
Hindawi Publishing Corporation
International Journal of Biomedical Imaging
Volume 2011, Article ID 473128, 11 pages
doi:10.1155/2011/473128

Research Article

High-Performance 3D Compressive Sensing MRI Reconstruction
Using Many-Core Architectures

Daehyun Kim,1 Joshua Trzasko,2 Mikhail Smelyanskiy,1 Clifton Haider,2

Pradeep Dubey,1 and Armando Manduca2

1 Parallel Computing Lab, Intel Corporation, 2200 Mission College Boulevard Santa Clara, CA 95054, USA
2 The Center for Advanced Imaging Research, Mayo Clinic, 200 First Street SW, Rochester, MN 55905, USA

Correspondence should be addressed to Armando Manduca, manduca.armando@mayo.edu

Received 30 March 2011; Accepted 3 June 2011

Academic Editor: Yasser M. Kadah

Copyright © 2011 Daehyun Kim et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Compressive sensing (CS) describes how sparse signals can be accurately reconstructed from many fewer samples than required by
the Nyquist criterion. Since MRI scan duration is proportional to the number of acquired samples, CS has been gaining significant
attention in MRI. However, the computationally intensive nature of CS reconstructions has precluded their use in routine clinical
practice. In this work, we investigate how different throughput-oriented architectures can benefit one CS algorithm and what levels
of acceleration are feasible on different modern platforms. We demonstrate that a CUDA-based code running on an NVIDIA Tesla
C2050 GPU can reconstruct a 256 × 160 × 80 volume from an 8-channel acquisition in 19 seconds, which is in itself a significant
improvement over the state of the art. We then show that Intel’s Knights Ferry can perform the same 3D MRI reconstruction in
only 12 seconds, bringing CS methods even closer to clinical viability.

1. Introduction and Motivation

Magnetic resonance imaging (MRI) is a noninvasive medical
imaging modality commonly used to investigate soft tissues
in the human body. Clinically, MRI is attractive as it offers
flexibility, superior contrast resolution, and use of only
nonionizing radiation. However, as the duration of a scan is
directly proportional to the number of investigated spectral
indices, obtaining high-resolution images under standard
acquisition and reconstruction protocols can require a
significant amount of time. Prolonged scan duration poses
a number of challenges in a clinical setting. For example,
during long examinations, patients often exhibit involuntary
(e.g., respiration) and/or voluntary motion (e.g., active
response to discomfort), both of which can impart spatial
blurring that may compromise diagnosis. Also, high tem-
poral resolution is often needed to accurately depict physio-
logical processes. Under standard imaging protocols, spatial
resolution must unfortunately be sacrificed to permit quicker
scan termination or more frequent temporal updates.

Rather than executing a low spatial resolution exam,
contemporary MRI protocols often acquire only a subset

of the samples associated with a high-resolution exam and
attempt to recover the image using alternative reconstruction
methods such as homodyne detection [1] or compressive
sensing (CS). CS theory asserts that the number of samples
needed to form an accurate approximation of an image is
largely determined by the image’s underlying complexity
[2, 3]. Thus, if there exists a means of transforming the
image into a more efficient (i.e., sparse or compressible)
representation, less time may actually be required to collect
the data set needed to form the high-resolution image [4].

Background-suppressed contrast-enhanced MR angiog-
raphy (CE-MRA) is a very natural clinical target for CS
methods. As the diagnosis of many conditions like peripheral
vascular disease are based on both vessel morphology and
hemodynamics, high spatial and temporal resolution images
are consequently needed. CS enables the acquisition of all of
this information in a single exam. Although several authors
(e.g., [5–8]) have successfully demonstrated the application
of CS methods to CE-MRA, the computationally intensive
nature of these applications has so far precluded their clinical
viability (e.g., published CS reconstruction times for a single
3D volume (CE-MRA or not) are often on the order of

mailto:manduca.armando@mayo.edu

2 International Journal of Biomedical Imaging

hours [4, 7, 9–11]). As the results of a CE-MRA exam are
often needed as soon as the acquisition completes (either
for immediate clinical intervention or to guide additional
scans), it is not practical to wait for the result of any currently
implemented CS reconstructions. Instead, linear or other
noniterative reconstructions that can be executed online
(e.g., [12]) must be used even if they provide suboptimal
results.

With the goal of reducing CS+MRI reconstruction times
to clinically practical levels, several authors have recently
considered the use of advanced hardware environments
for their reconstruction implementations. Most of these
techniques have focussed on the reconstruction of MRI data
acquired using phased-array (i.e., multicoil) receivers, as
this is the dominant acquisition strategy used in clinical
practice. Chang and Ji [13, 14] considered a coil-by-
coil approach to reconstructing phased-array MRI data.
Although this strategy leads to natural task parallelization,
with each element of a multicore processor independently
handling the reconstruction on one coil image, they only
demonstrated reconstruction times on the order of minutes,
per 2D slice which is not clinically viable. Moreover, disjoint
reconstruction of phased-array MRI data is well known
to exhibit suboptimal performance when compared against
joint reconstruction strategies like SENSE [15] and GRAPPA
[16] and so, this strategy is of limited utility. Murphy et
al. [17] later demonstrated that the SPIRiT reconstruction
algorithm [18], which is a generalization of GRAPPA [16],
can be significantly accelerated using graphics processors.
They generated high-quality parallel image reconstructions
in on the order of minutes per 3D volume, representing a
significant advance towards clinical feasibility. More recently,
Trzasko et al. [7, 8, 19] demonstrated CS reconstructions of
time-resolved 3D CE-MRA images acquired using parallel
imaging and a state-of-the-art Cartesian acquisition with
a projection-reconstruction-like sampling (CAPR) strategy
[12] also in a matter of only minutes per 3D volume using
an advanced code implementation on a cluster system [20].
Their algorithm, which is essentially a generalization of
SENSE [15] that employs auxiliary sparsity penalties and
an efficient inexact quasi-Newton solver, was demonstrated
to yield high quality reconstruction of 3D CE-MRA data
acquired at acceleration rates upwards of 50x.

