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Abstract
The Human Immunodeficiency Virus type 1 (HIV-1) accessory protein Nef interacts with a

multitude of cellular proteins, manipulating the host membrane trafficking machinery to

evade immune surveillance. Nef interactions have been analyzed using various in vitro as-

says, co-immunoprecipitation studies, and more recently mass spectrometry. However,

these methods do not evaluate Nef interactions in the context of viral infection nor do they

define the sub-cellular location of these interactions. In this report, we describe a novel bi-

molecular fluorescence complementation (BiFC) lentiviral expression tool, termed viral

BiFC, to study Nef interactions with host cellular proteins in the context of viral infection.

Using the F2A cleavage site from the foot and mouth disease virus we generated a viral

BiFC expression vector capable of concurrent expression of Nef and host cellular proteins;

PACS-1, MHC-I and SNX18. Our studies confirmed the interaction between Nef and PACS-

1, a host membrane trafficking protein involved in Nef-mediated immune evasion, and

demonstrated co-localization of this complex with LAMP-1 positive endolysosomal vesicles.

Furthermore, we utilized viral BiFC to localize the Nef/MHC-I interaction to an AP-1 positive

endosomal compartment. Finally, viral BiFC was observed between Nef and the membrane

trafficking regulator SNX18. This novel demonstration of an association between Nef and

SNX18 was localized to AP-1 positive vesicles. In summary, viral BiFC is a unique tool de-

signed to analyze the interaction between Nef and host cellular proteins by mapping the

sub-cellular locations of their interactions during viral infection.

Introduction
The sub-cellular localization of mammalian proteins is coordinated by the membrane traffick-
ing machinery, including a vast network of membrane-bound vesicles and adaptor molecules
[1, 2]. Viruses, such as Human Immunodeficiency Virus type 1 (HIV-1), are able to exploit the
host membrane trafficking machinery and key cellular components to favour viral replication.
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HIV-1 produces 15 viral proteins [3, 4], including a 27 kDa accessory protein termed Nef,
which lacks any known enzymatic activity, but is essential for viral pathogenesis [5, 6]. Nef me-
diates its pathogenic effects by modulating membrane trafficking in infected cells. Notably, Nef
facilitates downregulation of various cell surface molecules, including major histocompatibility
complex-I (MHC-I), which results in attenuation of the immune response by impairing the
presentation of viral antigens to cytotoxic T-lymphocytes (CTLs) [7, 8].

Nef-mediated MHC-I downregulation is primarily orchestrated by protein-protein interac-
tions between Nef and various host cellular proteins [7, 9–12]. This includes the membrane traf-
ficking regulators phosphofurin acidic cluster sorting proteins 1 and 2 (PACS-1 and PACS-2),
which form specific protein complexes with Nef at distinct sub-cellular locations in order to
downregulate MHC-I [7, 9, 12, 13]. In turn, PACS-1 can specifically interact with the coat adap-
tor protein-1 (AP-1) to facilitate Nef mediated sequestration of MHC-I away from the cell sur-
face [7, 13, 14]. The PACS-1/AP-1 interaction, as well as the crystal structure of Nef in complex
with AP-1 andMHC-I, demonstrate that host membrane trafficking regulator proteins, such as
AP-1 and PACS-1, are key for HIV-1 immune evasion [14]. Recently, the interactions between
Nef and PACS proteins have been visualized using bimolecular fluorescence complementation
(BiFC). BiFC is a microscopy technique that localizes protein interactions through the reconsti-
tution of a functional fluorophore upon the interaction of two protein-binding partners each
fused to a non-fluorescent fragment of a fluorophore [15–17]. Although BiFC has demonstrated
that PACS-1 or PACS-2 and Nef interact at distinct sub-cellular compartments, it has not been
shown with concurrent expression from a single plasmid or in the context of viral infection with
other HIV-1 proteins present [9].

