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Abstract: Neuroinflammation is involved in the progression or secondary injury of multiple
brain conditions, including stroke and neurodegenerative diseases. Alarmins, also known as
damage-associated molecular patterns, are released in the presence of neuroinflammation and in the
acute phase of ischemia. Defensins, cathelicidin, high-mobility group box protein 1, S100 proteins,
heat shock proteins, nucleic acids, histones, nucleosomes, and monosodium urate microcrystals are
thought to be alarmins. They are released from damaged or dying cells and activate the innate
immune system by interacting with pattern recognition receptors. Being principal sterile inflammation
triggering agents, alarmins are considered biomarkers and therapeutic targets. They are recognized
by host cells and prime the innate immune system toward cell death and distress. In stroke, alarmins
act as mediators initiating the inflammatory response after the release from the cellular components
of the infarct core and penumbra. Increased c-Jun N-terminal kinase (JNK) phosphorylation may
be involved in the mechanism of stress-induced release of alarmins. Putative crosstalk between the
alarmin-associated pathways and JNK signaling seems to be inherently interwoven. This review
outlines the role of alarmins/JNK-signaling in cerebral neurovascular inflammation and summarizes
the complex response of cells to alarmins. Emerging anti-JNK and anti-alarmin drug treatment
strategies are discussed.
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1. Introduction

Neuroinflammation plays a key role in the progression or secondary injury of multiple brain
conditions [1], and neuroinflammatory responses are fundamental to the pathogenesis of stroke [2],
Alzheimer disease (AD), multiple sclerosis, Parkinson’s disease (PD), neurodegenerative dementias,
epilepsy, psychiatric disorders, and oncologic diseases [1,3–9]. Sustained activation of sterile
inflammatory responses occurs in cerebrovascular accidents, AD, PD, epilepsy, or traumatic brain
injury, all of which involve progressive neurodegeneration [1]. The inflammatory responses associated
with most chronic neurodegenerative diseases greatly depend on microglia [10]. Microglia emerge
from early erythro-myeloid precursors and migrate to the brain mesenchyme prior to formation
of the blood–brain barrier [11]. Genetic data implicate microglia as central players in brain health
and disease [12], and microglia constitute up to a tenth of the total cell population in the brain.
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Being resident macrophages to the central nervous system (CNS), the microglial cells phagocytose
cellular debris and foreign antigens and sense pathological events, such as inflammation [13].
Microglial cells are capable of upregulating synthesis and release of various mediators, including
translocator protein (TSPO), chemokines, cyclooxygenase 1, and cannabinoid receptor 2 in the
presence of inflammation. Blood-borne leukocytes, including monocytes/macrophages, neutrophils,
T-lymphocytes, and B-lymphocytes extravasate into the brain through the interaction of cell surface
integrins with specific endothelial adhesion molecules. Subsequently, activated cells secrete effector
molecules, in particular, matrix metalloproteinases (MMP) and myeloperoxidase, which induce
axonal damage and/or demyelination. Cell-to-cell interaction between the antigen-presenting cells
(B-lymphocytes, microglia, and dendritic cells) occurs through CD40, amongst other molecules [14].
Microglia are crucial for neuronal wiring and functioning during health and disease. Microglial cell
states are heterogeneous and context-dependent in regard to age, sex, location, and health of the
surrounding neurons. External signaling factors influencing microglia, include gut microbiota and
lipid metabolites, and functional clusters of microglia mutually interact with the surrounding neuronal
microenvironment [12].

Danger signals released in the acute phase of ischemia trigger microglial activation, along with
the infiltration of neutrophils and macrophages [15]. A significant amount of research suggests that
neuroinflammation plays a causal role in AD pathogenesis, whereas understanding and control of
interactions between the immune and nervous systems may eventually guide the development of
therapeutics for the prevention of these diseases [16]. Indeed, neuroinflammation plays an active role in
AD pathogenesis and is not just a passive response that results from the formation of senile plaques and
neurofibrillar tangles [16]. This idea is supported by research demonstrating an association between
microglial immune receptor expression and neuroinflammation, as well as clinical data implicating
inflammation in early stages of AD development [16]. Microglia are the key innate immune cells of the
CNS. While an appropriate microglial response contributes to brain tissue homeostasis and repair, an
inappropriate response can lead to neural tissue damage and eventual neurodegenerative diseases [17].
Microglial cells are resident macrophage-like immune cells that are widely distributed throughout
the brain and spinal cord [18,19]. Notably, microglial cells account for up to 10–15% of all cells found
within various regions of the brain [18,19]. These cells represent an active immune defense system in
the CNS, as they are constantly scavenging plaques, damaged or unnecessary neurons and synapses,
and infectious agents [20]. Recent studies indicate that microglia also play a role in instructing and
regulating the proper function of neuronal networks under healthy conditions [21]. Microglia express
receptors for neurotransmitters and alarmins, also known as damage-associated molecular patterns
(DAMPs) and danger signals [22–24]. In response to activation signals, microglia become phagocytic,
antigen-presenting cells with an amoeboid morphology and produce a variety of proinflammatory and
cytotoxic factors [22,25]. Since microglial cells are distributed throughout all the regions of the CNS,
they have the potential to modify signaling or promote oxidative damage in neurons, either focally or
globally [26]. Microglia can be activated by a number of pathological triggers, such as neuronal death
or protein aggregates, resulting in their migration to sites of injury or infection where they initiate
an innate immune response [16]. Thus, microglia not only orchestrate local immune responses and
promote CNS healing but also have been implicated as potential effectors of neuronal injury in a variety
of chronic neurodegenerative diseases, including the acquired immune deficiency syndrome dementia
complex [27], AD [27–29], and PD [30].

Alarmins are host biomolecules that can initiate and perpetuate non-infectious and infectious
inflammatory responses [31]. Alarmins are implicated in inflammatory diseases, including rheumatoid
arthritis, systemic lupus erythematosus, osteoarthritis, atherosclerosis, AD, PD, and cancer. Thus,
alarmins could be considered biomarkers and therapeutic targets for these diseases [32]. Alarmins are
thought to be the principal sterile inflammation triggering agents. They are recognized by host cells,
priming the innate immune system toward cell death and distress [1]. In stroke, alarmins act as
mediators initiating the inflammatory response after their release from cellular components of the



Cells 2020, 9, 2350 3 of 25

infarct core and penumbra [2]. Although alarmins are primarily considered to be soluble molecules,
evidence suggests that alarmin-carrying extracellular vesicles are released from stressed or injured
tissues and play a role in the induction or persistence of inflammation [33,34]. There may be a cross-talk
between the alarmin-associated pathways and JNK signaling, which both are involved in control of the
same processes and seem to be inherently interwoven.