In this paper, we focus on Trzasko et al.’s CS+MRI
reconstruction strategy for 3D CE-MRA and investigate the
development, optimization, and performance analysis on
several modern parallel architectures, including the latest
quad- and six-core CPUs, NVIDIA GPUs, and Intel Many
Integrated Core Architecture (Intel MIC). Our optimized
implementation on a dual-socket six-core CPU is able to
reconstruct a 256× 160× 80 volume of the neurovasculature
from an 8-channel, 10x accelerated (i.e., 90% undersampled)
data set within 35 seconds, which is more than a 3x improve-
ment over other conventional implementations [8, 19].
Furthermore, we show that our CS implementation scales
very well to the larger number of cores in today’s throughput-
oriented architectures. Our NVIDIA Tesla C2050 implemen-
tation reconstructs the same dataset in 19 seconds, while our
Intel’s Knights Ferry further reduces the reconstruction time

to 12 seconds, which is considered clinically viable. Finally,
our research simulator shows that the reconstruction can be
done in 6 seconds on 128 cores, suggesting that many-core
architectures are a promising platform for CS reconstruction.

2. Methods

2.1. Acquisition and Recovery of CE-MRA Images. Following
[12], CAPR adopts a SENSE-type [15] parallel imaging
strategy. As such, the targeted data acquisition process for
one time frame can be modeled as

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

g1

g2

...

gC

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

ΦF Γ1

ΦF Γ2

...

ΦF ΓC

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
f + n, (1)

where f is a discrete approximation of the underlying image
of interest, Γc is the cth coil sensitivity function, F is the 3D
discrete Fourier transform (DFT) operator, Φ is a (binary)
sampling operator that selects a prescribed subset of k-
space values, n is complex additive white Gaussian noise
(AWGN), and gc is signal observed by the cth coil sensor. As
described in [19], raw CAPR k-space data is background-
subtracted and view-shared prior to execution of the CS
reconstruction procedure. We let hc(t) denote the result after
such preprocessing of gc.

It was demonstrated in [8, 19] that background-
suppressed CE-MRA images acquired by systems of the form
in (1) can be accurately recovered by (approximately) solving
the following unconstrained optimization problem:

ṽ = arg min
v

J(v), (2)

where the cost functional

J(v) = α
∑
n∈η

P(Dnv) +
C∑

c=1

‖ΦF Γcv − hc‖2
2, (3)

Dn is the finite spatial difference operator for some offset
direction n (in the neighborhood η), and the penalty
functional

P(v) =
∑

x∈Ω
ρ(v(x)), (4)

for some concave metric functional ρ(·) [21]. Following [7],
the nonconvex Laplace functional

ρ(·) = 1− exp
(
σ−1|·|), σ ∈ [0,∞) (5)

is herein adopted. Although not considered here, the �1-
norm (ρ(·) = | · |) could also be used if so desired.

2.2. Numerical Optimization. In [7], an efficient inexact
quasi-Newton algorithm was proposed for (approximately)
solving (2) to reconstruct CAPR CE-MRA images. For
completeness, this algorithm is briefly reviewed. Recall that

International Journal of Biomedical Imaging 3

complex quasi-Newton iterations [22] are typically of the
form

vi+1 = vi − B−1(vi)L(vi), (6)

where the gradient of J(v) (taken with respect to v [23]) and
B(·) is an approximation of the complex Hessian of J(v).
The term “inexact” arises when Δi is only approximately
determined, such as via truncated conjugate gradient (CG)
iteration. More specifically, given (3),

L(vi) = α
∑
n∈η

D∗nΛ(Dnvi)Dnvi

+
C∑

c=1

Γ∗c F ∗Φ∗(ΦF Γcvi − kc(t)),

(7)

where the (ε > 0 smoothed) diagonal operator

Λ(Dnvi)(x,x) = 1
2|[Dnvi](x)|εi

·
∂ρ
(
|[Dnvi](x)|εi

)

∂|[Dnvi](x)|εi
. (8)

In their work, Trzasko et al. [8, 19] adopted the following
analytical linear Hessian approximation:

B(vi) = α

2

∑
n∈η

D∗nΛ(Dnvi)Dn +
C∑

c=1

Γ∗c F ∗Φ∗ΦF Γc, (9)

which can be considered a generalization of Vogel and
Oman’s “lagged diffusivity” model [24] for total variation
(TV) denoising and deblurring. For improved convergence,
decreasing continuation is also performed on the functional
smoothing parameter, ε [25].

In [19], an efficient C++ implementation of the
above algorithm employing the templated class frame-
work described by Borisch et al. [20] and both the
MPI (http://www-unix.mcs.anl.gov/mpi/) and OpenMP
(http://www.openmp.org/) libraries was described and exe-
cuted on an 8-node dedicated reconstruction cluster, where
each node had two 3.4 GHz Intel Xeon processors and
16 GB memory. For a single 256 × 160 × 80 head volume
reconstruction from 8-channel data and only 6 difference
neighbors, reconstruction times of slightly less than 2
minutes were reported. Although these times represent a
significant advancement over other existing works, they are
still too long for routine clinical use.

3. Experiments

We used five datasets (two artificial and three clinical) to
analyze the CS performance on three platforms: Intel CPUs,
NVIDIA GPUs, and Intel MIC.

3.1. Experimental Data and Reconstruction Specifications.
Five datasets are used for our experiments, whose volume
size and memory footprint are: (256 × 64 × 64, 224 MB),
(256× 160× 32, 280 MB), (256× 160× 80, 700 MB), (256×
160×84, 735 MB), and (256×160×88, 770 MB), in the order
of dataset 1 to 5, respectively. Datasets 1 and 2 were artificially

generated, Dataset 3 represents a noncontrast-enhanced
brain, and Datasets 4 and 5 represent contrast-enhanced
vasculature. All MRI data were acquired on a 3T GE Signa
scanner (v.20) using an 8-channel head array using the CAPR
acquisition sequence. Prior to reconstruction, view sharing
was performed on datasets 3–5, and background reference
subtraction on dataset 4 and 5 as described in [12]. For
all experiments, 5 outer and 15 inner (CG) iterations were
executed under W = 1 (corresponding to 26 finite difference
neighbors). ε-continuation (0.1 reduction) was performed at
each outer iteration. Figure 1 shows the current clinical [12]
and CS-type reconstruction [19] results for dataset 5. The CS
reconstruction results for all versions optimized for different
architectures discussed below were visually identical to that
shown here. All architectures are compliant with IEEE single-
precision floating-piont arithmetic standard [26].