This study addresses the current limitations of using BiFC to investigate viral protein inter-
actions through the development of a lentiviral vector that enables simultaneous expression of
Nef with various binding partners from the same vector in the context of a viral infection. To
accomplish this, we utilized a lentiviral expression system yielding pseudovirions modified
such that they only undergo a single round of replication, but are still capable of genomic inte-
gration [18]. The co-expression of transgenes of interest was achieved by inserting the autoclea-
vable 2a (F2A) coding sequence from the foot and mouth disease virus into the previously
described HIV-1 based vector pNL4-3 Δgag/pol eGFP [19–22]. Previous reports have demon-
strated that insertion of an F2A site stalls translation, resulting in the production of cleaved
polyproteins containing a 21 residue carboxy terminal F2A tag and a single proline addition at
the amino terminus [23]. We have used this unique system to express multiple transgenes
fused to split fluorophores, thereby permitting analysis of protein-protein interactions using
BiFC. Our results demonstrate that viral BiFC can be used to study the interaction between
HIV-1 Nef and PACS-1 at both early and late endosomal compartments. The utility of viral
BiFC is highlighted by its ability to provide the distinct sub-cellular localization of the interac-
tion between Nef and MHC-I. In addition, viral BiFC can be used to study novel interactions
between Nef and host membrane trafficking regulators. Indeed, using viral BiFC we demon-
strate for the first time an interaction between Nef and the sorting nexin 18 (SNX18) protein.
Viral BiFC represents a unique tool enabling the visualization of Nef interactions at specific
sub-cellular locations in the context of an HIV-1 infection.

Materials and Methods

Cell Culture
HeLa (ATCC, Manassas, VA) and HEK 293T cells (Life Technologies, Carlsbad, CA) were
grown in complete DMEM containing 10% fetal bovine serum (Life Technologies, Waltham,
WA), 100μg/ml penicillin-streptomycin (Hyclone, Logan, UT), 1% sodium pyruvate,
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1% non-essential amino acids and 2mM L-glutamine (Hyclone). Jurkat E6.1 T-cells (Catalog
number 177; National Institutes of Health, AIDS Research and Reference Reagent Program)
were cultured in RPMI 1640 with supplements as mentioned above. All cell lines were
grown at 37°C in the presence of 5% CO2 and sub-cultured in accordance with
supplier’s recommendations.

Proviral plasmids and cloning strategy
3’ cloning site for Nef fusion proteins: The previously described pNL4-3 Δgag/pol eGFP repli-
cation incompetent HIV-1 proviral vector [19, 20] was used as the base template for modifica-
tion into our final expression vector system. First, primer overlap extension mutagenesis [24]
was used to amplify two fragments flanking the Nef coding sequence in order to remove Nef
and insert XmaI, AgeI and NotI restriction sites, termed the 3’multiple cloning site (MCS).
Specifically, an initial PCR reaction (Reaction I) was performed with primers JD 14 and JD 37
(Table 1) in order to amplify a 316 bp fragment upstream of Nef, containing the 3’MCS restric-
tion sites. A subsequent PCR reaction (Reaction II) amplified a 1157 bp fragment immediately
after the Nef stop codon using primers JD 38 and JD 15 (Table 1). The forward primer in Reac-
tion II contained complementary nucleotides to the 3’MCS restriction sites in JD 37. Products
from Reaction I and II were purified, mixed and amplified (Reaction III) using the flanking JD
14 and JD 15 primers (Table 1). The Reaction III product was inserted into the pNL4-3 Δgag/
pol eGFP base vector using BamHI and NcoI restriction sites in order to generate a pNL4-3
Δgag/pol eGFP with the 3’MCS in lieu of Nef (Fig 1). This 3’MCS is capable of accepting Nef
fusion proteins with various fluorophores. The mStrawberry (mSB) fragment was amplified
from Addgene plasmid 20970 [25]. For the BiFC experiments regions expressing the amino
portion of the Venus fluorophore (VN; amino acids 1–173) or the carboxy portion of the
Venus fluorophore (VC; amino acids 155–238) [15] were inserted in either MCS.

Generation of the F2A cleavage site and 5’MCS
An ApaI site was inserted directly after eGFP in the pNL4-3 Δgag/pol eGFP plasmid (JD 43
and JD 42). Briefly, a PCR reaction was conducted to produce the desired ApaI restriction site
directly adjacent to the MscI restriction site already present in the proviral vector. The product
was then digested with MscI and EcoRI and cloned into the parent vector. Subsequently, to

Table 1. Primers used to construct the lentiviral expression vector.

