work (29) and that
of other groups (43) indicate that machine-learning assisted
triage method could improve the document retrieval pro-
cess, outperforming manual curators at least for specific
tasks. As machine learning does better than other strategies
only in cases where the available body of data is sufficiently
large, this approach is currently limited to few data types.
We will continue to explore all appropriate algorithms for
our use cases and adjust our algorithms as new development
occurs that could justify changes in strategies.

Software availability

A demo version of neXtA5 is available at http://candy.hesge.
ch/nextA5. The manual judgements on which this study is
based are included in Table 3.

Supplementary data
Supplementary data are available at Database Online.
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