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Abstract

Over the past few years, aquatic cycling has become a trending fitness activity. However,

the literature has not been reviewed exhaustively. Therefore, using scoping review method-

ology, the aim of this review was to explore the current state of the literature concerning

aquatic cycling. This study specifically focused on study designs, populations and out-

comes. A comprehensive search of seven databases (PubMed, MEDLINE, Cinahl, Em-

base, PEDro,Web of Science, WorldCat) was conducted up to 30th September 2016.

GoogleScholar, World Cat, ResearchGate, specific aquatic therapy websites and aquatic

therapy journals were searched to identify additional literature. Full-text publications in

English, German or Dutch were included. Studies were included when the intervention

involved head-out cycling carried out in 10˚ to 35˚ Celsius water. Exclusion criteria were the

use of wet suits or confounding interventions that would affect participants’ homeostasis. 63

articles were included and the study parameters of these studies were summarized. Using

three grouping themes, included studies were categorised as 1) single session tests com-

paring aquatic versus land cycling, or 2) aquatic cycling only sessions investigating different

exercise conditions and 3) aquatic cycling intervention programmes. Although the experi-

mental conditions differed noticeably across the studies, shared characteristics were identi-

fied. Cardiovascular parameters were investigated by many of the studies with the results

suggesting that the cardiac demand of aquatic cycling seems similar to land-based cycling.

Only six studies evaluated the effect of aquatic cycling interventions. Therefore, future

research should investigate the effects of aquatic cycling interventions, preferably in individ-

uals that are expected to gain health benefits from aquatic cycling. Moreover, this compre-

hensive outline of available literature could serve as a starting point for systematic reviews

or clinical studies on the effects of aquatic cycling on the cardiovascular responses.
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Introduction

Water-based fitness equipment has gained popularity within aquatic fitness leading to a devel-

opment of dryland training machines, such as stationary exercise bikes and treadmills, into

water-proof exercise gear. Although aquatic cycling has become a trending fitness activity, the

modification of standard ergometer bicycles for aquatic programs is nothing new and stems

from the late sixties. Researchers used water immersion as an effective simulation of prolonged

weightlessness, moreover, the utilization of the aquatic environment has been recognized as

useful in rehabilitation [1, 2]. Similar to land-based cycling, the repetitive circular movement

of pedalling against the water resistance ensures a use of a large range of motion (ROM) of the

lower limbs to improve cardiovascular fitness and muscle strength. The fact that individuals

are sitting on the aquatic bike can be beneficial for those who have problems with balance and

independent gait. However, in contrast, while the sitting position and hydrostatic pressure

assist with postural control, the loss of free movement i.e. reduced challenges to balance, and

the few variation of the exercises may limit its effect on functional capacity. A shared charac-

teristic with other types of aquatic exercise is the decrease of joint loading due to the buoyancy

of the water. During aquatic cycling participants are immersed in water up to the chest and the

buoyancy of the water unloads the joints of the lower extremities and the lower spine, a condi-

tion appealing for patients experiencing pain or problems with physical functioning during

exercising on land [3, 4]. Despite the potential benefits of aquatic cycling and its long history,

the application of aquatic cycling in an exercise and clinical context still appears to be low.

Limitations that might prevent clinicians using aquatic cycling for therapeutic purposes could

include the investment costs, storage space requirements, and the elaborate set-up of the

aquatic bikes. In particular, getting the bikes in and out of the pool, without an adjustable

floor, is demanding.

The scientific evidence on the potential benefits of aquatic cycling seems to be scarce as

well. Obvious search terms like aqua(tic) cycling, aqua(tic) bike or water cycling yield very few

relevant results from scientific search engines. Moreover, the small number of references

about aquatic cycling, used in previously published reviews on aquatic exercise, further

emphasizes the impression of a scarcity of literature [5–7]. These reviews summarize the effects

on head-out aquatic exercise, including aquatic cycling, or compared physiological responses

of different types of aquatic exercise and swimming with each other [5–7]. Further, the aquatic

cycling interventions were not described in detail in these prior reviews with these reviews

only including cross-over studies.

Thus, the questions remain how has aquatic cycling been investigated in previous research,

and whether a search effort solely on “aquatic cycling” would reveal additional publications

and research investigating the effects of aquatic cycling intervention programmes. A system-

atic review with a meta-analysis would not suit this aim and therefore a scoping review study

design was chosen. Systematic reviews are guided by specific research questions leading to

strict in- and exclusion criteria. The primary aim for performing a scoping review is to map

the available literature that meet a comprehensive research question combined without

restricting inclusion criteria [8]. Where systematic reviews evolve out of an initial understand-

ing of the research field, scoping reviews are employed to identify research and explore their

features such as target populations, interventions, study designs and outcomes [8, 9]. As a

result scoping reviews help to develop an understanding of the extent and possible gaps and

uncertainties in the existing literature. Furthermore, a scoping review might identify a suffi-

cient amount of studies that would facilitate a systematic review [9].

Therefore, the main objective of this study was to identify the scope of available research

with regard to aquatic cycling as an exercise activity. Specifically, this scoping review aimed to
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explore the aquatic cycling exercises, study designs, comparison of training effects (if applica-

ble), populations and outcomes utilised in research investigating aquatic cycling. To enable a

comprehensive coverage of available literature the following research question was formulated:

What is the available research on head-out aquatic cycling exercise?

Methods

Framework of a scoping review

The procedure of performing a scoping review follows similar steps as those used in systematic

review approaches without limiting for study design of included studies and without a quanti-

tative synthesis. The framework of Arksey and O’Malley for scoping reviews was implemented

in this study [9]. The framework consists of five essential stages and one additional stage; 1)

identifying the research question, 2) identifying relevant studies, 3) study selection, 4) charting

the data, 5) collating, summarizing and reporting the results, and additionally 6) consultation

of experts (optional). All stages can be performed in an iterative manner allowing refining of

search parameters.

Identifying relevant studies

A comprehensive literature search was conducted in August 2015 and updated to 30th Septem-

ber 2016 in seven electronic academic databases (PubMed, MEDLINE, Cinahl, Embase,

PEDro, Web of Science, WorldCat). The search strategy was documented by title of the data-

base searched, date of the search, the complete search string that was used and the number of

articles found (Table 1). The development of each search string was an iterative process and

familiarisation with the literature revealed additional search terms for aquatic cycling such as

“immersed cycling” or “underwater pedalling”. These terms were combined with more general

terms for aquatic therapy (e.g. hydrotherapy) the search included the following key terms:

ergometer, immersion, hydrotherapy, aqua(tic), cycling, underwater (bi)cycle ergometer,

immersed ergocycle.