Primer Sequence

JD 14 GTGAACGGATCCTTAGCAC

JD 15 CCTGCACTCCATGGATCA

JD 37 CCTTGGGCGGCCGCATATACCGGTAAATTTCCCGGGCTTATAGCAAAATCCTTTCCAAGCCCT

JD 38 CCTTGGCCCGGGAAATTTACCGGTATATGCGGCCGCCATCGAGCTTGCTACAAGGGAC

JD 42 GTTGTTGCAGAATTCTTATTATGGCTTCCAC

JD 43 CCTTGGTTGGCCAGGGCCCGTAAAAACAGTACATACAGACAATGGC

JD 106 TAGTGAAACAGACTTTGAATTTTGACCTTCTCAAGTTGGCGGGAGACGTGGAGTCCAACCCCGGGCCCGCAGCAGCATGCGCAGCAACTAGTTAATGGCC

JD 107 CTTAACTAGTTGCTGCGCATGCTGCTGCGGGCCCGGGGTTGGACTCCACGTCTCCCGCCAACTTGAGAAGGTCAAAATTCAAAGTCTGTTTCACTACATG

JD 132 GGTTGGGCATGCATGGCGCTGCGCGCCCGG

JD 142 GCAGCAACTAGTTTACTTATCGTCGTCATCCTTGTAATCTCCGTCCTCGATGTTGTGGCGGATC

JD 144 GCTGCTGCATGCATGGCCGTZATGGCGCCC

JD 165 TGAAGCGCGCACGGCAAG

JD 166 TGCTGCGGGCCCGGCGTTGGACTCCACGTCTCCCGC

doi:10.1371/journal.pone.0125619.t001

Viral BiFC to Study Membrane Trafficking

PLOS ONE | DOI:10.1371/journal.pone.0125619 April 27, 2015 3 / 20



insert the F2A sequences and the 5’MCS, two complementary primers (JD 106 and 107,
Table 1) were engineered to contain the F2A sequence (VKQTLNFDLLKAGDVESNPGP) in
addition to ApaI, SphI and SpeI restriction sites, termed the 5’MCS, plus a 2 bp overhang that
is complementary to the ApaI and SphI cut sites. These primers were annealed together and li-
gated into pNL4.3 ΔGag/pol eGFP with the inserted ApaI cut site (Fig 1; bottom), which was
cut with SphI and ApaI. The resulting plasmid contained unique 5’ restriction cut sites in order
to permit insertion of foreign genes. To generate the F2A (null) control vector, primer overlap
extension mutagenesis was performed to mutate the penultimate proline to an alanine. First, a
forward primer was generated upstream of the F2A site containing a PauI restriction site (JD
165). Second, a reverse primer was engineered to contain the F2A mutation with an adjacent
ApaI site (JD 166). A subsequent PCR was conducted using F2A mSB-Flag Nef-eGFP as a tem-
plate, and the product was inserted into the F2A vector utilizing the PauI and ApaI restriction
sites, thereby replacing the functionally active F2A with the non-functional mutant.

To generate the MHC-I (HLA-A2 allele) and SNX18 BiFC constructs, products were ampli-
fied from expression plasmids containing cDNA sequences for MHC-I-VN (JD 144 and JD
142; Table 1) or SNX18-VN, (JD 132 and JD 142; Table 1, SNX18 cDNA was provided by Rytis
Prekaris; University of Colorado Denver) then cloned into the viral vector using the SpeI and
SphI cut sites. To engineer the F2A-MHC-I-mCherry ΔNef viral vector, we digested the paren-
tal backbone of F2A-MHC-I-mCherry Nef-GFP with PauI and EcoRI and cloned the product
into a pNL4-3 ΔNef construct generating an F2A-MHC-I-mCherry ΔNef viral vector.