The aim of this review is to outline the role of alarmins/JNK-signaling in cerebral neurovascular
inflammation and to describe the complex response of the cells to alarmins. Emerging anti-JNK and
anti-alarmin drug treatment strategies are also discussed.

2. JNK

JNKs belong to a family of mitogen-activated protein kinases (MAPK) that are triggered by various
stress stimuli, including oxidative stress, heat and osmotic shock, and ischemia-reperfusion injury of
the brain and heart [35–39]. The JNK family includes 10 isoforms encoded by JNK1 (four isoforms),
JNK2 (four isoforms), and JNK3 (two isoforms) genes [40]. JNK1 and JNK2 are expressed in all
cells and tissues throughout the body, whereas JNK3 is predominantly present in the heart, brain,
and testicles [36]. JNKs are implicated in the pathogenesis of stroke, atherosclerosis, AD, and and
PD [41,42]. JNKs are essential for the regulation of inflammation, apoptosis and necrosis signaling,
and the processes involved in the neuronal injury associated with ischemia and reperfusion [41,43].
JNK-signaling plays a pivotal role in preconditioning and postconditioning of the heart and the
brain [44], and studies from our group and others suggest that JNK inhibitors exert neuroprotective
properties [45–47]. Thus, JNKs represent promising therapeutic targets for the protection of brain
against ischemic stroke [44], and candidate JNK inhibitors with high therapeutic potential are currently
available [44,45,48].

Downstream targets of JNK represent nearly a hundred well-defined substrates, including nuclear
transcription factors (ATF2, c-Jun, Elk1, Sp1, Myc), cytoplasmic proteins regulating cytoskeletal
assembly and dynamics (DCX, Tau, WDR62), vesicular transporters or JNK-interacting proteins
JIP1/JIP3, transmembrane receptors such as bone morphogenetic protein receptor type 2 (BMPR2),
and mitochondrial proteins (Mcl1, Bim) [43,49]. Substrates for phosphorylation-activated JNKs also
include activating transcription factor 2 (ATF2), Sp1, and nuclear factors of activated T-cells (NFATc2 and
NFATc3) [50,51]. Non-nuclear substrates of JNKs are involved in protein degradation, signal transduction,
and regulation of cell apoptosis [37,52]. JNK is deactivated through dephosphorylation by dual specificity
protein phosphatase (DUSP1/MKP-1) [53]. Folding proteins, known as JNK-interacting proteins JIP-1
and Sab, and interaction with organelles are pivotal regulators of JNK activity [44,54].

3. Alarmins and JNK-Signaling Cross-Talk

The recruitment and activation of antigen-presenting cells occurs early in the establishment of an
immune response [55–57], and many microbial components and endogenous mediators participate in
this process [58–60]. Recent studies have identified a group of structurally diverse multifunctional host
proteins that are rapidly released following pathogen challenge and/or cell death and, most importantly,
are able to both recruit and activate antigen-presenting cells. The potent immunostimulants include
defensins, cathelicidin, eosinophil-derived neurotoxin, high-mobility group box protein 1 (HMGB1),
BAG family molecular chaperone regulator 3 (BAG3), S100 proteins, heat shock proteins (Hsp), nucleic
acids, histones, nucleosomes, and monosodium urate microcrystals [31,61]. They serve as early
warning signals to activate both innate and adaptive immune systems. Due to the unique activities of
these proteins, they are grouped under the term ‘alarmins’, in recognition of their role in mobilizing
the immune system [61].

Alarmins are released from damaged or dying cells and activate the innate immune system
by interacting with pattern recognition receptors [32]. These endogenous, constitutively expressed,
chemotactic, and immune activating proteins/peptides are released as a result of degranulation,
cell injury or death, or in response to immune induction. Alarmins are involved in a variety of
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processes, including regulation of antimicrobial gene expression, cellular homeostasis, wound healing,
inflammation, allergy, autoimmunity, and oncogenesis [62]. The innate immune response in the brain
is initiated by DAMP or pathogen-associated molecular patterns (PAMP), which are produced in
response to CNS infection or injury. These molecules activate various receptors, including members of
the Toll-like receptor (TLR) family, of which TLR4 is the receptor for bacterial lipopolysaccharide (LPS).
Although neurons have also been reported to express TLR4, the function of TLR4 activation in neurons
remains unknown [63].

Similar physiological and pathophysiological events lead to alarmin production and JNK
activation. Release of alarmins seems to be one of the upstream regulatory mechanisms mediating JNK
signaling. Indeed, both alarmins and JNK signaling are involved in neuroinflammation associated
with numerous brain conditions [1,31,44,64] including stroke [2,44], PD [3,65], AD [1,3], epilepsy [66],
traumatic brain injury [2,67], and mitochondrial dysfunction [3,66]. Mitochondrial dysfunction causes
neuroinflammation through alarmin release and a series of other factors in PD, such as oxidative stress
and inflammatory bodies [3]. Increased JNK phosphorylation may be involved in the mechanism of
stress-induced release of endoplasmic reticulum-associated alarmins [23]. However, the interplay of
alarmins/JNK signaling in neural tissue is still poorly understood.

4. “Find-Me” Signals

Molecularly diverse alarmins act as “find-me” signals and proinflammatory triggers [31].
Alarmins/”find-me” signals have several functions, including enhancing recognition of apoptotic cells,
facilitating cleanup of apoptotic cells, and maintaining self-tolerance [31]. Apoptotic cells secrete
soluble “find-me” alarmins that attract phagocytes, which are responsible for phagocytosis initiated by
“eat-me” signals [68–72]. Although cortical glia provide trophic support to the neurons via sustained
and close physical contact, “find-me” alarmins function beyond physical recruitment of phagocytes [73].
JNK is a pro-apoptotic factor, and the loss of JNK1 in hematopoietic cells protects macrophages from
apoptosis and accelerates early atherosclerosis [74].