Additionally, ResearchGate, GoogleScholar and relevant aquatic therapy websites (http://

www.wcpt.org/apti, http://www.atri.org, https://www.aeawave.com) were examined. More-

over, the table of contents of the accessible key journals ‘International Journal of Aquatic

Research and Education’ and ‘Journal of Aquatic Physical Therapy’ of the American Physical

Therapy Association were checked for additional literature. Finally, reference lists of all

included articles were hand-searched for new articles and the authors of this paper, all experts

in the field of aquatic therapy and aquatic fitness, checked their own libraries for additional lit-

erature. The table of contents and reference lists were screened for the key words related to

cycling and (immersion) exercise (testing) on land and in water. Throughout the search pro-

cess it was noticed that no consistent terminology exists with regard to aquatic cycling. To

ensure that the search terms used were correct and complete, the terminology used in included

articles was re-evaluated. This post-hoc analysis (S1 File) addressing the terminology used to

describe aquatic cycling confirmed our choice of search terms.

Study selection

The inclusion and exclusion criteria were developed in two stages. In phase one, the authors

agreed to include all formats of full-text reports that focused on the effects of head-out aquatic

cycling exercise on the human body (Table 2, stage one). After familiarisation with the litera-

ture the selection criteria were further specified (Table 2, stage two). In each step of the selec-

tion procedure two or more reviewers were involved and inclusion discrepancies were solved

Aquatic cycling
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by discussion. Screening of titles and abstracts was performed by two reviewers (BW and SR)

with the online programme “Covidence” (Covidence systematic review software, Veritas

Health Innovation, Melbourne, Australia, available at: www.covidence.org). Next, all authors

were involved with the full-text screening and all results were independently imported into a

Microsoft Excel file and compared after completion of the review process. Information on the

two-stage development of the inclusion criteria is available in a supporting file (S2 File).

Charting the data

Descriptive data were extracted into Microsoft Excel tables including name of the first author,

year of publication, primary research question, sample size, age, gender, health status of partic-

ipants, exercise parameters, main results reported in the abstract, water temperatures, aquatic

bike used and level of body immersion. Information on effects of resting immersion was not

discussed for this review, but might have been part of the experimental set-up of the included

studies. The tables were organised by the body position on the aquatic bike (upright and semi-

recumbent), because physiological responses might vary with immersion level related to the

body position on the ergometer [2]. All tables include information on interventions with

healthy participants and patients. If patients were involved, information on the disease charac-

teristics is reported in the tables. Articles that originated from the same data set, but focusing

Table 1. Search strategy and results.

Database Date Search string Results

PubMed 30-09-

16

((ergometer[All Fields] AND (("immersion"[MeSH Terms] OR "immersion"[All Fields] OR "underwater"[All Fields] OR

"aquatic"[All Fields]) OR ("hydrotherapy"[MeSH Terms] OR "hydrotherapy"[All Fields]))) OR ((aqua[All Fields] AND

cycling[All Fields]) OR "underwater bicycle ergometer"[All Fields] OR "underwater cycle ergometer"[All Fields] OR

"immersed ergocycle"[All Fields] OR "aquatic bike"[All Fields] OR "water bike"[All Fields])) AND "humans"[MeSH

Terms]

120

MEDLINE 30-09-

16

1. ((cycling and (hydrotherapy or aquatic exercise or aquatic therapy or water exercise or immersion)) or (aqua cycling

or underwater bike or aquatic bike or immersed ergocycle or underwater bicycle ergometer or underwater cycle

ergometer or underwater pedalling or underwater cycling or water bike)).af.

157

Cinahl 30-09-

16

(TX ergometer AND ((aquatic therapy or hydrotherapy or aquatic exercise or water exercise) OR immersion)) OR

underwater cycle ergometer OR immersed ergocycle OR aqua cycling OR underwater pedalling OR underwater bike

OR aquatic bike OR water bike OR aqua bike)

30

Embase 30-09-

16

1. ((cycling and (hydrotherapy or aquatic exercise or aquatic therapy or water exercise or immersion)) or (aqua cycling

or underwater bike or aquatic bike or immersed ergocycle or underwater bicycle ergometer or underwater cycle

ergometer or underwater pedalling or underwater cycling or water bike)).af.

194

PEDro 30-09-

16

(ergometer AND immersion)

(ergometer AND water exercise)

(ergometer AND hydrotherapy)

(aquatic bike) OR (aqua bike) OR (water bike) OR (underwater bike)

14

Web of

Science

30-09-

16

TS = (((ergometer AND (immersion OR hydrotherapy)) OR ((aqua AND cycling) OR underwater bicycle ergometer OR

underwater cycle ergometer OR immersed ergocycle or aquatic bike or underwater pedaling or aqua bike or water

bike)))

Refined by: WEB OF SCIENCE CATEGORIES: (SPORT SCIENCES OR CLINICAL NEUROLOGY OR

REHABILITATION OR PHYSIOLOGY OR MULTIDISCIPLINARY SCIENCES OR MEDICINE RESEARCH

EXPERIMENTAL OR ENDOCRINOLOGY METABOLISM OR NEUROSCIENCES OR SURGERY OR

RESPIRATORY SYSTEM OR PUBLIC ENVIRONMENTAL OCCUPATIONAL HEALTH OR MEDICINE GENERAL

INTERNAL OR RHEUMATOLOGY OR ONCOLOGY OR ORTHOPEDICS)

145

WorldCat 30-09-

16

ti:aqua cycling OR ((kw:immersion AND su:aqua-cycling) OR (ergometer AND hydrotherapy) OR (aqua bike) OR

(aquatic bike) OR (water bike) OR (underwater bike))

5

Total number of

records

674

af, all fields; TX, text; TS, topic; ti, title; kw, key word; su, subject.

https://doi.org/10.1371/journal.pone.0177704.t001
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on different outcomes, were summarized and represented as one study in the tables, but refer-

ences from all studies are included to aid identification of the separate articles.

Results

The search revealed 465 potential studies. After screening of the titles and abstracts, 350 studies

were excluded and the full-text versions of 115 publications were read (Fig 1). Finally, 63 arti-

cles met the inclusion criteria. The reasons for exclusion during the full-text screening and the

references of these excluded articles are presented in a supporting file (S3 File). Nevertheless,

some of these publications might contain useful information and were therefore used as sup-

portive literature. All included articles were published in peer-reviewed journals. Three of the

included articles were published in German with an English abstract [10–12].

The included articles were categorized in three groups according to the intervention char-

acteristics. The first group consisted of comparisons using the aquatic bike as a tool for evaluat-

ing land versus aquatic cycling. The second group consisted of studies on the physiological

responses to single sessions of aquatic cycling under different exercise conditions (e.g. different

water temperatures). Research on the effects of multiple aquatic cycling sessions was clustered

in a third group. According to these three grouping themes the extracted data was organised in

three tables (Table 2, Table 3 and Table 4).