Pseudovirus production and processing
Pseudovirions were produced in HEK 293T cells. Cells were triple transfected using PolyJet
(FroggaBio, Toronto, ON) with pNL4-3 Δgag/pol eGFP or the modified variants, as well as
pdR8.2 and pMD2.G as previously described [26]. Pseudovirus was harvested 48 hours post-
transfection. Briefly, virus-containing media was first centrifuged at 3000xg for 5 minutes and

Fig 1. Construction of an HIV-1 derived lentiviral expression system harboring an F2A peptide and twomultiple cloning sites. The pNL4-3 Δgag/pol
eGFP vector (top) was engineered to contain the self-cleaving F2A peptide followed by a 5’MCS (ApaI, SphI and SpeI), to introduce various transgene fusion
proteins of interest. A MCS was introduced at the 3’ end in order to insert various Nef fusion proteins (XmaI, AgeI and NotI). (MCS: multiple cloning site; FL1:
fluorophore fused to transgene of interest in the 5’MCS; FL2: fluorophore fused to Nef in the 3’MCS).

doi:10.1371/journal.pone.0125619.g001
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subsequently filtered. The filtered supernatant was supplemented with an additional 10% FBS
prior to storage at -80°C.

Western Blots, Antibodies and Infections
Jurkat E6.1 T-cells or HeLa cells were infected with various pseudoviruses for 48 hours, at which
point infected cells were washed once with phosphate buffered saline (PBS) and subsequently
lysed in lysis buffer (0.5MHEPES, 1.25MNaCl, 1MMgCl2, 0.25M EDTA, 0.1% Triton X-100
and 1X complete Protease inhibitor Tablets (Roche, Indianapolis, IN). Cells were incubated on a
rotator for 20 minutes at 4°C before removing insoluble cellular debris by centrifugation at
20,000xg for 20 minutes. Lysates were boiled at 98°C in 5X SDS-PAGE sample buffer (0.312M
Tris pH 6.8, 25% 2-Mercaptoethanol, 50% glycerol, 10% SDS) and proteins were separated on a
12% SDS-PAGE gel and subsequently transferred to nitrocellulose membranes. Membranes
were blocked in 5% non-fat skimmed milk (Bioshop, Burlington, ON) in TBST containing 0.1%
Triton X-100 for 1 hour, then incubated overnight at 4°C with various antibodies: rabbit anti-
Nef polyclonal antibody (1:4000; catalog number 2949, NIH AIDS Research and Reference Re-
agent Program, USA), rabbit anti-GFP polyclonal antibody (1:2000; Clontech; Mountain View,
CA), rat anti-DYKDDDKmonoclonal IgG (1:2500; BioLegend, San Diego, CA), or rabbit anti-
mCherry monoclonal IgG (1:2000; Thermo Scientific). Membranes were then washed and incu-
bated for two hours with the appropriate species-specific HRP-conjugated antibodies (1:5000;
Thermo Scientific). All blots were developed and quantified using ECL substrates (Millipore
Inc., Billerica, MA) and a C-DiGit chemiluminescenceWestern blot scanner (LI-COR Biosci-
ences, Lincoln, NE).

Cleavage efficiency of the F2A site was calculated by dividing the signal intensity of the
cleaved product by the sum of both the cleaved and un-cleaved product. Efficiencies were then
normalized to the wildtype F2A cleavage. Subsequently, a ratio was obtained by comparing the
wildtype functional F2A cleavage efficiency to the mutant.

For flow cytometry the following antibodies were used: W6/32 (anti-MHC-I; pan-selective,
provided by D. Johnson, Oregon Health and Sciences University), antibody conjugated to
APC/Cy7 (1:25, Biolegend, San Diego, CA), anti-p24 clone KC57 conjugated to RD1 (phycoer-
ythrin) (1:50, Beckman Coulter, Brea, CA), anti BB7.2 conjugated to APC/Cy7 (1:25, Biole-
gend, San Diego, CA).

For immunofluorescence, rabbit anti-Rab5 (clone C8B1; 1:200, Cell Signaling), mouse anti-
LAMP-1 (clone H4A3, 1:100, obtained from the Developmental Studies Hybridoma Bank) and
mouse anti-AP-1γ (Sigma Aldrich) antibodies were used.