3.2. Computing Architectures

Intel Core i7 Processor. The Intel Core i7 processor is an
×86-based multicore architecture which provides four/six
cores (731 M/1.17 B transistors) on the same die. It features
a superscalar out-of-order core supporting 2-way hyper-
threading and 4-wide SIMD. Each core is backed by 32 KB L1
and 256 KB L2 caches, and all cores share an 8 MB/12 MB L3
cache. Quad and six-core CPUs provide 100 Gflops and 135
Gflops of peak single-precision computation respectively,
as well 32 GB/s of peak memory bandwidth. To optimize
CS on Core i7 processors, we took advantage of its SSE4
instructions using the Intel ICC auto-vectorizing compiler
as well as hand-vectorization intrinsics. We parallelized the
code with OpenMP and adopted a highly optimized FFT
implementation from Intel’s Math Kernel Library (MKL)
10.2.

NVIDIA Tesla. The NVIDIA Tesla C2050 [27, 28] (3 B
transistors) provides 14 multiprocessors, each with 32 scalar
processing units that share 128 KB of registers and a 64 KB
on-chip memory. 32 scalar units are broken into two
groups, where each group runs in lockstep. It features a
hardware multithreading, which allows hundreds of thread
contexts running concurrently to hide memory latency.
All multiprocessors share a 768 KB L2 cache. The on-chip
memory is software configurable, and it can be split into a
48 KB cache and a 16 KB shared memory space, or vice versa.
Its peak single-precision computing performance is about
1.03 Tflops and its on-board GDDR memory provides up to
144 GB/s bandwidth. We used the CUDA [29] programming
environment to implement CS on Tesla C2050. CUDA allows
programmers to write a scalar program that is automatically
organized into thread blocks to be run on multiprocessors.
CUDA provides an open source FFT library (CUFFT 3.1
[30]) although more optimized FFT implementations such
as Nukada and Matsouka’s [31] have been published.

3.2.1. Intel’s Knights Ferry. Intel MIC is an Aubrey Isle- [32]
based platform and Intel’s Knights Ferry [33] is its first
silicon implementation with 32 cores running at 1.2 GHz.

http://www-unix.mcs.anl.gov/mpi/
http://www.openmp.org/

4 International Journal of Biomedical Imaging

(a) (b)

(c) (d)

Figure 1: Sagittal maximum intensity projection (MIP) images (column 1) and coronal cross-section images (column 2) for test data set
5. (a-b) represent the current clinical reconstruction protocol result, and (c-d) represent the CS reconstruction. Note the relatively superior
vascular conspicuity and parotid gland homogeneity in the CS reconstruction images.

It is an ×86-based many-core processor based on small
in-order cores that combines the full programmability of
today’s general-purpose CPU architectures with the compute
throughput and memory bandwidth capabilities of modern
GPU architectures. Each core is a general-purpose processor,
which has a scalar unit based on the Pentium processor
design, as well as a vector unit that supports 16 32-bit float
or integer operations per clock. It is equipped with two levels
of cache: a low latency 32 KB L1 cache and a larger globally
coherent total 8 MB L2 cache that is partitioned among the
cores. It offers a peak throughput of 1.2 Tflops (single-
precision). Because Intel MIC is based on ×86, it provides
a natural extension to the conventional ×86 programming
models. Thus, we could use similar data and thread level
implementation as on Core i7 processors.

3.3. Assessment of Computational Burden. Figure 2(a) shows
the overview of our CS implementation. The targeted CS
reconstruction algorithm is composed of multiple iterations
of 3D matrix arithmetics. We divide the reconstruction

model outlined in (6) into six stages based on the loop
structure (denoted as Stage1, Stage2, etc.). More specifically,
Stage1, Stage2, and Stage3 correspond with computation of
the left and right terms of (7), respectively. Analogously,
Stage4, Stage5, and Stage6 correspond with computation
of the left and right terms of (9), respectively. Each stage
performs a series of matrix computations such as elemen-
twise additions and 3D FFTs. The pie chart in Figure 2(b)
shows the execution time breakdown of the key kernels.
FFT3D (performed in Stage2 and Stage5) is the most time-
consuming and accounts for 46% of the total execution time.
To achieve optimal performance, FFT requires architecture-
specific optimization. Thus, we use the best FFT libraries
available for each architecture. Simple elementwise matrix
arithmetics (Matrix) are the second most time-consuming
kernels. Because they stream large amount of data from/to
the main memory, our optimizations focus on hiding latency
and utilizing bandwidth efficiently. Diff3D (in Stage1 and
Stage4) calculates the differences from the original matrix
to its shifted copy. Since the same data are used multiple

International Journal of Biomedical Imaging 5

5×

for

for (main iteration)

Stage 1

(NC Iteration)
Stage 2

{

[

[

[

[

{

}

}

Stage 3

Stage 4

Stage 5
(NC iteration)

Stage 6

27×

8×

15×
27×

8×

for

(CG iteration)for

or (dx : −w tow)
f

f

or (dx : −w tow)f

f
or (dy : −w tow)

for (dy : −w tow)

or (dz : −w tow)

for (dz : −w tow)

(a)

Matrix
33%

Geval
7%

Diff3D
14%

FFT3D
46%

(b)

Figure 2: (a) CS implementation overview. (b) Execution time breakdown.

times, we block the matrix to exploit data reuse in fast on-die
memories. GEval (in Stage1 and Stage3) performs transcen-
dental operations such as division and exponentiation that
are implicit within (8). On GPUs, we take advantage of fast
math functions; however, the performance gain due to the
faster math is marginal because GEval comprises only 7% of
the total execution time.

4. Architecture-Aware Optimization

Architecture-aware optimization can improve performance
significantly. Naive implementation often misses a large
amount of performance potential. In order to realize
maximum performance potential, we discuss a number
of important architecture-aware optimizations for our CS
implementation. Our optimization techniques are general,
and thus can be applied to all three architectures (CPU, GPU,
and Intel MIC). In particular, since a CPU and MIC share the
same programming model, an optimized CPU code can be
ported to Intel MIC without much modification. However,
the CUDA programming model is quite different from a
CPU’s. It requires significant effort to port a CPU code to
GPUs, and it may be easier to program it from scratch for
GPUs.

4.1. Vectorizing and Multithreading. We take advantage
of modern parallel architectures through vectorizing and
multithreading our CS implementation. The main data
structures in CS are 3D matrices. Because each element of
the matrix is computed independently in most kernels, we
exploit the element-level parallelism. In other words, we can
pack multiple elements into a vector computation and/or
divide elements among multiple threads arbitrarily, without
concern of data dependency.