Land-based cycling compared to aquatic cycling

Thirty-one studies compared aquatic cycling with land cycling (Table 3). Half of the studies

(n = 15) used a maximal incremental exercise test to investigate the physiological responses

during immersion versus on land exercise testing [11, 13–26]. Submaximal incremental ex-

ercise tests were conducted in six studies [27–32]. Increments were mostly achieved by an

increase in pedalling frequency. Seven studies of the aforementioned studies controlled exer-

cise intensity by electronically regulated pedalling resistance [10, 21, 24–27, 31]. An additional

six studies compared submaximal continuous aquatic cycling with land cycling [33–38]. Three

Table 2. Two stage expert consensus on inclusion and exclusion criteria.

INCLUSION

Stage I

• Full-text articles or master or doctoral theses written in English, Dutch, German

• Most of the following is described: intensity, duration of the session, body position on the bicycle, water

temperature, and type of aquatic bike used

• Effect of head-out aquatic cycling on the human body is described

Stage II

• Participants have to be seated upright or semi-recumbent during immersed exercise

• The exercising limb has to be fully immersed in water

EXCLUSION

Stage I

• Full-body (above head) immersion of participants

• Use of self-contained underwater breathing apparatus (SCUBA)

Stage II

• Long duration resting immersion (>30 min) prior to exercise

• Confounding interventions that would affect participants homeostasis e.g. manipulation of participants’

glucose level or oxygen saturation

• Water temperatures below 10˚C or above 41˚C for resting immersion and water temperatures above

35.5˚C for exercise conditions

• Use of wet-suits

https://doi.org/10.1371/journal.pone.0177704.t002
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other studies evaluated aquatic cycling as a mean for active recovery after an extensive exercise

bout on land [39–41]. Furthermore, one study compared the effect of moderate intense dry-

land cycling with high-intensity interval training (HIIT) on land and in water [42]. Two-third

of the aquatic cycling sessions (n = 22) were conducted in an upright body position. Nine stud-

ies [11, 24–26, 30, 31, 34–36] compared semi-recumbent cycling on land and in water. Four

semi-recumbent bikes also had arm pedals [11, 24, 30, 36]. The level of body immersion of the

participants varied from chest level to chin level. The water temperature during the exercise

sessions ranged from 18˚C to 35˚C.

All but three studies used a cross-over design to compare both environments. Additional

study designs were a randomized controlled trial [41, 42] and a quasi-experimental study [27].

Fig 1. Flow diagram of identified publications. *One publication was allocated in two categories.

https://doi.org/10.1371/journal.pone.0177704.g001
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Table 3. Land-based cycling versus aquatic cycling.

UPRIGHT BODY POSITION

Author Year Study

design

Study aim Sample# Exercise parameters Key findings Twater Aquatic bike

used

Immersion

depths

Garzon [16] 2016 Cross-over To compare the early decay of HR

recovery, a marker of

parasympathetic reactivation,

after a maximal incremental

exercise on AC vs. LC

• n = 15 (F/M: 2/

13)

• age: 30±7

Land protocol:

• Initial workload: 25W

• Increments: 25W every min

until exhaustion

• Rpm: minimal 60

Water protocol:

• Initial rpm: was set at 40 rpm

(corresponding to Pext of 25W)

• Increments: 10 rpm until 70

rpm and thereafter by 5 rpm

until exhaustion

• HRmax did not differ between

AC and LC

• More rapid* deceleration of

HR in AC in the first minute of

recovery

• No difference in recovery HR

in the late phase (minute 2–5 of

recovery)

30˚C Hydrorider® Chest

Wahl [41] 2016 RCT To investigate the effect of AC vs.

passive recovery on performance,

muscle damage, muscle soreness

and perceived physical state

• n = 20 M

• age: 24.4±2.2

• Exercise: steady AC (vs.

passive lying in supine position

on land) after an strenuous

exercise bout on land

• Duration: 30min

• Rpm: 65–75

• No differences between

passive rest on land and AC

with regard to performance,

muscle damage and soreness

and perceived physical state

31˚C Aquarider® Chest

Sosner [42] 2016 RCT To compare BP response after

moderate LC, HIIT AC and HIIT

LC

• n = 42 (F/M: 21/

22)

• BP > 130/85

mmHg

• age: 65±10

Land protocol (moderate

exercise):

• 24min at 50% peak power

output

Land and water protocol (HIIT)

• 6min warm-up at 50% peak

power output, 2 sets of 10min:

15s 100% peak power output

interspersed by 15s of passive

recovery, 4 min passive

(seated) recovery between

sets

• HIIT LC and AC decreased

24hr BP*
• HIIT AC modified 24-hour

pulse-wave velocity

30˚C Hydrorider® Chest

Garzon [14] 2015 Cross-over To study the relationship between

parameters of relative exercise

intensity in AC and to establish a

method for exercise intensity

prescription in AC

• n = 33 (F/M: 5/

28)

• age: 33±10

Land protocol:

• Initial workload: 25W

• Increments: 25W every min

until exhaustion

• Rpm: minimal 60

Water protocol:

• Initial rpm: was set at 40 rpm

(corresponding to Pext of 25W)

• Increments: 10 rpm until 70

rpm and thereafter by 5 rpm

until exhaustion

• Similar means of %HRmax,%

HRreserve and %VO2reserve for

AC and LC

• Predicted VO2 (L/min) =

0.000542 x rpm2–0.026 × rpm

+ 0.739 (r = 0.91, SEE = 0.319

L/min)

30˚C Hydrorider® Xiphoid

process

Garzon [13] 2015 Cross-over To develop a

mathematical model to calculate

Pext during AC

with chest-level immersion for

different pedalling rates and

accounting for the drag forces

exerted on the legs.

• n = 20 (F/M: 6/

24)

• age: 33±10

Land protocol:

• Initial workload: 25W

• Increments: 25W every min

until exhaustion

• Rpm: minimal 60

Water protocol:

• Initial rpm: was set at 40 rpm

(corresponding to Pext of 25W)

Increments: 10 rpm until 70

rpm and thereafter by 5 rpm

until exhaustion

• Pext (W) in water based on

rpm = 0.0004 (rpm)2.993 (r2 =

0.99, SEE = 7.6 W, p < 0.0001)

• When the Pext was obtained on

land, the rpm to generate an

equal Pex in water = 13.91 x DE

Pext (W)0.329 (r2 = 0.99,

SEE = 1.5 W, p < 0.0001)

30˚C Hydrorider® Xiphoid

process

Garzon [15] 2015 Cross-over To compare VO2, central

hemodynamics and C(a-v)O2

during incremental maximal

exercise and the subsequent

hemodynamic recovery after AC

and LC.