Microscopy
HeLa cells were seeded onto sterile glass coverslips at 5x105 cells per coverslip for 16 hours
prior to infection. Cells were infected for 48 hours before processing for immunofluorescence.
Briefly, cells were washed three times with PBS before fixation in 4% paraformaldehyde for 20
minutes at room temperature. Cells were subsequently washed with PBS twice prior to nuclear
staining. Immediately prior to imaging, Hoechst nuclear stain (1μg/ml; Thermo Scientific) was
added to the coverslip and incubated for 10 minutes. Cells were imaged on the Leica DMI6000
B on 63X objective using the FITC, CY3 and DAPI filter settings using the Hamamatsu Orca-
flash 4.0 Camera.

For BiFC experiments, infections were set as above. Prior to fixation, the cells were incubat-
ed at room temperature for 2 hours to allow the reconstituted fluorophore to mature. The fixa-
tion protocol was then carried out as described above. To visualize early or late endosomes,
cells were stained with rabbit anti-Rab5 or mouse anti-LAMP-1 antibodies, respectively.
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Samples were incubated in a permeabilization buffer containing 1% BSA in PBS and 0.2% Tri-
ton X-100 for 5 minutes, then blocked in a buffer containing 5% BSA in PBS for 1 hour. Anti-
Rab5 or LAMP-1 antibodies were then diluted in 1% BSA and 0.2% Triton X-100 (1:200 and
1:100, Jackson ImmunoResearch). Cells were then washed three times in PBS (2 minutes each)
before adding the secondary donkey anti-rabbit AlexaFluor 647 or donkey anti-mouse Alexa-
fluor 647 (1:1000; Jackson ImmunoResearch) in the same manner as the primary antibody.
AP-1 staining was carried out as mentioned above using mouse anti-AP-1γ (1:200; Sigma Al-
drich) primary antibody and donkey anti-mouse Alexafluor 647 (1:1000; Jackson ImmunoRe-
search). Samples were washed three times in PBS (1 minute each) prior to imaging and
mounted onto glass slides using DAPI Fluormount-G (Southern Biotech, Birmingham, AL).
Cells were imaged on the Leica DMI6000 B on 100X objective using the FITC, CY5 and DAPI
filter settings using the Hamamatsu Photometrics Delta Evolve camera. Images were subse-
quently deconvolved using the Advanced Fluorescence Deconvolution application on the Leica
Application Suite software. Co-localization analysis was conducted using the Manders Coeffi-
cient and Pearson Correlation from the Image J plugin as described previously [27].

Flow Cytometry
To quantify the cell surface expression levels of MHC-I, Jurkat E6.1 T-cells were infected with the
appropriate viruses and 72 hours post infection cells were surface stained for MHC-I usingW6/
32 antibody conjugated to APC/Cy7 (Biolegend, San Digego, CA). Following fixation in 1% para-
formaldehyde, cells were permeabilized with cold methanol. Subsequently, intracellular staining
with RD1 (phycoerythrin) conjugated anti-p24 (Beckman Coulter) was performed to gate for in-
fected cells. Cell surface MHC-I expression was quantified by flow cytometry (BD FACS Canto
II) and the data analyzed using FlowJo software (version 9.6.4, Treestar, Ashland, OR).

The ability of the MHC-I-mCherry fusion protein to be trafficked to the membrane was
tested using an allele specific antibody. Jurkat E6.1 T-cells were infected with the appropriate
virus and 48 hours post-infection, cell surface staining was performed using the BB7.2 antibody
(Biolegend) which recognizes only MHC-I molecules encoded by A�02 alleles. Cells were then
fixed in 1% paraformaldehyde and permeabilized with cold methanol and intracellularly
stained with RD1 (phycoerythrin) conjugated anti-p24 to gate for infected cells. MHC-I-
mCherry cell surface expression was quantified by flow cytometry (BD FACS Canto II) and the
data analyzed using FlowJo software (version 9.6.4)

Statistics
All statistics were conducted using a paired T-test on Graph Pad Prism (Graph Pad Sofware
Inc., La Jolla, CA).