The “find-me” cue sphingosine 1-phosphate (S1P) attracts macrophages to dying cells.
S1P signaling is required for efficient phagocytosis by upregulating phagocytosis receptors, including
Mer receptor tyrosine kinase (MerTK) and milk fat globule epidermal growth factor VIII (MFG-E8)
on macrophages [75,76]. The S1P “find-me” signal regulates both recruitment and priming of
macrophages, suggesting a similarity between the effects of Spätzle (Spz5), a ligand for the Toll-1
receptor, and S1P. Being a “find-me” cue, Spz5 prepares, or primes, glia for phagocytosis in the
CNS [72]. Microglial activation is involved in the pathogenesis of S1P2-mediated brain injury
in mice subjected to transient middle cerebral artery occlusion. A specific antagonist of S1P2,
JTE013 (1-[1,3-dimethyl-4-(2-methylethyl)-1H-pyrazolo[3,4-b]pyridin-6-yl]-4-(3,5-dichloro-4-pyridinyl)-
semicarbazide), inhibits the activity of this receptor. When given orally immediately after reperfusion,
JTE013 reduces the number of activated microglia and reverses their morphology from amoeboid to
ramified microglia in the post-ischemic brain. It also attenuates microglial proliferation. Suppressing
S1P2 activity attenuates activation of M1-relevant extracellular signal-regulated kinases 1/2 (ERK1/2)
and JNK in post-ischemic brain or LPS–activated microglia. Thus, S1P signaling is considered a drug
target in cerebral ischemia [77].

Injured neurons release several soluble factors, including nucleotides, cytokines, and chemokines
that signal microglia to find and clear debris. Chemokine fractalkine serves as a neuronal-microglial
communication factor, as shown in models of adult neurological disorders. It acts as a “find me” signal
alarmin released by apoptotic neurons, and subsequently plays a critical role in modulating both
clearance and inflammatory cytokine gene expression after ethanol-induced apoptosis [78]. The exact
roles of fractalkine, its receptor, and microglia signaling are poorly understood in neuroinflammation.
Fractalkine activates the proinflammatory pathway mediated by the transcription factor nuclear
factor kappa-light-chain-enhancer of activated B cells (NF-κB) as an early response in microglial
cells. Phospho-kinase assay proteome profiles indicate that fractalkine induces several kinases,
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including JNK [79], whose inhibition may have a neuroprotective effect [80]. JNK mediates interleukin
(IL)-1β-, tumor necrosis factor (TNF)-, and interferon γ (IFN-γ)-induced fractalkine production,
whereas co-incubation with JNK inhibitors suppresses fractalkine in primary human first-trimester
decidual cells [81].

Efferocytosis is an apoptotic cell clearance mechanism that facilitates the removal of dangerous
and damaged cells and is essential for homeostasis. Abnormal efferocytosis is associated with chronic
inflammatory, autoimmune, and cardiovascular disorders, such as atherosclerosis, systemic lupus
erythematous, rheumatoid arthritis, Sjogren’s syndrome, celiac disease, scleroderma, and airway
inflammation [31,82–87]. In the brain, efferocytosis mediated by microglia is involved in removing
excess newborn cells produced during embryonic and postnatal development in the cortex, cerebellum,
and amygdala [88,89]. Microglial efferocytosis also contributes to clearing the excess cells in adult
neurogenic niches in the hippocampus and subventricular zone [90,91] and dead cells during aging
and neurodegenerative diseases [92]. Other cell types, such as astrocytes, neuroblasts, or neural crest
cells exhibit different transcriptional and epigenetic signatures [93].

Effective and timely efferocytosis involves alarmins recognizable by macrophages and microglial
cells. In the context of efferocytosis, nucleic acids, histones, nucleosomes, and monosodium urate
microcrystals act as alarmins/”find-me” signals and serve as biomarkers for the prognosis and treatment
of inflammatory disorders and autoimmune diseases [31]. Efferocytosis involves the interaction of
receptors, bridging molecules, and apoptotic cell ligands. JNK plays a role in efferocytosis, which is
essential for the pathogenesis of atherosclerosis. Loss of JNK1 in hematopoietic cells rescues macrophages
from apoptosis and promotes early atherosclerosis [74], whereas scavenger receptor class B type I
(SCARB1) is a critical mediator of macrophage efferocytosis via the proto-oncogene tyrosine-protein
kinase (Src)/phosphoinositide 3-kinase (PI3K)/Ras-related C3 botulinum toxin substrate 1 (Rac1)
pathway in atherosclerosis. Thus, agonists that resolve inflammation offer promising therapeutic
potential to promote efferocytosis and prevent atherosclerotic clinical events [74]. Macrophages play
a crucial role in the phagocytic clearance of dead neurons after ischemic stroke and promote the
resolution of inflammation in the brain. However, the role of JNK signaling in regulation of efferocytosis
during neuroinflammation is not known.

5. Hsp

It has been proposed that extracellular Hsp, released either through nonclassical pathways or
from necrotic cells [94,95], act like alarmins, activating monocytes [96–98] and inducing the secretion
of proinflammatory cytokines [99–101].

The importance of alarmin Hsp-JNK crosstalk is confirmed by the presence of a phylogenetically
ancient association between these signaling systems. Indeed, caffeine-induced aversion phenotype in
Caenorhabditis elegans is mediated by the JNK/MAPK pathway and serotonergic and dopaminergic
neuroendocrine signals. RNAi depletion of Hsp-16.2, a cytosolic chaperone, reduces the aversion
phenotype, suggesting that Hsp-JNK crosstalk is involved in this ancient defense mechanism [102].

The stress response is characterized in part by the upregulation of Hsp, which is compromised in
neurodegenerative disorders and in some neuronal populations [103]. Since astrocytes have a greater
capacity than neurons to survive metabolic stress [104] and because they are intimately associated with
the regulation of neuronal function [105], it is important to understand their stress response so that
we may to better appreciate the impact of stress on neuronal viability during injury or disease. It is
essential to understand how stressful events alter the microenvironment that is pivotal for survival of
neurons and neighboring astrocytes. Astrocytes subjected to hyperthermia upregulate the chaperone
heat shock (cognate) protein 70 (HSP/c70) in addition to JNK [104]. Astrocytes release increasing
amounts of Hsp/c70 into the extracellular environment following stress, an event that is abrogated
when signaling through the ERK1/2 and PI3K pathways is compromised and enhanced by inhibition
of the JNK pathway [104]. Extracellular Hsp70 rapidly activates JNK in macrophage RAW264.7 cells
via TLR4 [106].
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Hsp70, a molecular chaperone by function, has been shown to be a modulator of neurological
disorders [107] and in healthy brain [108]. For example, over-expression of Hsp70 reduces
paraquat-induced oxidative stress, along with JNK- and caspase-3-mediated dopaminergic neuronal
cell death in a Drosophila model of neurological disorders. Likewise, over-expression of a human
homologue of Hsp70, heat shock protein family A member 1 like (HSPA1L), in this model was also
protective, suggesting potential relevance to humans and therapeutic applicability of Hsp70 against
paraquat-induced PD-like symptoms [107]. In support of this idea, increased Hsp70 expression
decreases the activated forms of JNK and p38 in the hippocampus of a rat model of fear memory
consolidation [108].