• n = 20 (F/M: 2/

18)

• age: 32±7

Land protocol:

• Initial workload: 25W

• Increments: 25W every min

until exhaustion

• Rpm: minimum of 60

Water protocol:

• Initial rpm: was set at 40 rpm

(corresponding to Pex of 25W)

• Increments: 10 rpm until 70

rpm and thereafter by 5 rpm

until exhaustion

• At a comparable Pext VO2 and

C(a-v)O2 were lower** during

AC

• SV and Q were higher* during

AC at comparable Pext

• During the recovery, VO2 and

C(a-v)O2 remained lower**
during AC while SV and ejection

fraction were higher* in AC

30˚C Hydrorider® Chest level

Yazigi [17] 2013 Cross-over To compare cardiorespiratory

response, BL, and thermal

comfort during AC in neutral and

warm water and LC

• n = 10 M

• age: 22±1

Land protocol:

• Initial workload: 75W

• Increments: 35W every 3min

until exhaustion

• Rpm: 70

Water protocol:

• Initial rpm: 50 rpm,

• Increments: 10 rpm every

3min until 70 rpm and

thereafter by 5 rpm every 3min

until exhaustion

• HRmax and VO2max were not

sig. different in AC and LC

• BL values were lower** in AC

trials

• VO2, HR, BL and thermal

comfort scores were higher** at

the end of the AC test compared

to submaximal cadences in AC

• Participants were more

comfortable with AC in lower

Twater

27˚C,

31˚C

Hydrorider® Xiphoid

process

(Continued)
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Table 3. (Continued)

Finkelstein

[27]

2011 Quasi-

experiment

To compare BP and VO2

responses between pregnant and

non-pregnant women, during AC

and LC

• n = 20 F (10

non-pregnant F

and n = 10

pregnant F at

27–29 wk

gestation)

• age: 31.9±3.1

(pregnant),

32.3±2.8 (non-

pregnant)

Land + Water protocol:

Series 1:

• Initial workload: 25W

• Increments: 25W every 2min

until first ventilator threshold

• Rpm: 50

Series 2:

• 30min at the HR

corresponding to the first

ventilator threshold

• BP was lower** during AC in

pregnant and non-pregnant F

• No differences in VO2 between

AC and LC and pregnant and

non-pregnant F

• After the first five-minute

recovery period, both BP and

VO2 were similar to pre-

exercise values in pregnant and

non-pregnant women, no

difference between AC and LC

32.4˚C Sculptor–RGS,

Brazil

Xiphoid

process

Ferreira [40] 2011 Cross-over To compare lactate removal

during AC and passive recovery

on land and in water

• n = 10 cyclists

• age: 26.2 ±5.5

Land protocol:

• Wingate Anaerobic Test on a

ergometer

Passive recovery (land

+ water):

• 60min in supine position on

land or in water (floating)

Active recovery (water):

• 30min of AC at up to 85% of

the anaerobic threshold in

water + 30min of sitting on the

aqua bike

• After 15min the BL values

were lower* in AC trials

compared to passive recovery

on land and in water

• No difference between passive

recovery on land and in water

28–

30˚C

Water Bike® NR

Wiesner

[18]

2010 Cross-over To investigate the effect of water

immersion on exercise-induced

ANP release, lipid mobilization

and lipid oxidation

• n = 17 M

• age: 31±3.6

Land protocol:

• Initial workload: 50W

• Increments: 50W every 6min

until exhaustion

Water protocol:

• Workload was increased by

an increased number of fins to

the flywheel

• Rpm: NR

• HR, systolic BP and VO2 at the

anaerobic threshold and during

peak exercise were comparable

in AC and LC

• Respiratory quotient was

lower* in AC

• BL and glucose levels were

lower* in water during peak AC

• Free fatty acid concentrations

were increased** with AC

• Water immersion attenuated**
(nor)epinephrine concentrations

during peak exercise

• ANP release was increased**
in AC

28˚C Hydrobike

Evolution®
Xiphoid

process

DiMasi [39] 2007 Cross-over To compare lactate removal

during active recovery with AC or

LC

• n = 11 M

• age: 22.7±1.9

Land protocol:

• Exercise bout on land

treadmill: 2min warm-up, 6min

at a speed 10% above the of

the individual ventilatory

threshold

Land and water recovery

protocol:

• 15min AC or LC at 65%

estimated HRmax (220-age)

• BL at 6 and 15 min of recovery

was lower* in AC

30–

31˚C

Hydrorider® Xiphoid

process

Bréchat [33] 1999 Cross-over To compare ventilator and

metabolic requirements during AC

and LC

• n = 15 M

• age: 30±8, 29

±8 (Series 1, 2)

Land and water protocol:

• Series 1: subjects (n = 9), AC

and LC at 60% VO2max for

30min; Rpm: NR

• Series 2: subjects (n = 9), AC

and LC at workload of 122W

for 30min; Rpm: NR

Series 1:

• Ventilatory variables were

comparable for both groups

• Ergometric workload had to be

reduced during AC to achieve

exercise intensity of 60%

VO2max

Series 2:

• VO2 was higher** in AC

• Min ventilation, tidal volume,

respiratory frequency, and tidal

inspiratory time were higher**
in AC

• BL was higher** in AC

33˚C EM designed

in the authors

laboratory

Xiphoid

process

Hanna [28] 1993 Cross-over To evaluate the effect of head-out

water immersion on Q, SV and

HR (at rest) and during graded

submaximal AC and LC in men

with a healed MI

• n = 15 M with

history of MI

• age: 49±3

Land protocol:

• Initial workload: 40% of the

subject’s VO2peak

• Increments: 25W every 6min

until 75% of VO2peak

• RPM: 50

Water protocol:

• Initial workload: 40% of the

subject’s VO2peak

• Increments: increase in rpm

(range 35–46) every 6min until

75% of VO2peak

• HR, Q and SV did not differ

between AC and LC

• No change in exercise

response when patients with

beta-blocker medication and

exercise-induced ST-segment

depression were excluded

separately from the analysis

31˚C Modified

Monark EM

(Morlock&

Dressen-

dorfer)

Suprasternal

notch

(Continued)

Aquatic cycling
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Table 3. (Continued)

Sheldahl

[19]

1992 Cross-over To examine the influence of AC

and LC on fluid-regulating

hormones

• n = 10 M

• age: 30±1

Land protocol:

• Initial workload: 40% VO2max

• Increments: every 5min until

exhaustion, resistance was

adjusted to match 60, 80 and

100% of VO2max

• Rpm: 55–60

Water protocol:

• Initial workload: 40% VO2max

• Increments: every 5min by an

increase in rpm averaging: 39,

46, 52 and 59 rpm

• No group difference in VO2Peak

• Natriuretic peptide

concentration was higher* in

AC at 40% VO2Peak and during

recovery

• Plasma renin activity was

lower* in AC at 40% VO2Peak

and during recovery

• Plasma aldosterone

concentration was lower* in AC

• Arginine vasopressin

concentrations were lower* in

AC

• No group difference for

osmolality and plasma sodium

and potassium concentrations

32.5˚C Modified

Monark EM

(Morlock&

Dressen-

dorfer)

Shoulder

Katz [38],

McMurray

[37]

1990,

1993

Cross-over To compare the effects of AC and

LC on the mother and foetus

• n = 7 F at 25 wk

gestation

• age: NR

Land and water protocol:

• Duration: 20min

• Intensity: 70% VO2max,

• RPM: predetermined

according to Morlock &

Dressendorfer

• Lower* HR and systolic BP

during AC [38]

• Higher* diuresis during AC

[38]

• Foetal HR showed a tendency

to be higher after LC [38]

• Lower Trectal and Tmean body

during AC compared to LC [37]

• LC caused greater heat

storage and sweat loss [37]

30˚C Modified

Monark EM

(Morlock&

Dressen-

dorfer)

Xiphoid

process

Connelly

[20]

1990 Cross-over To compare the sympathoadrenal

response to graded dynamic AC

and LC

• n = 9 M

• age: 22–36

Land protocol:

• Initial workload: 40% VO2max

• Increments: every 5min until

exhaustion, resistance was

adjusted to match 60, 80 and

100% of VO2max

• Rpm: 55–60

Water protocol:

• Initial workload: 40% VO2max

• Increments: every 5min by an

increase in rpm averaging: 39,

46, 52 and 59 rpm

• Plasma norepinephrine

concentration was reduced* at

80 and 100% of VO2 in AC

• Plasma epinephrine and BL

were similar in AC and LC at

submaximal work stages, but

both were reduced* AC at peak

exertion

• HR was lower* at 46, 52 and

59 rpm in AC

• VO2peak did not differ between

AC and LC

32.5˚C Modified

Monark EM

(Morlock&

Dressen-

dorfer)

Shoulder

Christie [21] 1990 Cross-over To compare cardiovascular

responses during dynamic LC and

AC exercise testing

• n = 10 M

• age: 21–35

Land protocol:

• Initial workload: 40% VO2max

• Increments: 3 increments of

6min, that matched 60, 80 and

100% of VO2max, workload

increase was controlled by

electronic resistance

• Rpm: 55–60

Water protocol:

• Initial workload: 40% VO2max

• Increments: 3 increments of

36–60 rpm every 6min,

increments matched 60, 80

and 100% of VO2max

• VO2max did not differ between

AC and LC

• Right arterial pressure,

pulmonary arterial pressure,

cardiac index, stroke index, left-

ventricular end-diastolic and

end-systolic volume indexes

were higher* in AC

• Arterial BP was comparable

between groups

• HR were lower* in AC at 80

and 100% VO2max

32,5˚C Modified

Monark EM

(Morlock&

Dressen-

dorfer)

Suprasternal

notch

Mc Murray

[32]

1988 Cross-over To compare the cardiovascular

responses during AC and LC in

patients with coronary artery

disease

• n = 10 M with

coronary artery

disease

• age: 52

Land protocol:

• Initial workload: 25W

• Increments: 25W every 6min

until completion of at least 3

increments

• Rpm: NR

Water protocol:

• Initial workload: 30 rpm

Increments: 10 rpm every 6min

until completion of at least 3

increments

• Trend for HR to be less in AC

during mild exercise

• When matched for VO2,

systolic BP were lower in AC

• Q were slightly greater during

AC than during LC, particularly

at VO2 levels less than 1 l/min

• Total peripheral resistance

was greater* during LC

30˚C Modified

Monark EM

(Morlock&

Dressen-

dorfer)

Xiphoid

process

Sheldahl

[29]

1987 Cross-over To assess the effects of central

shift in blood volume on

cardiorespiratory responses to

dynamic AC and LC in middle-

aged men

• n = 19 M

• age: 48±8

Land and water protocol:

• Initial workload: 35 to 40% of

VO2max.

• Increments: 150 kp-m every

6min until a work load that

corresponded to 75 to 80%

VO2max

• Rpm: NR

• Q was greater* in AC at 40

and 80% VO2max

• HR was lower* in AC at 80%

VO2max

• Mean SV was greater* in AC

at all exercise intensities

31˚C Modified

Monark EM

(Morlock&

Dressen-

dorfer)

Shoulder

(Continued)
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Table 3. (Continued)

Sheldahl

[22]

1984 Cross-over To investigate the effect of

different levels of central blood

volume on cardiac performance

during submaximal exercise in

supine and upright posture on

land and in upright posture in

water

• n = 12 M

• age: 26.3±3.9

Land and water protocol:

• Initial workload: 50W

• Increments: 25W every 3min

until exhaustion

• Rpm: NR

• At submaximal workloads

mean left ventricular end-

diastolic /—systolic dimension

were greater* in AC

• At submaximal conditions HR

did not differ between land and

water trials

• At a mean VO2 of 2.4 l/min, HR

was greater** in the upright

land posture than in upright

posture in water

• VO2max did not differ between

groups

31˚C Modified

Monark EM

(Morlock&

Dressen-

dorfer)

Shoulder

Dressen-

dorfer [23]

1976 Cross-over To determine the effect of head-

out water immersion on

cardiorespiratory responses to

maximal aerobic work

• n = 7 M

• age: 27

Land and water protocol:

• Individual prescribed maximal

workloads to achieve

exhaustion within 4 to 5min

• HR, volume of expired gas per

unit of time and maximum

voluntary ventilation were

lower* in AC

• VO2max did not differ between

AC and LC

30˚C Modified

Monark EM

(Morlock&

Dressen-

dorfer)

Neck + chin

SEMI-RECUMBENT BODY POSITION

Author Year Study

design

Study aim Sample# Exercise parameters Key findings Twater Aquatic bike

used

Immersion

depths

Fenzl [24] 2015 Cross-over To investigate changes in VO2—

work rate relationship during

increasing work rates in AC and

LC

• n = 12 M

• age: 35.1±5.4

Land and water protocol for

arm-leg and leg exercise:

• Initial workload: 50W

• Increments: 25W every 2min

until exhaustion

• Contribution of arms during

arm-leg exercise: 20%

• Rpm: 70

• VO2 –work rate relationship is

similar for arm-leg and leg

exercise in AC and LC

• Extra O2 cost by adding arm

exercises is lower** with AC

• At the ventilatory threshold

two, exercise capacity,

expressed as workload, is

lower** in AC

27–

28˚C

Reha-

Aquabike®
Xiphoid

process

Fenzl [34] 2013 Cross-over To compare the release of ANP

and free fatty acids during

prolonged AC with the release

after an LC

• n = 6 M

• overweight

• age: 40.2±5.4

Land and water protocol:

• 0-10min of testing protocol:

adjustment of workload to

reach a steady-state gas

exchange at the anaerobic

threshold.