Results

Designing a lentiviral vector enabling dual transgene expression
Multiple Nef-interacting proteins have been identified using in vitro interaction assays, cellular
co-immunoprecipitation analyses, and more recently by fluorescence resonance energy transfer
and mass spectrometry [7, 9, 10, 13, 28–35]. However, the Nef protein-protein interaction net-
work has never been defined in the context of expression from a single vector that mimics the
conditions present during a viral infection. To address this, we constructed a lentiviral vector
containing an F2A cleavage site or the non-functional mutant, F2A (null), as a control, thereby
facilitating concurrent expression of Nef and a potential Nef-interacting partner (Fig 1). Vector
assembly was initiated using the previously described pNL4-3 Δgag/pol eGFP vector as a base
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(Fig 1; top panel) [19, 20]. This base vector contains intact 5’ and 3’ long terminal repeat (LTR)
regions and expresses all HIV-1 viral proteins except full-length Gag and Pol. These genes are
mutated in the base vector to generate truncated proteins and must be supplied in trans for pro-
ductive pseudovirion synthesis (Fig 1; top panel) [20, 26]. To facilitate gene insertion, two multi-
ple cloning sites (MCSs) were introduced into the base vector: a 3’MCS containing the XmaI,
AgeI and NotI restriction sites and a 5’MCS containing the ApaI, SphI and SpeI restriction sites
(Fig 1; bottom panel). We inserted HIV-1 Nef fused with the eGFP fluorescent tag into the 3’
MCS whereas the 5’MCS was used to insert potential Nef-interacting partners.

Insertion of an F2A site into a lentiviral vector allows concurrent protein
production
To avoid the production of proteins fused to truncated Gag/Pol proteins from the 5’MCS, we
exploited the self-cleaving property of the 2A peptide (F2A) derived from the foot and mouth
disease virus by inserting the 21 amino acid F2A site between the Gag/Pol fusion protein and
the 5’MCS (Fig 1; bottom panel). The resulting vector, pNL4-3 F2A-X Nef-eGFP (Fig 2A) has
an empty 5’MCS in order to accommodate future gene insertions. To test the cleavage efficien-
cy of the F2A site, we constructed a lentiviral vector containing a Flag-tagged mStrawberry
(mSB) fluorophore in the 5’MCS (Fig 2A). Pseudovirus from the resulting pNL4-3 F2A-
mSB-Flag Nef-eGFP construct was then used to infect Jurkat E6.1 T-cells. In order to directly
quantitate the cleavage efficiency, a control vector with an inactive F2A site was constructed
(Figs 1 and 2; F2A (null)). Site-directed mutagenesis of the penultimate proline residue to ala-
nine has been demonstrated to render the F2A site inactive [36]. In agreement with cleavage
mediated at the F2A site, western blot analysis demonstrated the production of a cleaved Flag-
tagged mStrawberry protein that migrated just below the 35 kDa molecular weight marker
(Fig 2B; ++ Flag blot). Consistent with mutation of the penultimate proline in the F2A site to
produce a defective cleavage site [22, 36, 37], cells infected with pNL4-3 F2A (null)-mSB-Flag
Nef-eGFP pseudovirus produced a Flag-tagged mStrawberry protein fused to the HIV-1 Gag/
Pol protein that migrated just above the 48 kDa molecular weight marker (Fig 2B; + Flag blot).
Quantification of the cleavage efficiency between the F2A and the F2A (null) site was deter-
mined by dividing the densitometry measurement of the cleaved product by the sum of both
the cleaved and uncleaved products. We observed a 6-fold increase in cleavage efficiency in the
presence of a functional F2A site, confirming that the cleavage is F2A-dependent (Fig 2C).
Moreover, the pNL4-3 F2A-mSB-Flag Nef-eGFP construct efficiently produced Nef fused to
the eGFP fluorophore, confirming that the 3’MCS can also produce a fluorophore-tagged pro-
tein of interest (Fig 2B; lane 3 GFP blot). Overall, these results demonstrate the 3’ and 5’MCSs
can be used to produce conjugated proteins and the proteins expressed from the 5’MCS are ef-
ficiently cleaved from truncated Gag/Pol.