Selective striatal cell death is a characteristic hallmark of the pathogenesis of Huntington’s
disease [109]. Hsp have been reported to suppress the aggregate formation of mutant huntingtin and
concurrent striatal cell death [110]. Geldanamycin, a benzoquinone antibiotic and Hsp90 inhibitor,
exhibits protective properties against 3-nitropropionic acid-induced apoptosis and JNK activation
via the induction of Hsp70 in striatal cells, suggesting that expression of Hsp70 may be a valuable
therapeutic target in the treatment of Huntington’s disease. Indeed, geldanamycin significantly
attenuates 3-nitropropionic acid-induced JNK phosphorylation and subsequent c-Jun phosphorylation
in striatal cells [111].

Induction of Hsp inhibits both aminoglycoside- and cisplatin-induced hair cell death in whole-organ
cultures of utricles from adult mice [112,113]. Celastrol, a pentacyclic triterpenoid from Tripterygium wilfordii
induces upregulation of Hsp in utricles and provides significant protection against aminoglycoside-induced
hair cell death in vitro and in vivo. Hsp32, the primary mediator of the protective effect of celastrol,
inhibits pro-apoptotic JNK activation and hair cell death [112].

Hsp90 expression is significantly elevated in the retina after hydrogen sulphate (H2S)
preconditioning and exhibits neuroprotection. ERK1/2 and JNK1-3 show specific H2S-dependent
regulation, suggesting protective cross-talk between Hsp90 and JNK signaling [114].

6. HMGB1

HMGB1 is a key alarmin released upon tissue damage. HMGB1 is composed of two tandem box-like
domains, Box A and Box B, each consisting of three helices [115] and is a potent immunostimulant,
acting as an early warning signal to activate innate and adaptive immune systems [61]. There are at least
14 receptor systems proposed to be HMGB1 receptors [116], but only two of them, TLR4 and the receptor
for advanced glycation end products (RAGE), have been verified [117,118]. Other putative receptors are
most likely receptors for other molecules that bind to HMGB1, which, when expressed extracellularly,
is highly inclined to bind numerous immune-activating molecules. These molecular cascades are
clinically relevant regarding HMGB1-dependent inflammation. HMGB1-partner molecules include
deoxyribonucleic acid (DNA), ribonucleic acid (RNA), histones, nucleosomes, LPS, stromal cell-derived
factor 1 (SDF-1), IL-1α, IL-1β, and additional molecules, which are high-affinity ligands of the alleged
HMGB1 receptors [119–124].

It should be noted that RAGE is also a receptor for S100 proteins and β-amyloid [125]. RAGE has
been identified as an upstream regulator of JNK phosphorylation [126]. Ligand binding to RAGE
increases reactive oxygen species (ROS) generation through activation of the nicotinamide adenine
dinucleotide phosphate (NADPH) oxidase [127]. ROS can activate JNK in a variety of ways,
and apoptosis-signal-regulated kinase 1 (ASK1) acts as a bridge in the ROS-mediated activation of
the JNK pathway (see [44]).

HMGB1 is important in oxidative stress signaling, as well as in autophagy and apoptosis, whereas
the mechanisms of autophagy and apoptosis in neurodegenerative diseases are associated with
metabolic impairment [128]. HMGB1-JNK crosstalk is involved in autophagy, which is a tightly
regulated lysosome-dependent catabolic pathway and is implicated in various pathological states in
the nervous system. Autophagy is inhibited after intraperitoneal injection of anti-HMGB1 neutralizing
antibodies in the rat spinal root avulsion model. HMGB1 induces autophagy and activates MAPKs,
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including JNK, in primary spinal neurons. Inhibition of JNK or ERK activity significantly blocks
the effect of HMGB1-induced autophagy in primary spinal neurons. HMGB1-induced autophagy
increases cell viability in primary spinal neurons under oxygen-glucose deprivation conditions.
Therefore, HMGB1 is a critical regulator of autophagy, and HMGB1-induced autophagy plays an
important role in protecting spinal neurons against injury [129]. In dopaminergic neurons in vivo,
HMGB1 attenuates the decrease in tyrosine hydroxylase expression observed in the acute MPTP
(methyl-4-phenyl-1,2,3,6-tetrahydropyridine) induced Parkinsonian mouse model in a JNK- and
RAGE-dependent manner [130,131].

Neuronal death is replicated by exposing primary striatal neurons in culture to 3-nitropropionic
acid. In rat striata intoxicated with 3-nitropropionic acid, elevations in phospho-JNK, cleaved caspase-3,
and the autophagic marker LC3-II, as well as reduction in SQSTM1 (p62), are significantly reduced
by the HMGB1 inhibitor glycyrrhizin. Glycyrrhizin, a triterpenoid compound from Glycyrrhiza
glabra, also significantly inhibits 3-nitropropionic acid-induced striatal damage. 3-Nitropropionic acid,
a mycotoxin, triggers the expression of HMGB1, phospho-JNK, and light chain 3-II (LC3-II) in striatal
neurons, whereas phospho-JNK expression is significantly reduced by shRNA knockdown of HMGB1,
an effect that is reversed by exogenously increased expression of HMGB1 [128].

Stress primes microglia by the release of alarmins, including HMGB1. HMGB1 activates the NLRP3
inflammasome, resulting in proinflammatory IL-1β production. Adult rats exposed to social defeat
stress for eight days were subjected to global ischemia by four-vessel occlusion, a model for clinically
relevant brain injury associated with cardiac arrest. The study showed that stress and global ischemia
exerted a synergistic effect in HMGB1 release, resulting in exacerbation of NLRP3 inflammasome
activation and autophagy impairment in the hippocampus of ischemic animals. Treatment with
progesterone reduces HMGB1 release and NLRP3 inflammasome activation and enhances autophagy
in stressed and unstressed ischemic animals. Pre-treatment with an autophagy inhibitor blocks
progesterone-mediated beneficial effects in microglia. Therefore, modulation of microglial priming
is one of the molecular mechanisms by which progesterone ameliorates ischemic brain injury under
stressful conditions [132]. Moreover, progesterone exerts neuroprotection in AD-like rats via inhibiting
β-amyloid peptide-induced activation of JNK [133].

Tyrosine hydroxylase activity reduces dopamine synthesis and is implicated in the pathogenesis of
PD. HMGB1 upregulates tyrosine hydroxylase expression to maintain dopaminergic neuronal function
through a mechanism dependent on JNK phosphorylation [130].