• 11-60min of testing protocol:

cycling with set workload of

moderate intensity

• Rpm: NR

• ANP was higher** in AC

• Free fatty acids were

increased* post-exercise

compared to baseline with no

difference between AC and LC

• Similar increase in epinephrine

and decrease in insulin in AC

and LC

27–

28˚C

Reha-

Aquabike®
Xiphoid

process

Fenzl [11] 2012 Cross-over Comparison of gas exchange and

the vagally modulated short time

variability parameter to establish

ventilatory threshold in water

• n = 12 M

• age: 26–45

Land and water protocol:

• Initial workload: 75W

• Increments: 25W every 2min

until exhaustion

• Arm-leg workload ratio: 1:3

ratio

• Rpm: 70

• The respiratory determined

threshold heart rate is different*
during AC and LC

• Quantitative comparison of

gas exchange measurements

with HRV showed a strong

correlation between both

parameters

28˚C Reha-

Aquabike®
Xiphoid

process

Perini [25] 1998 Cross-over To evaluate the effect of water

immersion on the power spectrum

of HRV (at rest) and during AC

and LC

• n = 7 M

• age: 22,0.9

(SEM)

Land protocol:

Series1:

• Initial workload: 0W

• Increments: 20, 40, 60 rpm

for 6min each

Series 2:

• Initial workload: 50W

• Increments: 1 increment of

70W, followed by 50W

increments for 6min each until

exhaustion

• Rpm: 60

Water protocol:

- Series 1: Same protocol as

above

- Series 2: same as above

except that the workload on the

EM was set 25W below the

values in LC

• The changes in power

spectrum distribution of HRV

occurring during exercise were

similar in AC and LF

• The central frequency of high

frequency peak increased

linearly with VO2, showing a

tendency to be higher in AC at

medium to high intensities

30˚C Modified

Collins EM

(Craig &

Dvorak)

Chin level

Chen [26] 1996 Cross-over To compare exercise tests with a

semi-recumbent underwater

exercise EM used on land and in

water with a upright standard EM

on land

• n = 10 (F/M: 3/

7)

• age: 30.6±6.5

Land and water protocol:

• Initial workload: 0W

• Increments: 44W (males) or

29W (females) every 2min until

subjects could no longer

maintain 60 rpm

• Rpm: 60

• AC resulted in lower* total

exercise duration, HRmax, and

maximal Tesophageal

• The upright position in LC

resulted in greater* total

exercise duration and maximal

power output than the semi-

recumbent positions

• VO2max did not differ between

positions and AC and LC

33˚C Modified

Monark EM

(Chen)

Clavicles

(Continued)
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In 19 out of 31 studies participants were young, healthy males. Five studies included healthy

participants of both sexes [13–16, 26, 36] and three studies included pregnant women [27, 37,

38]. In four other studies participants were middle-aged men [29], males with cardiovascular

diseases [28, 32] and men and women with hypertension [42].

Studies (n = 21) investigating the difference in cardiovascular responses between aquatic

versus land cycling compared oxygen consumption (VO2), heart rate (HR), stroke volume,

cardiac output and blood pressure [15–23, 26–33, 37, 38, 42]. In total eight studies investigated

the maximum VO2 response during land and aquatic cycling, with all but one study [15]

reporting equivalent VO2max values achieved by the participants on land and in water [17–23,

26]. Maximal HR was found to be lower during aquatic cycling at intensities higher than

approximately 80% of the VO2max in seven from ten studies [20–23, 26, 29, 30]. The remaining

three studies reported similar maximal HR for the land and water conditions [16–18]. In men,

following recovery from a myocardial infarction, no difference in submaximal HR on land and

in water was found [28]. McMurray et al. reported a trend toward a lower HR at submaximal

intensities in water in men with coronary heart disease [32]. In pregnant women moderate

Table 3. (Continued)

Israel [35] 1989 Cross-over To determine a Twater that would

attenuate the core rise that occurs

with cardiovascular exercise

• n = 5 M

• age: 26.8±4

Land and water protocol:

• Workload: 60% of VO2max for

30min in 21˚C, 25˚C and 29˚C

water and on land

• Rpm: 50

• During exercise there was no

change in Trectal at water of

21˚C and 25˚C

• Trectal rose* during AC in 29˚C

water and during LC

After recovery Trectal is lower*
for 21˚C water and higher* for

29˚C warm water compared to

LC

21˚C,

25˚C,

29˚C

Modified

Collins EM

(Craig &

Dvorak)

Neck

Mc Ardle

[36]

1984 Cross-over To compare thermo-regulatory

response to continuous exercise

in different Twater and on land in

males and females

• n = 18 (F/M:

8:10)

• age: 23.1,

range: 19–29

Land and water protocol:

• Arm-leg EM exercise at 36W

for 60min

• Rpm: 30

• For men and women exercise

at 1.7 l O2�min-1 prevented or

retarded a decrease in Trectal

during AC

• Similar thermoregulatory

response were observed for

men and women during

exercise at each Twater

20˚C,

24˚C,

28˚C

Modified

Collins EM

(Craig &

Dvorak)

1st thoracic

vertebra

Mc Ardle

[30]

1976 Cross-over To compare metabolic and

cardiovascular adjustment to

exercise on land and in different

Twater

• n = 6 M

• age: 26±5.5

Land and water protocol:

• Arm-leg EM workload: 0, 18,

36, 60, 84, 120W for 5min each

• Rest: 10min between each

workload

• Rpm: 30

• During submaximal exercise in

18˚C and 25˚C water VO2 was

higher* than in 33˚C water

• HRmax was lower* in 18˚C and

25˚C water than in 33˚C water

and during LC

• Q–VO2 relationship was

similar for AC and LC

• At similar levels of VO2, SV

was larger* in 18˚C and 25˚C

water than in 33˚C water and

with LC

18˚C,

25˚C,

33˚C

Modified

Collins EM

(Craig &

Dvorak)

1st thoracic

vertebra

Craig [31] 1969 Cross-over To compare cardiorespiratory

responses during AC and LC

• n = 2 students

• age: NR

Land and water protocol:

• Workloads: 0, 18, 36, 60 and

84W

• Duration workloads: 5,3,3,

1.5, 1.5min

• Rpm: 30

• VO2 for a given workload was

similar in LC and AC in 30˚C

and 35˚C water

• In 25˚C water the VO2

averaged 0.14l/min more than in

warmer water and with LC

• Ventilation seemed somewhat

greater in in cold water

25˚C,

30˚C,

35˚C

Modified

Collins EM

(Craig &

Dvorak)