We start by vectorizing the inner-most loop of 3D
matrix kernels. A kernel is usually is composed of three
nested loops for each of the dimensions, x, y, and z, as
shown in Figure 3(a). Because there is no data dependency
between elements, it is possible to vectorize within any of
the iterations. However, it is most efficient to vectorize the
inner-most loop, since it exhibits sequential memory accesses
along the x axis. Vectorization along the y or z axis requires
gathering elements from nonsequential memory locations,
resulting in poor performance. In addition, most loops in CS
do not contain data-dependent control flow diversions (i.e.,
“if” statements), which helps maintain high vector efficiency.

Second, we perform 3D partitioning of the 3D matrix
evenly among multiple threads, as shown in Figure 3(b).
For each partition, the computation requirement is almost
identical, and memory access patterns are very regular.
Thus, our coarse-grain static partitioning provides good
load balancing. Though fine-grain dynamic partitioning may
provide better load balancing, it gives rise to interthread
communication overhead. In dynamic partitioning, a par-
tition that is assigned to a thread at one stage may be
assigned to another thread at another stage, which incurs
data communication from the initial thread to the next. In
our static partitioning, a partition is always assigned to the
same thread throughout multiple stages, thus interthread
communication is not required.

It is not trivial to vectorize and multithread FFT due to its
butterfly access patterns and bit-reversal element shuffling.
However, this has been studied for decades and optimization
techniques are well known. FFT3D optimization in our CS
implementation uses techniques discussed in [34], details of
which are out of scope of this paper.

4.2. Loop Fusion. Our CS implementation performs a series
of simple elementwise matrix operations. For example,

6 International Journal of Biomedical Imaging

for (i = 0; i < Z; i + +)

for (j = 0; j < Y ; j + +)

{

{

{

}
}

}

...

// z-axis

// y-axis

// x-axis

for (k = 0; k < X ; k+ = VECTOR WIDTH)

// Vector Computations

(a)

Thread 0 Thread 1

Thread 2 Thread 3

(b)

Figure 3: (a) Vectoring 3-nested loop. (b) Multithreading 3D matrix.

Input
matrix

A

Input
matrix

B

Temp
matrix

Temp
matrix

Temp
matrix

Temp
matrix

Output
matrix

D

Output
matrix

C

Element

multiply

Element

multiply

Exponential

math

Element
square

multiply

Element

add

Figure 4: Example of loop fusion applied for Stage3.

Figure 4 shows a high-level overview of Stage3 which corre-
sponds to assembly of the cost functional gradient defined
in (7) following construction of its elements in Stage1
and Stage2. This stage is composed of five computation
substages for two input matrices, A and B, and two output
matrices, C and D. More specifically, A contains the set of all
intermediary data generated using Diff3D and B contains the
set of all intermediary data generated using FFT3D. C then
corresponds to the weighting matrix defined in (8), whereas
D is the entire composite variable in (7). One possible
implementation is to execute each computation stage entirely
before proceeding to the next state, as illustrated with the
dotted arrows in the figure. For example, we first multiply
matrices A and B, then we perform an exponentiation of
the result, and so forth. While this approach is easy to
implement, its memory behavior is inefficient. Because each
stage sweeps through the entire 3D matrix and the size of
the matrix is usually larger than the last level cache size,
temporary matrices between stages cannot be retained within
the cache, which results in cache thrashing, memory traffic
increase, and, therefore, overall performance degradation. A
better implementation is to block the computation so that
its temporary data is kept within the cache. Main memory

accesses will occur only at the beginning to read the input
matrix and at the end to write the output matrix. We
optimize even further to process the entire computation at
the element level as shown in the solid arrow in the figure. We
read an element from each of matrix A and matrix B, perform
the five computations, and write the result to matrix C and
D. Then, we move onto the next element, and so on. This
optimization is called loop fusion, because it fuses multiple
small loops of individual computations into one big loop of
a combined computation. Because it handles one element at
a time, data can be kept in the registers, which eliminates
the need for the temporary matrix and, therefore, removes
intermediate memory loads/stores completely. Also, because
a fused loop performs more computation before it accesses
the next element, it has more time to hide memory latency
through data prefetches.

4.3. Cache Blocking through Data Partitioning. Most matrix
operations in CS read/write only one element from an
input matrix to an output matrix. Once an element is
processed, the same element is not accessed again. However,
Diff3D requires 27 neighbor elements to compute an output
element. In other words, an input element is reused 27

International Journal of Biomedical Imaging 7

Scheme 1 Scheme 2

Figure 5: Cache blocking through data partitioning.

1 cache line
padding

1 cache line
padding

for
2D XY plane

X-axis

Y-axis

256 elements = 16 cache lines

Figure 6: Cache line padding for 3D matrix.

times for 27 different output elements. To capture the data
reuse, a cache-aware partitioning is required. For brevity,
we explain our optimization with a 2D matrix shown in
Figure 5. To compute an output, it requires 9 surrounding
inputs. Scheme 1 is a cache-ignorant partitioning. It accesses
elements from the beginning to the end of the current row
before accessing elements in the the next row. It fails to
capture data reuse if the matrix is too large. Initially, it caches
the first 3× 3 inputs to calculate the first output. But when it
reaches the end of the row, the first 3× 3 inputs are likely to
be evicted from the cache if the number of elements touched
during the row traversal exceeds the cache size. As a result,
3 × 3 inputs are reloaded from memory to calculate the first
output of the next row even though 2 × 3 of these inputs
have been already read before. Scheme 2 solves this problem
by a cache-aware partitioning. It partitions the matrix in
the middle of the row. Instead of moving to the end of a
row, it stops at the end of the partition and moves down to
the next row. It can reuse the inputs from the previous row
before they are replaced from the cache. When we divide a
matrix into four partitions, scheme 2 will show better cache
behavior than scheme 1. We extend the same cache-aware
data partitioning technique to a 3D matrix to implement
Diff3D.