HMGB1 plays a detrimental role in hippocampal dysfunction caused by hypoxia-ischemia insult in
neonatal mice [134]. Hippocampal dysfunction related to cognitive impairment and emotional disorders
caused by neonatal hypoxic-ischemic brain injury in young children and adolescents has attracted
increasing attention in recent years. Crosstalk between the nervous and immune systems in the context of
hypoxia-ischemia injury may contribute to hippocampal dysfunction. Extracellular HMGB1 functioning
as an alarmin instigates and amplifies inflammatory responses. Administration of different doses of the
HMGB1-specific inhibitor glycyrrhizin reverses the hypoxia-ischemia insult-induced loss of neurons
and myelin in the hippocampal region and neurobehavioral impairments. This neuroprotective effect is
achieved through the inhibition of HMGB1 expression and nucleocytoplasmic translocation, a reduction
in the abnormal expression of proteins associated with the downstream signaling pathway of HMGB1,
a decrease in the inflammatory response, the suppression of increases in microglia/astrocytes, and the
inhibition of hippocampal cell apoptosis [134]. The HMGB1 inhibitor glycyrrhizin also significantly
reduces the mitochondrial inhibitor 3-nitropropionic acid-induced elevations in phospho-JNK [128].

Recent studies suggest that HMGB1 is a key alarmin with a pathogenic role in infectious diseases,
such as viral or bacterial infections. HMGB1 promotes inflammatory cytokine production through
RAGE, TLR2, and TLR4. HMGB1-RAGE interaction also participates in activation of ERK1/2 and JNK
induced by viral infection [32,135]. HMGB1 has received attention as an alarmin by being involved in
both infectious and non-infectious inflammatory conditions. Once released, HMGB1 signals through
various receptors to activate immune cells. Although initial studies demonstrated HMGB1 was a late
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mediator of sepsis, recent findings indicate HMGB1 plays an important role in models of non-infectious
inflammation, such as autoimmunity, cancer, trauma, and ischemia reperfusion injury. Moreover,
unlike its proinflammatory functions, there is evidence that HMGB1 also has restorative effects, leading
to tissue repair and regeneration. The complex functions of HMGB1 suggest it may be an archetypical
alarmin with the potential as a target for treatment in many significant human conditions [136].

7. BAG3

BAG3 can act as an alarmin with different functions inside and outside the cell. c-Jun is involved
in the upregulation of BAG3 [137], which is secreted by different cell types and is able to activate
monocytes through binding to its membrane receptor. By interacting with heat shock protein 70
(Hsp70), BAG3 modulates the activities of this chaperone, including the delivery of client proteins to
the proteasome [138]. BAG3 can also perform Hsp70-independent functions through its interactions
with other proteins involved in apoptosis [139] and cytoskeletal dynamics [140,141]. Intracellularly,
BAG3 sustains the levels of anti-apoptotic factors and other molecules, participates in protein quality
control, drives the cytoskeleton dynamics, and exerts structural and functional roles in myocytes.
In addition, the JNK pathway is associated with the protective response in kidney cancer cells against
proteasome inhibition by mediating induction of BAG3 [142]. The discovery of a secreted BAG3
opened a new field of investigation on tumor development and progression, revealing a role for BAG3
in a new signaling pathway mediated by the BAG3/BAG3 receptor axis, which also includes monocytes
and other stromal cells [143]. In general, BAG3 is a multifunctional protein that is involved in the cell
stress response through its participation in several regulatory pathways that control cell homeostatic
responses under physiological and pathological conditions [143].

Tau is a microtubule-associated protein that is found primarily in neurons. Under pathologic
conditions, such as AD, tau accumulates and contributes to the disease process [144]. In rat primary
neurons, activation of autophagy by inhibition of proteasome activity or treatment with trehalose
results in significant decreases in tau and phospho-tau levels and induces upregulation of BAG3 [145].
Furthermore, proteasome inhibition activates JNK, which is responsible for the upregulation of BAG3
and increases tau clearance, whereas inhibition of JNK or knocking down BAG3 blocks the proteasome
inhibition-induced decreases in tau. These results indicate that BAG3 plays a critical role in regulating
the levels of tau in neurons, and interventions that increase BAG3 levels could provide a therapeutic
approach in the treatment of AD [146].

8. S100 Calcium-Binding Protein B (S100B)

Microglial activation resulting from brain injury is mediated in part by alarmins, which are
signaling molecules released from damaged cells [147]. The nuclear enzyme poly(ADP-ribose)
polymerase-1 (PARP-1) regulates microglial activation and alarmin S100B after brain injury [147].
S100B is a protein localized predominantly to astrocytes [148] and acts either as an intracellular
regulator or an extracellular signaling molecule. Exogenous S100B induces a rapid change in microglial
morphology, upregulates IL-1β, TNF, and inducible nitric oxide (NO) synthase gene expression,
and induces release of MMP-9 and NO in primary microglial cultures and astrocytes [149,150]. Many of
these effects are attenuated in PARP-1(−/−) microglia and in wild-type microglia treated with the
PARP inhibitor, veliparib (ABT-888). PARP-1 inhibition attenuates microglial activation and gene
expression changes induced by S100B injected directly into brain. The anti-inflammatory effects of
PARP-1 inhibitors in acutely injured brain are mediated in part through effects on S100B signaling
pathways [147].

Direct correlation between the increased amount of S100B and demyelination and inflammatory
processes has been demonstrated [151,152]. Pentamidine is a small molecule able to bind and inhibit
S100B involved in the modulation of disease progression in a relapsing-remitting experimental
autoimmune encephalomyelitis mouse model of multiple sclerosis [153]. Pentamidine can delay the
acute phase of the disease and inhibit remission, resulting in amelioration of clinical score when
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compared with untreated relapsing-remitting experimental autoimmune encephalomyelitis mice.
Moreover, pentamidine significantly reduces proinflammatory cytokines expression levels in the
brains of treated versus untreated mice, in addition to reducing NO synthase activity. S100B is
able to modify neuropathology, reducing immune infiltrates and partially protecting the brain from
damage. Thus, pentamidine targeting S100B is considered a novel approach for multiple sclerosis
treatment [153]. Indirect evidence suggests that there may be interplay between S100B and JNK
signaling, as pentamidine causes activation of the JNK signaling pathway [154].