Nef and Nef-interacting partners are simultaneously expressed in a
lentiviral vector
The Nef-dependent endocytosis of cell surface MHC-I during an HIV-1 infection leads to eva-
sion of CTL killing, thereby contributing to continued viral replication [38]. Nef-mediated
MHC-I downregulation requires subversion of multiple membrane trafficking regulators, includ-
ing binding to PACS-1 [7, 9, 10, 12, 13, 39]. Therefore, to evaluate the simultaneous expression
of Nef with PACS-1 or MHC-I, specifically the HLA-A2 allele, we engineered constructs contain-
ing different fluorophores for all genes inserted in the 5’ or 3’MCS, respectively (Fig 3A). The re-
sulting vectors (pNL4-3 F2A-MHC-I-mCherry Nef-eGFP and pNL4-3 F2A-PACS-1-mCherry
Nef-eGFP) were designed to include an mCherry tag at the 5’ site and an eGFP tag at the 3’ site.

Viral BiFC to Study Membrane Trafficking
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Fig 2. Functional cleavage at the engineered F2A site. Viruses were engineered with various proteins
within the 5’MCS and/or the 3’MCS and Jurkat E6.1 T-cells were infected with the resulting pseudoviruses.
Flag and GFP specific western blots were performed on lysates collected 48 hours post infection to verify
protein expression levels. (A) Schematic representation of proteins produced from lentiviral expression
system. (B) A Flag specific western blot was used to quantitate the cleavage efficiency at the F2A site in the
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To confirm the presence of the different fluorophores fused to proteins of interest, we infected
HeLa cells with pseudovirions encoding the MHC-I or PACS-1 genes and visualized cells by
widefield fluorescence microscopy. This demonstrated simultaneous expression of both mCherry
taggedMHC-I or PACS-1 and eGFP tagged Nef (Fig 3B, column 2 and 3). Similar infection of
Jurkat E6.1 T-cells with pseudovirions generated from the respective vectors confirmed their si-
multaneous expression by western blot (Fig 3C, lane 4 and 5). Importantly, the conjugation of
mCherry to MHC-I did not alter its localization within the cell as flow cytometry measurements
indicated that mCherry-taggedMHC-I expressed in Jurkat E6.1 T-cells infected with the pNL4-3
F2A-MHC-I-mCherry ΔNef pseudovirus, was correctly routed to the cell surface (Fig 3D and
S1 Fig). Moreover, MHC-I-mCherry was sensitive to Nef activity as Jurkat E6.1 T-cells infected
with pNL4-3 F2A-MHC-I-mCherry Nef-eGFP resulted in less MHC-I-mCherry on the cell sur-
face compared to cells infected with pNL4-3 F2A-MHC-I-mCherry ΔNef (Fig 3D and S1 Fig).
These results indicate that co-expression of PACS-1-mCherry or MHC-I-mCherry and Nef-
eGFP is achievable. Moreover, using different fluorophores for Nef and its binding partners al-
lows for simultaneous observation of both proteins in infected cells without compromising
their functionality.

Viral BiFC demonstrates that Nef interacts with PACS-1 in specific
endosomal compartments
To investigate the utility of our lentiviral vector system for studying protein-protein interactions,
we constructed lentiviral BiFC vectors (Fig 4A). These were designed such that a functional
Venus fluorophore was reconstituted when proteins fused to the amino (VN [1–173]) and car-
boxy (VC [155–238]) fragments of Venus were in close proximity. Indeed, vectors were designed
to contain PACS-1-VN in the 5’MCS and Nef-VC in the 3’MCS (pNL4-3 F2A-PACS-1-VN Nef-
VC). Strikingly, infection of HeLa cells revealed that PACS-1 and Nef reconstitute a functional
fluorophore when expressed from the pNL4-3 F2A-PACS-1-VN Nef-VC vector, indicating that
PACS-1 and Nef are expressed and are in close proximity (Fig 4B, column 3). Analysis at the pro-
tein level revealed PACS-1-VN and Nef-VC are both expressed (Fig 4C). To rule out possible
auto-fluorescence of the individual split fluorophores, we also infected HeLa cells with viruses ex-
pressing the individual split fluorophores (Nef-VC or PACS-1-VN; Fig 4B), in combination with
either PACS-1-mCherry or Nef-mSB (Fig 4A). Indeed, sole expression of PACS-1-VN or Nef-VC