4.4. Cache Line Padding for 3D Matrix. Though the main
data structure in CS is a 3D matrix, the main memory access
pattern is simple streaming that accesses data from the first
to the last sequentially. However, Diff3D and FFT3D also
access data nonsequentially along the y and z axis. Memory
accesses with a large power-of-two stride show poor cache
behavior due to cache conflicts. For example, this can occur
when multiple data elements from adjacent matrix rows map
to the same cache line. As the result, access to the second

XY Plane 2D FFT

1D FFT on

1D FFT on

1D FFT on

X-axis

X-axis

Z-axis

Z-axis

Y-axis

Y-axis

(cache blocking)

Figure 7: Last-level cache blocking for 3D FFT.

element results in the eviction of the first element from the
cache. To solve the problem, we pad the matrix as shown
in Figure 6. Each row along the X-axis is padded with one
empty cache line at the end. Without padding, accesses along
the Y-axis have stride of 16 cache lines (power of two). We
break the power-of-two stride by adding one extra cache line
per row, which will reduce cache conflict misses. Note that,
in addition to the padding at the end of row along the X-axis,
we may also need to add another padding at the end of each
XY 2D plane, if the size of Y dimension is also power of two.

4.5. Last-Level Cache Blocking for 3D FFT. 3D FFT can be
computed as multiple 1D FFTs along the X-, Y- and Z-axis.
For a 256 × 160 × 80 matrix as our reference dataset, we
can first perform 12800 256-point 1D FFTs along the X-axis,
followed by 20480 160-point 1D FFTs along the Y-axis, and
finally 40960 80-point 1D FFTs along the Z-axis. However,
performing 1D FFTs, one axis at a time is not cache efficient,
because it requires sweeping the entire matrix, which incurs
a lot of cache misses due to the fact that the matrix does
not fit into last-level cache. Instead, we perform 2D FFTs
for each 2D XY plane, then we perform 1D FFTs for the z
axis, shown in Figure 7. For a given z axis value, we preload
the corresponding XY plane to the cache, perform 1D FFTs
along the X-axis then the y axis (a 2D FFT for the entire XY
plane), and then store the resulting XY plane to the memory.
Because last-level caches are usually larger than a single XY
plane (320 KB for the reference dataset), our XY plane cache
blocking is very effective in reducing memory bandwidth
requirements. Note that larger last-level caches in Intel Core
i7 processor and Intel’s Knights Ferry than Tesla C2050 are
beneficial for the 2D cache blocking. As each thread/core
works on a different XY plane, multiple 2D blocks should be
kept in the cache. In addition, as the size of datasets increases,
the corresponding 2D blocks also get larger. Therefore, to
achieve good system-level and dataset-level scalability, large
last-level caches are critical.

4.6. Synchronization: Barrier and Reduction. CS is composed
of a large number of parallel stages separated by global
barriers (routines that synchronize threads in a parallel

8 International Journal of Biomedical Imaging

Base MKL Vector Tile

E
xe

cu
ti

on
ti

m
e

(s
)

Sp
ee

du
p

Execution time
Speedup

175

152

127
116 116

73

561
1.15

1.38
1.51 1.51

2.39

3.21

0

20

40

60

80

100

120

140

160

180

200

0

0.5

1

1.5

2

2.5

3

3.5

1
thread

2
thread

4
thread

Figure 8: Impact of optimization on a quad-core CPU.

system). When threads finish computation in the parallel
region, they synchronize on a barrier before proceeding to
the next parallel region. Efficient barrier synchronization is
paramount for high scalability. On a system with a small
number of cores such as Intel Core i7 processor, barrier
overhead is only ∼2% of total execution time. But as we
increase the number of threads (i.e., 128 threads on Intel’s
Knights Ferry), we observe up to ∼10% overhead with
our hand-optimized barrier implementation. Without the
optimized barrier, the synchronization overhead would be
too large, therefore resulting in poor performance. On GPUs,
the barrier overhead is even worse. We implement a global
barrier by launching a new kernel, that is, synchronizing
with CPU, which costs one kernel launch overhead at
minimum. While there exist faster barrier implementations
that run entirely on GPU, they require nonstandard memory
consistency model assumption.

Another synchronization primitive used in CS is reduc-
tion. In Stage3 and Stage6, it reduces a 3D matrix to
one scalar value. To implement this reduction, we used a
software privatization technique. Each thread performs local
reduction into its private scalar variable. After all threads are
done, the global reduction is performed, which aggregates all
local values. To implement the global reduction, we use an
atomic memory operation. While atomics are generally slow
on modern parallel architectures, their overhead in our CS
implementation is small, due to the small fraction of time
spent in the global reduction.

5. Results

We compare performance of our CS implementation on
three modern parallel architectures and provide in-depth
performance analysis from a computer architecture perspec-
tive.

5.1. Impact of Performance Optimization. We applied the var-
ious optimizations discussed in Section 4 to our CS imple-
mentation. We demonstrate the impact of each individual

optimization on overall performance. Figure 8 shows the
performance improvement of our CS implementation first
as a single-threaded program on an Intel Core i7 pro-
cessor as we incrementally applied our optimizations and
subsequently as a multithreaded program. The vertical bar
represents the execution time in seconds for each optimiza-
tion step, and the line shows the corresponding relative
speedup over the baseline, Base, which is the original single-
threaded implementation of the algorithm compiled with the
highest level of optimization, including autovectorization,
function in-lining, and interprocedural optimization. As our
first optimization, we replaced the FFTW [35] used in the
original implementation with the faster Intel MKL. This
results in a 1.15x speedup as represented by the second
bar MKL. Second, we hand-vectorize the codes that can
not be autovectorized by the compiler. Hand-vectorization
provides an additional 1.19x speedup (Vector). Third, we
apply cache blocking to exploit data reuse in the Diff3D
kernel, which shows another 1.10x speedup (Tile). Through
these three single-thread optimizations, we achieve an overall
1.51x speedup over the baseline implementation. To take
advantage of multiple cores/threads, we parallelize the appli-
cation. For FFT3D, we use the parallel implementation of the
MKL library, and for the other kernels, we hand-parallelize
using the OpenMP library. Parallelization achieves another
1.58x speedup on two cores over the single-core baseline and
a 2.14x speedup on four cores. Overall, by combining the
single-thread optimization and the multithread paralleliza-
tion, we achieve a 3.21x performance improvement from the
baseline implementation, which reduces the total execution
time from 175 seconds (Base) to 56 seconds (4 Cores).