9. IL-33

The function of IL-33 as an alarmin has been demonstrated while studying the injury to
oligodendrocytes [155], astrocytes, and microglia in the hypothalamus [156] and other glial cell-types
in the CNS [155]. Neuropathic pain from injury to peripheral nerves and the CNS represents a major
health care issue. Alarmin IL-33, derived from the spinal cord oligodendrocytes, mediates neuropathic
pain through mechanisms involving JNK and other MAPK signaling in the experimental model of
neuropathic pain in mice. Importantly, IL-33-induced hyperalgesia is markedly attenuated by inhibitors
of JNK and also by inhibitors of glial cells (i.e., microglia and astrocytes) [157].

10. β-Amyloid

During AD pathogenesis, microglial cells bind to soluble β-amyloid oligomers and β-amyloid
fibrils via cell-surface receptors resulting in an inflammatory response [26,158,159]. The β-amyloid
peptide is derived from sequential enzymatic cleavage of the transmembrane region of amyloid
precursor protein, resulting in a 42-amino acid fragment (also known as amyloid β1-42 or amyloid
β42), which has a high tendency to form soluble oligomers and fibrils [160]. Binding of β-amyloid to a
number of receptors on microglial cells results in activation of these cells to produce proinflammatory
cytokines and chemokines and ROS [16]. In response to receptor engagement by β-amyloid, microglial
cells phagocytose β-amyloid fibrils, which are mostly resistant to enzymatic degradation [161].
Notably, inefficient clearance of β-amyloid has been identified as a major pathogenic pathway, which
may be due to increased proinflammatory cytokines and downregulation of β-amyloid phagocytic
receptors [162,163].

JNK is well-known activator of the amyloidogenic pathway in AD. An increase in activation of
JNK is noticeable in AD postmortem brains, suggesting a possible linkage between dysregulation of
the MAPK signaling pathways and AD pathogenesis [164]. Brain tissue from humans with AD have
elevated levels of Ser-phosphorylated (pSer) insulin receptor substrate 1 (IRS-1) and activated JNK.
Amyloid-βpeptide oligomers that accumulate in the brains of AD patients can activate the JNK pathway,
induce IRS-1 phosphorylation at multiple serine residues, and inhibit physiological Tyr-phosphorylated
(pTyr) IRS-1 in mature cultured hippocampal neurons [165]. In addition, JNK activation induces an
intracellular β-amyloid production in neuroblastoma cells [166].

N-formyl peptide receptor (FPR)-2 has been shown to be a functional receptor for serum
β-amyloid and amyloid β42 and thus plays a role in the neurodegenerative processes associated with of
AD [167,168]. FPR2 belong to a class of G-protein-coupled receptors (GPCR). FPR2 is expressed in a wide
variety of cell types, including phagocytes, hepatocytes, epithelial cells, T lymphocytes, neuroblastoma
cells, microglial cells, astrocytoma cells, and microvascular endothelial cells [169]. Notably, FPRs are
broadly expressed in the CNS, where FPR interactions with endogenous ligands have been implicated
in the pathophysiology of several neurodegenerative diseases, including AD [170,171]. Indeed,
FPR2 mediates amyloid β42-induced senescence in neural stem/progenitor cells in the hippocampus
of APP/PS1 mice, an animal model of AD [172]. Recently, it was reported that the expression of
FPR2 in primary microglial cells increased after exposure to amyloid β42 and that the recognition of
amyloid β42 by FPR2 seems to initiate the signaling cascade that results in inflammation. Furthermore,
Zhang et al. [173] found that FPR2 deficiency is associated with improved cognition and reduced tau
phosphorylation in a mouse model of AD.
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11. Cathelicidin (LL-37)

Cationic host defense peptides (CHDPs), also called antimicrobial peptides, function as
antimicrobial and pleiotropic immunomodulatory components of innate immunity. The CHDPs
comprise defensins and cathelicidins, which serve as essential innate regulators in the host tissues in
mammals [174,175]. LL-37 is the only discovered member of the cathelicidin family of antimicrobial
peptides in humans. LL-37 has a broad spectrum of antimicrobial activities and plays a role in various
inflammatory responses [176]. LL-37 is an intrinsic immune effector and modulator present in all
human tissues and is expressed in numerous cell types. Evidence suggests that LL-37 binds to amyloid
β42 and modulates its fibril formation. Therefore, LL-37 and amyloid β42 naturally bind to each other,
and their spatiotemporal expression balance may be essential for AD initiation and progression [177].

Little is known about an interplay between LL-37 and JNK signaling in the CNS. In other cell
types, LL-37 stimulation is associated with an increase in JNK phosphorylation, and the effects of LL-37
are markedly attenuated by selective inhibitors of JNK. Therefore, MAPK signaling is involved in
LL-37-mediated inhibition of inflammation [178]. In immune cells, Cdc42/Rac1-dependent bioactivity
of LL-37 involves GPCR and JNK but not p38 or ERK MAPK signaling [179]. Polysaccharides
from the plant Astragalus membranaceus are an effective immunomodulator used in the treatment of
immunological diseases and can induce the expression of LL-37 in respiratory epithelial cell lines HBE16
and A549. Interestingly, Astragalus polysaccharides significantly elevated the phosphorylation of JNK.
Furthermore, specific inhibitors of p38 MAPK, JNK, and NF-κB block Astragalus polysaccharide-induced
LL-37 synthesis and antibacterial activity [180].

12. Defensins

Defensins are small cysteine-rich cationic host defense peptides displaying either direct
antimicrobial activity and/or immune signaling activities. They are produced by cells of the innate
immune system and epithelial cells [181]. Defensins, secreted by activated neutrophils, penetrate
the blood-brain barrier, reaching into the brain and potentially contributing to neurodegeneration.
Host defense peptides promote recruitment of mast cells, inducing the release of inflammatory
mediators participating in blood-brain barrier disruption. This causes neuropathological changes in
chronic diseases of the CNS, which further interfere with normal expression and regulatory function
of defensins [175]. Impaired expression of defensins by microglia, astrocytes, choroid plexus, and
pericytes may impede glymphatic fluid fluxes and prevent clearance of blood-derived neurotoxic
metabolites in cases of viral infection [182,183]. Notably, expression of β-defensin 3 is increased in
multiple sclerosis patients [184].

The surface layer protein of Lactobacillus helveticus SBT2171 stimulated β-defensin expression by
activating JNK signaling via TLR2 in Caco-2 cells [185]. Flagellin-mediated β-defensin 2 induction in
T84 colon carcinoma cells was significantly reduced by SP600125, an anthrapyrazolone inhibitor of JNK,
but not ERK inhibitors [186]. Similar effects were found in pulmonary BEAS-2B epithelial cells, infected
by Moraxella catarrhalis. However, phosphorylation of JNK was inhibited by β-defensin 3 in human
umbilical vein endothelial cells [187]. SP600125 also significantly suppressed α-defensin-1-induced
MMP-1 production in fibroblast-like synoviocytes [188]. The possible interplay between defensins and
JNK signaling in neuroinflammation remains poorly understood and requires further studies.