1st thoracic

vertebra

AC, aquatic cycling; ANP, atrial natriuretic peptide; BL, blood lactate; BP, blood pressure; C(a-v)O2, arteriovenous difference; C, Celsius; EM, ergometer; F,

female; HIIT, high-intensity interval training; HR, heart rate; HRV, heart rate variability; LC, land-based cycling; M, male; MI, myocardial infarction; min,

minute(s); NR, not reported; Pext, external power output; Q, cardiac output; Rpm, revolution per minute; SE, Standard Error; SEM, standard error of mean;

SV, stroke volume; T, temperature; VO2, oxygen uptake; W, Watts; wk, week(s); yrs, years

*, significant at p-value <0.05

**, significant at p-value <0.01
#If not stated otherwise participants are healthy and age is presented in years as mean±standard deviation.

https://doi.org/10.1371/journal.pone.0177704.t003
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aquatic cycling resulted in lower maternal and foetal HR compared to land-based cycling [38].

Four studies reported higher stroke volume and cardiac output in the aquatic cycling group

consiting of healthy participants [15, 21, 29, 30]. Systolic blood pressure was similar in healthy

males during an incremental exercise test when using aquatic versus land-based cycling [18,

21]. In pregnant women and in men with coronary artery disease the systolic blood pressure

was reported to be lower during submaximal aquatic cycling [27, 32, 37, 38]. Sosner et al.

reported a similar post-exercise reduction in blood pressure in patients with hypertension

after a high-intensity cycling session on land and in water [42].

Other key outcomes were ventilation parameters [23, 31, 33], lipid mobilisation and oxida-

tion [18, 34], sympathoadrenal response [18, 20, 34], lactate accumulation and removal [17,

18, 20, 39, 40]. and thermoregulatory responses [35–37]. Further outcomes were the develop-

ment of prediction equations to estimate oxygen consumption from pedalling rate during

aquatic cycling [13, 14] and to calculate external power output of aquatic cycling [13]. Fenzl

et al. compared the gas exchange measurements with the heart rate variability to estimate the

ventilator threshold on an arm-leg aquatic bike [11].

Aquatic cycling under different exercise conditions

Twenty-five studies investigated the effect of several different exercise conditions during

aquatic cycling (Table 4). The comparisons are based on cross-over studies with healthy young

males with the exception that healthy (non-pregnant) females were included in three studies

[43–45] and one study used a quasi-experimental design to compare age-matched healthy con-

trols with heart disease patients [46]. Common core outcomes were cardiovascular [12, 23, 44,

45, 47–50], metabolic [36, 51–55] and thermal response [43, 49, 50, 52, 56–61] to different

exercise conditions. Furthermore, approaches to estimate and regulate exercise intensity dur-

ing aquatic cycling were evaluated [62–64].

Different exercise conditions were created mostly by changes in water temperature [12, 23,

43, 48–52, 57, 60, 61] and different exercise intensities (high versus low) [23, 43, 44, 50, 58–61,

63–65]. With regard to the exercise parameters intensity and duration, studies (n = 11) utilised

continuous, submaximal exercise (40 and 60% of VO2max) with a duration of 30 to 60 minutes

[12, 23, 43, 49, 51, 52, 57, 60, 61]. Exercise intensities were either based on graded exercise test-

ing on land [12, 23, 44, 45, 47, 50, 51, 53–56, 58] or in water [23, 43, 46, 48, 52, 57, 62–64].

The water temperatures that were compared ranged from cold (18–20˚C) and cool (25˚C) to

thermoneutral (30–35˚C). Other studies compared different levels of body immersion [46],

different types of exercise (interval versus continuous cycling, arm versus arm-leg versus leg

exercise) [45, 49, 61] and different aquatic bikes with each other [44]. Furthermore, the mater-

nal and foetal response to submaximal (60% of VO2max) aquatic cycling during different stages

of pregnancy was studied [47, 53–56].

Fifteen studies used upright aquatic bikes [23, 44–47, 51–57, 62–64]. In all these studies

pedalling frequency regulated exercise intensity while two studies focused on the influence of

pedalling resistance provided by additional fins to the flywheel [44, 64]. Sogabe et al. used the

additional fins to increase pedalling resistance in semi-recumbent cycling [65]. In all other

semi-recumbent bikes intensity was set with electronically controlled pedalling resistance

mechanisms [43, 48–50, 58–61].

Aquatic cycling intervention programmes

In total eight intervention studies, investigating the effects of a multiple sessions aquatic

cycling exercise programme, were found [66–73]. The exercise programmes (Table 5) lasted

between three and 36 weeks with an exercise frequency between two and five times per week.

Aquatic cycling
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The duration of one session varied between 30 and 90 minutes. Exercise intensities were based

on land-based maximal graded exercise-tests and the training intensities were set between 60

and 80% of the VO2max in all but one study [66]. In a one-group test-retest study, Sheldahl

et al. assessed weight loss in obese women after a low intense (30 to 40% of VO2max) aquatic

cycling programme [66]. Boidin et al. also evaluated the effects of aquatic cycling on cardiome-

tabolic parameters in obese people [71]. In this retrospective study the participants underwent

an extensive lifestyle programme including high-intensity aquatic cycling or land cycling. Fur-

thermore, two randomised studies evaluated the cardiovascular effect of aquatic cycling com-

pared to land cycling in young healthy males [68] and patients with multiple sclerosis [72, 73].

Two quasi-experimental studies investigated the influence of water temperature on heat toler-

ance and aerobic capacity [67, 69, 70].

Four studies reported a significant improvement of cardiorespiratory parameters compared

to baseline in healthy (obese) people and multiple sclerosis patients [68, 71–73]. Aquatic and

land cycling evoked similar improvements in cardiorespiratory parameters. Further, moderate

land and aquatic cycling achieved similar improvements in health-related quality of life and

self-reported physical fatigue in patients with multiple sclerosis [72, 73]. Boidin et al. reported

comparable results in weight loss and reduction in fasting glycaemia and triglyceride levels in

obese people [71]. In obese women, an eight week aquatic cycling programme in cold water

did not lead to weight loss [66].

In young, healthy males, there was no superior effect of cold or warm water on the improve-

ments in cardiovascular parameters [67, 69, 70], lactate accumulation lactate accumulation

[69], dryland heat tolerance [67] and muscle glycogen utilization [69]

Discussion

This is the first review to scope the available literature on head-out aquatic cycling exercise.

The aim of this review was to describe the study parameters of available research utilising

aquatic cycling as an exercise modality. Sixty-three publications were identified and the review

provides a full summary of the set-up of aquatic interventions and possible comparisons, core

outcomes, involved participants and the study designs utilised in current literature. The explo-

ration of the intervention parameters revealed great variety on the use and execution of aquatic

cycling.