5.2. Performance Comparison: CPU, GPU, and Intel MIC.
Figure 9 compares CS performance on three architectures:
Intel dual-socket six-core Core i7 processor (Intel Xeon
processor X5670 at 2.93 GHz), NVIDIA Tesla C2050 (at
1.15 GHz attached to Intel Core i7 processor 960 at 3.2 GHz),
and Intel’s Knights Ferry (at 1.2 GHz attached to Intel Core
i7 processor 960 at 3.2 GHz). We normalize the speedups
with respect to the optimized quad-core Core i7 processor
(Intel Core i7 processor 975 at 3.33 GHz) implementation
(56 second runtime) from the previous section and show
them only for dataset 1, 2, and 3. Since their dimensions
are similar, the performance results for datasets 4 and 5
are correspondingly very similar to those for dataset 3 in
terms of both execution time and relative performance across
different architectures. Thus, for the sake of brevity, only
the results for dataset 3 are shown in Figure 9. For Tesla
C2050 and Knights Ferry, we show two speedup bars: one
without data transfer overhead from the CPU host and
the other with the overhead. The data transfer overhead
results in small performance degradation, because CS spends
significant time performing computation, and can hide most
of the data transfer time.

The dual-socket six-core Core i7 processor (total 12
cores) performs about 1.6x faster (35 s) than the quad-core
CPU (56 s), thanks to the increased core count and memory

International Journal of Biomedical Imaging 9

No PCI-E transfer overhead
With PCI-E transfer overhead

0

2

4

6

8

10

12

R
el

at
iv

e
sp

ee
du

p

Tesla
C2050

Knights
Ferry

Tesla
C2050

Knights
Ferry

Tesla
C2050

Knights
Ferry

1.6 1.6 1.9 1.8

6.8
6.2

5.4 5.1

1.6

3 2.9

4.6 4.5

7.5

9.9

256× 64× 64 256× 160× 32 256× 160× 80

Dual-Socket
Core i7

Dual-Socket
Core i7

Dual-Socket
Core i7

Figure 9: Performance comparison between Dual-Socket Core i7, Tesla C2050, and Knights Ferry with respect to Quad-Core Core i7.

Table 1: Performance analysis.

Kernel
Execution time

breakdown
Speedup of Knights

Ferry/Core i7

FFT3D 46% ∼4x

Diff3D 14% ∼6x

GEval 7% ∼7x

Matrix 33% ∼4x

Overall 100% 4.6x

bandwidth. The Tesla C2050 GPU platform is 2.9x faster than
the quad-core CPU for dataset 3. However, its performance
exhibits large variance across datasets. Tesla C2050 shows
about 7.5x speedup for dataset 1 but shows only 1.8x speedup
for dataset 2. For dataset 3 (actual clinical data), Knights
Ferry achieves 4.5x speedup over the quad-core CPU, which
is about 1.57x faster than Tesla C2050. Knights Ferry allows
reconstructing the real anatomical dataset within a clinically
feasible 12 seconds, which is a significant improvement over
existing CS implementations.

Note that Core i7 processor and Knights Ferry are more
efficient than Tesla C2050 in terms of resource utilization.
Though Tesla C2050 has about ∼4x peak flops and ∼3x
peak bandwidth than Core i7 processor, it only provides
∼2x performance. Also, while Knights Ferry delivers∼10%±
flops/bandwidth of Tesla C2050, Knights Ferry shows about
55% speedup over Tesla C2050. Finally, Tesla C2050’s big
performance variance across datasets is due to FFT opti-
mization. We believe that CUFFT 3.1 is specially optimized
for small power of two datasets like dataset 1. Thus, its
FFT performance on dataset 1 is significantly better than on
dataset 2 and 3.

6. Discussion

To elucidate the apparent impact architecture choice has on
CS performance, we now provide an in-depth discussion on

the performance of kernel-level operations. We then discuss
the parallel scalability of CS performance to address future
CMP systems.

6.1. In-Depth Performance Analysis. We provide further in-
sights into the achieved performance by breaking down the
entire application into small microkernels and analyzing
the microkernels individually. We focus on the Intel quad-
core Core i7 processor and Intel’s Knights Ferry due to
the lack of performance analysis tools in NVIDIA’s CUDA
environments. Table 1 shows the summary of our analysis.
There are two columns for each kernel. The first column
shows the fraction of execution time spent in the kernel
inside the sequential code. The second column shows the
speedup achieved by Knights Ferry over Core i7 processor on
the kernel. Dataset 3 (single-precision complex 256 × 160 ×
80) is used for the analysis.

FFT3D is the most important kernel occupying 46%
of the total execution time. For the reference dataset, the
Intel MKL library achieves ∼30 Gflops on Core i7 processor
and our in-house FFT library achieves ∼175 Gflops on
Knights Ferry, which are the best performances that can
be achieved on both architectures today. Therefore, for
FFT3D, we estimated ∼6x speedup of Knights Ferry over
Core i7 processor and actually obtained ∼4x speedup, which
indicates that we might improve Knights Ferry performance
further.

Diff3D performs a 2-point convolution. It subtracts the
original matrix and its shifted matrix by dx, dy, and dz: out
= In-In Shifted(dx, dy, dz). Because the computation is a
simple subtraction and the data size is large (∼200 MB), it
is bandwidth bound. Considering the memory bandwidth
of Core i7 processor and Knights Ferry, we expected ∼4x
speedup of Knights Ferry over Core i7 processor. In actual
implementation, we achieved ∼6x speedup, which indicates
that Core i7 processor may have room to improve.

10 International Journal of Biomedical Imaging

Speedup

Sp
ee

du
p

Execution time

E
xe

cu
ti

on
ti

m
e

(s
)

1
co

re

2
co

re
s

4
co

re
s

8
co

re
s

16
co

re
s

32
co

re
s

64
co

re
s

12
8

co
re

s

309

152

79

41 22 12 8 6
0

50

100

150

200

250

300

350

0

10

20

30

40

50

60

1 2.03
3.9

7.56

14.16

24.91

37.4

55.19

Figure 10: Performance scalability of future many-core implemen-
tations.

Table 2: Summary of performance across different hardware.

Execution time Speedup

Core i7 processor 1 Core, Not Optimized 175 s 1.0x

Core i7 processor 1 Core, Optimized 116 s 1.5x

Literature Best [19] ∼100 s 1.7x

Core i7 processor 4 Cores 56 s 3.1x

Core i7 processor Dual-Socket 12 Cores 35 s 5.0x

NVIDIA Tesla C2050 19 s 9.2x

Intel’s Knights Ferry (32 Cores) 12 s 14.5x

Research CMP Simulation (128 Cores) 6 s 29.1x

GEval involves transcendental operations. In our
hand-optimized microbenchmark, exponentiation takes∼37
cycles/element in Core i7 processor and∼0.88 cycles/element
in Knights Ferry, and square-root computation takes ∼4.5
cycles/element in Core i7 processor and∼0.56 cycles/element
in Knights Ferry. Based on the microbenchmark perfor-
mance, we estimated ∼8x speedup of Knights Ferry over
Core i7 processor, and its actual performance (∼7x) is close
to our estimation.