13. α-Synuclein

α-Synuclein, a key neurotoxic protein involved in PD, accumulates within the endoplasmic
reticulum both in animal models of α-synucleinopathy and in human PD patients. The extracellular
aggregates of α-synuclein behave like alarmins, whereas the presence of autoantibodies against
α-synuclein species in the cerebrospinal fluid and the serum of individuals with PD implicate the
involvement of innate and adaptive immune responses [189]. α-Synuclein is suggested to have a
fundamental function, both in the neuronal events occurring in PD and in the immune response
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during the disease. It can act directly on immune cells, including microglia, initiating a sterile response
essential for neuronal health and translating in a peripheral immune response. In turn, microglia clear
α-synuclein, preventing upregulation of the molecule, which is crucial to disease progression [190].
Considering that accumulation of α-synuclein is implicated in the pathogenesis of PD, enhancing its
clearance might be a promising strategy in PD treatment. JNK and NF-κB signaling are responsible for
the neuroinflammation during challenge with α-synuclein aggregates [191]. Thus, the JNK pathway
may link the malfunction of α-synuclein with oxidative stress-triggered apoptosis, finally ascribing a
common pathogenic mechanism to both the sporadic and familial forms of PD. JNK activity is pivotal
in the secretory fate of autophagosomes containing α-synuclein [192], and A30P mutant α-synuclein
decreases phospho-JNK levels in midbrain dopaminergic neuron [193]. In addition, the efficacy of
caffeic acid on A53Tα-synuclein degradation is reversed by the JNK inhibitor SP600125 [194]. Therefore,
the crosstalk of α-synuclein and JNK-signaling may be a new target for future neuroprotective therapies.

14. Mitochondrial DNA (mtDNA)

Neuroinflammation is associated with a large array of neurological disorders where mitochondrial
alarmins are a common pathway promoting disease progression [195]. Different stimuli, such as
oxidative stress and impaired quality control, results in mitochondrial constituents including mtDNA
displaced toward intra- or extracellular compartments. Once discarded, mtDNA may act as an alarmin
and trigger innate immune inflammatory responses by binding to danger-signal receptors [195]. It is
currently unknown whether there is an interplay between mtDNA- and JNK-associated signaling
systems. However, oxidative stress may be the common hub where these two systems interfere with
each other.

15. Anti-Alarmin Agents

The experimental studies and clinical trials focusing on individual alarmins involved in
neurological disorders are ongoing. Alarmins/”find-me” signal molecules serve as targets for
the following pharmacological agents: necrostatins, recombinant Fcnb, anti-histone, neutralizing
antibodies, aminophylline, activated protein C, CD24IgG recombinant fission protein, and recombinant
thrombomodulin [31].

The release of alarmins, such as myeloid-related protein 14 (MRP14) and HMGB1, maintains
inflammation. Evidence suggests that paquinimod, an MRP14-inhibitor, and an anti-HMGB1 antibody
can improve clinical outcome as adjunctive therapeutics in a mouse model of pneumococcal meningitis,
and adjunctive inhibition of MRP14 or HMGB1 reduces mortality in mice with pneumococcal meningitis.
However, this effect is lost when the two anti-DAMP agents are given simultaneously, possibly due to
excessive immunosuppression. Anti-DAMP treatment alone is sufficient and superior to alternative
treatment modalities [196]. Therefore, alarmin inhibition has good potential as an adjuvant treatment
approach for pneumococcal meningitis, as it improves clinical outcome and can be given together
with the standard adjuvant dexamethasone without loss of drug effect in experimental pneumococcal
meningitis [196].

A ubiquitous nuclear protein HMGB1 promotes inflammation when released extracellularly after
cellular activation, stress, damage, or death. It operates as one of the most intriguing molecules in
inflammatory disorders via signaling and molecular transport mechanisms. Treatments based on
antagonists specifically targeting extracellular HMGB1 have generated promising results in a wide
array of experimental models of infectious and sterile inflammation [124]. However, clinical studies
are still unavailable. Meanwhile, blocking excessive amounts of extracellular HMGB1, particularly the
disulfide isoform, is an encouraging future clinical opportunity to ameliorate systemic inflammatory
diseases. Therapeutic interventions to regulate intracellular HMGB1 biology must still await a
deeper understanding of intracellular HMGB1 functions, and future research is warranted to evaluate
functional bioactivity of HMGB1 antagonists. Forthcoming clinical studies will require the development
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of antibody-based assays to quantify HMGB1 redox isoforms, which are presently assessed by mass
spectrometry methods [124].

Experimental post-sepsis studies demonstrated that RAGE mediates sepsis-triggered brain
amyloid-β peptide accumulation and tau phosphorylation combined with cognitive impairment.
These deleterious events are substantially prevented by repeated intracerebral injections of anti-RAGE
antibodies in the hippocampus 2–3 weeks after the onset of sepsis, when the rats have clinically
recovered from the acute-stage disease [197].

Apart from targeting alarmins, the downstream signaling molecules, activated upon release of
alarmins, may be considered therapeutic targets. In particular, MAPKs represent promising targets,
which are potentially useful in discovering new drugs with neuroprotective and anti-inflammatory
properties. Among the MAPKs, JNK draws special attention considering that new specific JNK
inhibitors have demonstrated neuroprotective potential in experimental research [44,45,47,80].
Since JNK3 is expressed in the brain and the heart, the development of selective inhibitors for
this isoform may be promising, and therapeutic efficacy of new compounds should be studied in
appropriate models of neuroinflammation.