Land-based cycling versus aquatic cycling

The main body of the current research on aquatic cycling focuses on cardiovascular outcomes

and the core findings for the comparison between land-based and water-based cycling showed

similar trends. These latter studies [17–23, 26] reported comparable VO2max values of aquatic

and land-based cycling and therefore, the cardiac demand of aquatic cycling seems similar to

land-based cycling. The results for HR were less consistent with a tendency for a lower HR

during aquatic cycling compared to land-based cycling [20–23, 26, 29, 30]. Further, cardiac

output and stroke volume was reported to be higher during aquatic cycling [15, 21, 29, 30].

These results are in line with the general understanding concerning the effects of water immer-

sion on the human body. Hydrostatic pressure exerts external pressure on the immersed body,

which increases with increased depth [2, 74]. Due to the hydrostatic pressure exerted there is a

shift of blood from the extremities to the chest cavity, increasing arterial filling, and thus car-

diac output and stroke volume are increased [2, 74]. Because cardiovascular parameters are

modified by immersion, this could explain why the literature is inconclusive on the optimal

recommendations for exercise prescription during aquatic cycling. Another explanation

maybe as most aquatic bikes are not equipped with an electronically controlled pedalling

Aquatic cycling

PLOS ONE | https://doi.org/10.1371/journal.pone.0177704 May 16, 2017 19 / 25

https://doi.org/10.1371/journal.pone.0177704


resistance mechanism and approaches to estimate VO2 from aquatic cycling are often based

on pedalling frequency, with or without additional resistance. However, these equations can-

not be used for all aquatic bikes, as the design and drag resistance created by pedals and resis-

tance fins vary considerably across the aquatic bikes.

Aquatic cycling under different conditions

Due to the heterogeneous nature of aquatic cycling, many variables are involved when study-

ing its impact on individuals, for example device-specific factors [44, 63–65] or environmental

parameters as water temperature [12, 23, 43, 48, 49, 51, 52, 56–61]. Thus explaining why the

cardiovascular response to different exercise conditions was frequently investigated. For exam-

ple, it seems that VO2max is comparable across different water temperatures and that partici-

pants perceived exercising in warm water as more exhaustive [23, 48, 49]. Further, included

studies concluded that exercise intensities up to maximal limits are achieved by an increase in

pedalling frequency and that VO2peak does not differ between the different types of aquatic

bikes [44, 64]. However, high-pedal frequencies are difficult to maintain during longer exercise

sessions with a continuous character [44, 64]. To avoid discomfort with maintaining high

pedal frequencies, exercise intensity can be modified by an increase in pedalling resistance or

by utilising an interval training [45]. The latter was perceived less exhaustive than a continuous

protocol [45].

Aquatic cycling as an intervention

Only six studies investigated the effect of multiple aquatic cycling sessions [66–73]. In four

studies aquatic cycling was used in a clinical context for patients with multiple sclerosis and as

exercise training for older adults and obese individuals. Research showed that aquatic cycling

was equally effective than land-based cycling for improving cardiovascular fitness [66, 68, 71–

73]. Furthermore, none of the included studies reported adverse events related to the training,

suggesting that aquatic cycling is a safe exercise modality.

Most of the exercise protocols of the aquatic cycling intervention programmes consisted of

steady cycling in a seated position with moderate intensity. Only Boidin et al. used an interval

protocol for the training of obese individuals [71]. It seems that the full potential of aquatic

cycling including out-of-saddle positions and arm and trunk exercises is not published yet in

peer-reviewed journals [7]. Addition of these elements might prevent monotony especially in

multiple session programmes [75] and results from supportive literature suggest that a full

spectrum aquatic cycling programme is effective in patients with musculoskeletal disorders

[76].

This scoping review has identified a number of areas for further research. Most of the

included studies have a cross-over design with few cycling sessions and investigated the exercise

response in young healthy males, because gender, body mass and morphology are known to

affect the response to aquatic cycling [59, 77, 78]. Further, only six studies investigated the effect

of an aquatic cycling intervention programme. To improve the use of aquatic cycling in health-

care, future studies, preferably RCTs, should investigate the effects of aquatic cycling interven-

tions in different populations and on outcomes such as (joint) pain, muscle strength or physical

functioning, which are yet to be investigated. Of specific interest may also be the biomechanics

of aquatic cycling and differences of seated and out-of saddle cycling. Furthermore, the identi-

fied literature seems suitable for more systematic reviews. For example it seems worthy to syn-

thesize the available evidence on cardiovascular responses to aquatic cycling.

To further improve the understanding of acute and long-term physiological adaptions to

aquatic cycling training and facilitate between study comparisons, consistent reporting of the
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following parameters is recommended. Studies should describe the type of aquatic bike, body

position, level of immersion, water temperature, methods used to control and assess exercise

intensity i.e. training frequency, duration, rpm and pedalling resistance. Furthermore, it

should be stated whether or not adverse events occurred. In addition to an accurate descrip-

tion of the aquatic cycling intervention, an agreement of experts on uniform keywords to

describe the exercise activity is also strongly advised since this would improve the search in sci-

entific databases. In this review the terms “aquatic cycling” and “aquatic bike” were used, as

these expressions nowadays are commonly associated with this type of exercise.

This review has strengths and weaknesses. The extensive search procedure in this review

resulted in more than sixty publications on aquatic cycling only, which were summarized and

displayed. However, the presented studies should be interpreted with caution, because no qual-

ity assessment of the internal validity of the included studies was made in order to cover a broad

spectrum of literature. Furthermore, this review provides a very general overview of the research

on aquatic cycling without focusing on certain details of the included studies. For example, only

the main outcomes reported in the abstract of the included studies were reported in this review.

Yet, this comprehensive outline of available literature in this scoping review could serve as a

starting point for systematic reviews or clinical studies on the effects of aquatic cycling on the

cardiovascular responses.

Conclusion

This is the first scoping review to summarise the literature on head-out aquatic cycling. There

are numerous variables related to aquatic cycling e.g., the type of aquatic bike or environmen-

tal factors e.g., water temperature or immersion level. As a result, the objectives of the identi-

fied studies in this review are heterogeneous. Most of the included studies compared aquatic

cycling with land-based cycling or examined how to quantify and modify exercise intensity.

Very few studies evaluated the effect of aquatic cycling interventions. Cardiovascular parame-

ters were investigated by many of the studies and the results suggest that the cardiac demand

of aquatic cycling seems similar to land-based cycling. Therefore, further research should syn-

thesize the effects of aquatic cycling on cardiovascular parameters in a systematic review.

Future studies should evaluate the effects of aquatic cycling interventions in a clinical and

rehabilitative context.
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