Matrix computes simple element-wise arithmetics. In
many cases, it is bandwidth bounded, because computations
are simple addition, subtraction, or multiplication. However,
we also optimize it by fusing multiple computations together
to exploit register and cache blocking. Considering the
peak memory bandwidth on both architectures, Knights
Ferry is expected to be ∼4x faster than Core i7 processor.
Considering the peak floating point performance, Knights
Ferry is expected to be ∼12x faster than Core i7 processor.
In reality, we achieved ∼4x speedup of Knights Ferry over
Core i7 processor, which indicates that the kernel is currently
bandwidth-bound on both architectures.

6.2. Future CMP Scalability. Chip multiprocessors (CMPs)
provide applications with an opportunity to achieve much

higher performance, as the number of cores continues
to grow over time in accordance with Moore’s law. For
CMPs to live up to their promise, it is important that as
the number of cores continues to grow the performance
of the application running on CMPs also increases com-
mensurately. To gain insights into how the CS algorithm
will scale on future many-core architectures, we modeled
a feasible but hypothetical future CMP processor (running
at 1 GHz with 256 KB/core cache) on our cycle-accurate
research simulator and Figure 10 shows its CS performance
scalability. We observe that CS scales well as we increase the
number of cores. In particular, our 64-core configuration
achieves 37x speedup over a single-core configuration, which
is almost 60% parallel efficiency. Moving further, our 128-
core configuration achieves 55x speedup over single-core
configuration which is little less than 50% efficiency. Table 2
compiles the predicted 128-core acceleration together with
the previously discussed results for Intel Core i7 processor,
NVIDIA Tesla C2050, and Intel’s Knights Ferry. Although
a 256 × 160 × 80 data volume may be considered large
by numerical computing standards, it is relatively small
by modern clinical standards and volumes many times
larger are routinely encountered in practice. Moreover, many
contemporary acquisition trends are migrating from single-
phase to time-resolved paradigms, where a 3D “movie” of
dynamic anatomy and physiology (e.g., of contrast flowing
into and out of vessels) is created. Thus, the scalability of
CMPs is paramount to seeing CS-type and other nonlinear
reconstruction methods become practical for such imaging
scenarios. Overall, existing and future many-core architec-
tures are very promising platforms for accelerating the CS
reconstruction algorithm to make it clinically viable.

7. Conclusion

In this work, we have shown that advanced computing ar-
chitectures can facilitate significant improvements in the
performance of CS MRI reconstructions and particularly
that optimized use of modern many-core architectures can
significantly diminish the computational barrier associated
with this class of techniques. This suggests that as many-
core architectures continue to evolve, CS methods can be
employed in routine clinical MRI practice. Although CE-
MRA was targeted in this work, the implication of the results
apply to many other MRI applications as well as other areas
in medical imaging such as dose reduction in computed
tomography.

Acknowledgments

A preliminary version of this work was presented in [36].
The Mayo Clinic Center for Advanced Imaging Research
is partially supported by the National Institute of Health
(RR018898). The authors thank David Holmes III for his
help in establishing the collaboration between Mayo Clinic
and Intel Corporation and Stephen Riederer for providing
them with access to CAPR MRI data.

International Journal of Biomedical Imaging 11

References

[1] D. C. Noll, D. G. Nishimura, and A. Macovski, “Homodyne
detection in magnetic resonance imaging,” IEEE Transactions
on Medical Imaging, vol. 10, no. 2, pp. 154–163, 1991.

[2] E. J. Candès, J. Romberg, and T. Tao, “Robust uncertainty
principles: exact signal reconstruction from highly incomplete
frequency information,” IEEE Transactions on Information
Theory, vol. 52, no. 2, pp. 489–509, 2006.

[3] D. L. Donoho, “Compressed sensing,” IEEE Transactions on
Information Theory, vol. 52, no. 4, pp. 1289–1306, 2006.

[4] M. Lustig, D. Donoho, and J. M. Pauly, “Sparse MRI: the
application of compressed sensing for rapid MR imaging,”
Magnetic Resonance in Medicine, vol. 58, no. 6, pp. 1182–1195,
2007.

[5] M. Lustig, J. Santos, D. Donoho, and J. Pauly, “Rapid MR
angiography with randomly under-sampled 3DFT trajectories
and non-linear reconstruction,” in Proceedings of the 14th
ISMRM Scientific Meeting & Exhibition, p. 695, Seattle, Wash,
USA, May 2006.

[6] T. Çukur, M. Lustig, and D. G. Nishimura, “Improving non-
contrast-enhanced steady-state free precession angiography
with compressed sensing,” Magnetic Resonance in Medicine,
vol. 61, no. 5, pp. 1122–1131, 2009.

[7] J. Trzasko, C. Haider, and A. Manduca, “Practical nonconvex
compressive sensing reconstruction of highly-accelerated 3d
parallel mr angiograms,” in Proceedings of the IEEE Interna-
tional Symposium on Biomedical Imaging, pp. 274–277, July
2009.

[8] J. Trzasko, C. Haider, E. Borisch et al., “Sparse-CAPR: Highly-
accelerated 4D CE-MRA with parallel imaging and nonconvex
compressive sensing,” Magnetic Resonance in Medicine. In
press.

[9] A. Bilgin, T. Trouard, M. Altbach, and N. Raghunand,
“Three dimensional compressed sensing for dynamic MRI,” in
Proceedings of the 16th ISMRM Scientific Meeting & Exhibition,
p. 337, Ontario, Canda, May 2008.

[10] M. Doneva, H. Eggers, J. Rahmer, P. B ornert, and A. Mertins,
“Highly undersampled 3d golden ratio radial imaging with
iterative reconstruction,” in Proceedings of the 16th ISMRM
Scientific Meeting & Exhibition, p. 336, Ontario, Canda, May
2008.