16. Conclusions

While foreign pathogens and their products have long been known to activate the innate immune
system, the recent recognition of a group of endogenous molecules that serve a similar function has
provided a framework for understanding the overlap between the inflammatory responses activated
by pathogens and injury. The endogenous alarmins are normal cell constituents that can be released
into the extracellular milieu during states of cellular stress or damage and subsequently activate
the immune system. Although alarmins contribute to the host’s defense, they promote pathological
inflammatory responses. Alarmins are also known as DAMP, which are the tissue- and injury-specific
molecular signatures serving as the markers of neurovascular inflammation and the targets for
new promising anti-alarmin drugs. Studying alarmins and associated JNK signaling is promising
regarding finding new therapeutic targets and downstream molecular markers of stressful events.
The alarmins and signaling pathways more frequently associated with the neurodegenerative diseases
comprise β-amyloid [26,158,159], α-synuclein [190,191], defensins [175], exogenous S100B [149,150],
HMGB1 [130,131], Hsp [103], and IL-33 [155]. The origins, receptors and potential biological effects
of alarmins in neuroinflammation are summarized in Table 1. β-Amyloid seems specific for the
nervous tissue [26,158,159]. Among JNK isoforms, JNK3 is predominantly present in the brain, heart,
and testicles [36]. New specific inhibitors of JNK warrant studies focusing on their effects on the
processes induced by release of alarmins from injured cells. There are several factors hampering
advancements of research in this field. First, there is no straightforward classification of alarmins
available, whereas it is essential to classify the alarmins considering their diverse nature. Secondly,
alarmins trigger the activation of many molecular cascades, which in parallel to JNK signaling
involve other MAPKs and alternative signaling pathways (Figure 1). A coherent and holistic view of
these processes is complex and requires a balanced and sophisticated research approach. Moreover,
the mechanisms of how the cells are sensing injury of their microenvironment are also poorly understood.
These processes may involve phenomena beyond the release of alarmins. Some of the mechanisms
are specific, as certain alarmins have the unique receptors. Other mechanisms may be non-specific,
which requires studying the detailed changes in physical-and-chemical homeostasis. Further studies
on the role of alarmins in neuroinflammation and neurodegenerative diseases are warranted with a
focus on downstream signaling pathways. It is also essential to elucidate, in detail, the timing and
targets of alarmins in the activation of many molecular cascades in parallel to JNK.



Cells 2020, 9, 2350 13 of 25

Table 1. The origins, receptors and potential biological effects of alarmins in neuroinflammation

Alarmin Origin Receptor Potential Biological Effects Ref.

HMGB1 Tissue damage TLR4, RAGE ROS-mediated JNK activation;
NADPH-dependent ROS generation;
oxidative stress signaling; autophagy;
apoptosis; metabolic impairment

[119–125]

BAG3 Stressful stimuli Hsc70/Hsp70
ATPase domain

Chaperone-assisted selective
autophagy; hsp70-dependent and
independent functions; maintaining
the intracellular levels of
anti-apoptotic factors and other
molecules; protein quality control;
cytoskeleton dynamics; structural and
functional roles in myocytes

[139–141]

S100 Damaged cells RAGE ROS-mediated JNK activation;
NADPH-dependent ROS generation

[125]

β-amyloid AD pathogenesis RAGE ROS-mediated JNK activation;
NADPH-dependent ROS generation

[125]

S1P Activated platelets
in the vasculature

Phagocytosis
receptors,
including MerTK
and MFG-E8 on
macrophages

Efficient phagocytosis; recruitment
and priming of macrophages;

[75,76]

Spz5 Cell damage or
necrotic death

Toll-1 receptor Prepares, or primes, glia for
phagocytosis in the CNS; activates
M1-relevant ERK1/2 and JNK in
post-ischemic brain

[72,77]

Fractalkine Apoptotic neurons CX3CR1 Activation of the proinflammatory
pathway mediated by NF-κB as an
early response in microglial cells

[78,79]

Hsp Stressful conditions TLR family Inhibition of both aminoglycoside-
and cisplatin-induced hair cell death
in whole-organ cultures of utricles
from adult mice

[112,113]

Hsp32 Trauma;
hemorrhage; H2S
preconditioning

Neuroprotection; mediation of the
protective effect of celastrol; inhibition
of pro-apoptotic JNK activation and
hair cell death

[112]

Hsp70 Necrotic cells;
paraquat-induced
oxidative stress;
caspase-3-mediated
dopaminergic
neuronal cell death

c-Type lectin
receptors (CLR)
and scavenger
receptors (SR)

Reduction of paraquat-induced
oxidative stress, JNK- and
caspase-3-mediated dopaminergic
neuronal cell death; decrease in the
activated forms of JNK and p38 in the
hippocampus of a rat model of fear
memory consolidation

[107]

HSP/c70 Damaged
astrocytes

TLR4 Activation of JNK in macrophage
RAW264.7 cells

[106]

Hsp90 Stressful conditions Glucocorticoid
receptor

Neuroprotection [114]

α-Synuclein PD pathogenesis Innate and adaptive immune
responses; direct effects on immune
cells, including microglia, initiating a
sterile response essential for the
neuronal health and translating in a
peripheral immune response

[189,190]
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AD Alzheimer’s disease;
ADP adenosine diphosphate;
ASK1 apoptosis-signal-regulated kinase 1;
BAG Bcl-2-associated athanogene;
BAG3 BAG family molecular chaperone regulator 3;
BEAS pulmonary epithelial cell line
CHDPs cationic host defense peptides
CNS central nervous system
DAMP damage-associated molecular patterns
DNA deoxyribonucleic acid
ERK extracellular signal-regulated kinase
FPR2 N-formyl peptide receptor 2
GPCR G-protein-coupled receptors
HMGB1 high mobility group box 1
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Hsp heat shock proteins
HSPA1L heat shock protein family A member 1 like
IFN interferon
IL interleukin
IRS-1 insulin receptor substrate 1
JNK c-Jun N-terminal kinase
LC3-II light chain 3
LL-37 cathelicidin
LPS lipopolysaccharide
MAPK mitogen-activated protein kinases
MerTK Mer receptor tyrosine kinase
MFG-E8 milk fat globule epidermal growth factor VIII
MMP matrix metalloproteinase
MRP14 myeloid-related protein 14
mtDNA mitochondrial deoxyribonucleic acid
NADPH nicotinamide adenine dinucleotide phosphate
NF-κB nuclear factor κ light chain enhancer of activated B cells
NLRP3 nucleotide-binding domain leucine-rich repeat (NLR) and pyrin domain

containing receptor 3
NO nitric oxide
PAMP pathogen-associated molecular patterns
PARP-1 poly(ADP-ribose) polymerase-1
PD Parkinson’s disease
PI3K phosphoinositide 3-kinase
Rac1 Ras-related C3 botulinum toxin substrate 1
RAGE receptor for advanced glycation end products
RNA ribonucleic acid
ROS reactive oxygen species
S100B S100 calcium-binding protein B
SBT2171 exopolysaccharides produced by Lactobacillus helveticus
SCARB1 scavenger receptor class B type I
SDF-1 stromal cell-derived factor 1
SIP sphingosine 1-phosphate
Spz5 protein spätzle
Src proto-oncogene tyrosine-protein kinase
TLR Toll-like receptor
TNF tumor necrosis factor.
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