[11] Y.-C. Kim, S. S. Narayanan, and K. S. Nayak, “Accelerated
three-dimensional upper airway MRI using compressed sens-
ing,” Magnetic Resonance in Medicine, vol. 61, no. 6, pp. 1434–
1440, 2009.

[12] C. R. Haider, H. H. Hu, N. G. Campeau, J. Huston, and S. J.
Riederer, “3D high temporal and spatial resolution contrast-
enhanced MR angiography of the whole brain,” Magnetic
Resonance in Medicine, vol. 60, no. 3, pp. 749–760, 2008.

[13] C.-H. Chang and J. Ji, “Compressed sensing MRI with multi-
channel data using multi-core processors,” in Proceedings of the
31st Annual International Conference of the IEEE Engineering
in Medicine and Biology Society (EMBC ’09), pp. 2684–2687,
Minneapolis, Minn, USA, September 2009.

[14] C.-H. Chang and J. Ji, “Compressed sensing MRI with multi-
channel data using multicore processors,” Magnetic Resonance
in Medicine, vol. 64, no. 4, pp. 1135–1139, 2010.

[15] K. Pruessmann, M. Weiger, P. Bornert, and P. Boesinger,
“Advances in sensitivity encoding with arbitrary k-space
trajectories,” Magnetic Resonance in Medicine, vol. 46, no. 4,
pp. 638–651, 2001.

[16] M. A. Griswold, P. M. Jakob, R. M. Heidemann et al.,
“Generalized autocalibrating partially parallel acquisitions

(GRAPPA),” Magnetic Resonance in Medicine, vol. 47, no. 6,
pp. 1202–1210, 2002.

[17] M. Murphy, K. Keutzer, S. Vasanawala, and M. Lustig,
“Clinically feasible reconstruction time for L1-SPIRiT parallel
imaging and compressed sensing MRI,” in Proceedings of the
ISMRM Scientific Meeting & Exhibition, p. 4854, Stockholm,
Sweden, May 2010.

[18] M. Lustig and J. Pauly, “SPIRiT: iterative self-consistent paral-
lel imaging recosntruction from arbitrary k-space,” Magnetic
Resonance in Medicine, vol. 64, no. 4, pp. 457–471, 2010.

[19] J. Trzasko, C. Haider, E. Borisch, S. Riederer, and A. Manduca,
“Nonconvex compressive sensing with parallel imaging for
highly accelerated 4D CE-MRA,” in Proceedings of the ISMRM
Scientific Meeting & Exhibition, p. 347, Stockholm, Sweden,
May 2010.

[20] E. Borisch, R. Grimm, P. Rossmann, C. Haider, and S.
Riederer, “Real-time high-throughput scalable MRI recon-
struction via cluster computing,” in Proceedings of the 16th
ISMRM Scientific Meeting & Exhibition, p. 1492, Ontario,
Canda, May 2008.

[21] J. Trzasko and A. Manduca, “Highly undersampled mag-
netic resonance image reconstruction via homotopic L0-
minimization,” IEEE Transactions on Medical Imaging, vol. 28,
no. 1, Article ID 4556634, pp. 106–121, 2009.

[22] A. van den Bos, “Complex gradient and Hessian,” IEE
Proceedings: Vision, Image and Signal Processing, vol. 141, no.
6, pp. 380–382, 1994.

[23] D. H. Brandwood, “A complex gradient operator and its
application in adaptive array theory,” IEE Proceedings, Part F,
vol. 130, no. 1, pp. 11–16, 1983.

[24] C. R. Vogel and M. E. Oman, “Fast, robust total variation-
based reconstruction of noisy, blurred images,” IEEE Transac-
tions on Image Processing, vol. 7, no. 6, pp. 813–824, 1998.

[25] R. Chartrand, “Exact reconstruction of sparse signals via
nonconvex minimization,” IEEE Signal Processing Letters, vol.
14, no. 10, pp. 707–710, 2007.

[26] D. Stevenson, “IEEE standard for binary floating-point arith-
metic,” Tech. Rep., 1985, http://ieeexplore.ieee.org/xpls/abs
all.jsp?arnumber=30711.

[27] Nvidia’s Next Generation CUDA Compute Architecture:
FERMI, 2009.

[28] TESLA C2050 and C2070 Computing Processor Board, 2010.
[29] NVIDIA, “NVIDIA CUDA Programming Guide, Version

2.3.1,” 2009.
[30] CUDA CUFFT Library 3.1, 2010.
[31] A. Nukada and S. Matsuoka, “Auto-tuning 3-D FFT library

for CUDA GPUs,” in Proceedings of the Conference on High
Performance Computing Networking, Storage and Analysis
(SC ’09), pp. 1–10, ACM, New York, NY, USA, November
2009.

[32] L. Seiler, D. Carmean, E. Sprangle et al., “Larrabee: a many-
core x86 architecture for visual computing,” Proceedings of
SIGGRAPH, vol. 27, no. 3, 2008.

[33] K. Skaugen, ISC 2010 Keynote.
[34] A. C. Chow, G. C. Fossum, and D. A. Brokenshire, “A

programming example: large FFT on the cell broadband
engine,” IBM, 2005.

[35] M. Frigo et al., “The design and implementation of FFTW3,”
Proceedings of the IEEE, vol. 93, no. 2, pp. 216–231, 2005.

[36] D. Kim, J. D. Trzasko, M. Smelyanskiy, C. R. Haider, A.
Manduca, and P. Dubey, “High-performance 3D compressive
sensing MRI reconstruction,” in Proceedings of the IEEE
Engineering in Medicine and Biology Society, pp. 3321–3324,
Buenos Aires, Argentina, August 2010.

http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=30711
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=30711

	Introduction and Motivation
	Methods
	Acquisition and Recovery of CE-MRA Images
	Numerical Optimization

	Experiments
	Experimental Data and Reconstruction Specifications
	Computing Architectures
	Intel Core i7 Processor
	NVIDIA Tesla
	Intel's Knights Ferry

	Assessment of Computational Burden

	Architecture-Aware Optimization
	Vectorizing and Multithreading
	Loop Fusion
	Cache Blocking through Data Partitioning
	Cache Line Padding for 3D Matrix
	Last-Level Cache Blocking for 3D FFT
	Synchronization: Barrier and Reduction

	Results
	Impact of Performance Optimization
	Performance Comparison: CPU, GPU, and Intel MIC

	Discussion
	In-Depth Performance Analysis
	Future CMP Scalability

	Conclusion
	Acknowledgments
	References