did not result in fluorescence (Fig 4B; column 1, 2), even though these proteins were efficiently
produced (Fig 4C) and red fluorescence was observed indicating protein expression from the
other MCS (Fig 4B; column 1, 2). Moreover, to determine if the Nef protein produced from our
viral BiFC vector system was functional, we used flow cytometry to test the ability of Nef pro-
duced from pNL4-3 F2A-PACS-1-VN Nef-VC to downregulate endogenous MHC-I in Jurkat
E6.1 T-cells. Our analysis demonstrated that Nef-VC downregulated MHC-I efficiently when
compared to Jurkat E6.1 T-cells infected with a virus lacking Nef (pNL4-3 F2A-PACS-1-VN

ΔNef) (Fig 4D and S2 Fig).
To test if the viral BiFC signal between PACS-1-VN and Nef-VC was localized to a specific

sub-cellular compartment, we performed an immunofluorescence analysis (Fig 5A) using
markers of the endocytic pathway previously identified as co-localizing with Nef/PACS-1

F2A-mSB-Flag Nef-eGFP virus, compared to the F2A mutant, F2A (null)-mSB-Flag Nef-eGFP, which lacks
cleavage activity (+ uncleaved product, ++ cleaved product). GFP specific western blots confirmed the
presence of the Gag-eGFP fusion protein (lane 1) or Nef-eGFP fusion proteins (lanes 2–4). (C) Cleavage
efficiency at the F2A site was 6-fold higher compared to the F2A (null) virus (* indicates p-value < 0.05).
Details on how the cleavage efficiency was calculated are included in Materials and Methods. Error bars
calculated from 3 independent experiments. p-value was determined by paired t-test.

doi:10.1371/journal.pone.0125619.g002
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complexes [9]. HeLa cells infected with pNL4-3 F2A-PACS-1-VN Nef-VC and exhibiting viral
BiFC were stained with markers for late or early endosomes. We observed 21% and 34% co-lo-
calization with makers for Rab5 and LAMP-1, consistent with a Nef/PACS-1 interaction on
early and late endosomes, respectively (Fig 5B). Together these experiments indicate that viral
BiFC can be applied to study protein-protein interactions between Nef and host cellular bind-
ing partners, and is particularly effective for mapping the sub-cellular locations of their interac-
tions during viral infection. In addition, viral BiFC produces a functional Nef protein that has
the ability to downregulate MHC-I.

Fig 3. Fluorescencemicroscopy confirms expression of proteins from the 5’ and 3’MCS. Viruses were engineered to produce MHC-I-mCherry or
PACS-1-mCherry from the 5’MCS in combination with Nef-eGFP from the 3’MCS. (A) Schematic representation of proteins produced from lentiviral
expression system. (B) To detect the fluorescent fusion proteins, HeLa cells were infected and visualized 48 hours post infection by widefield fluorescence
microscopy. Expression of the Nef-mSB fusion protein was confirmed (column 1), along with concurrent expression of MHC-I or PACS-1-mCherry fusions
with Nef-eGFP (columns 2 and 3). Cell nuclei were stained using Hoescht nuclear stain (blue). Scale bars represent 15μm. (C)mCherry and Nef specific
western blots were performed to confirm the expression of the fusion proteins. (D) Jurkat E6.1 T-cells were infected with pNL4-3 F2A-MHC-I-mCherry Nef-
eGFP (Nef-eGFP) or pNL4-3 F2A-MHC-I-mCherry ΔNef (ΔNef). At 48 hours post infection, cells were surface stained for MHC-I-mCherry (BB7.2 antibody),
fixed, permeabilized and stained for intracellular p24 (KC57-RD1 antibody). Columns represent relative MHC-I-mCherry surface expression calculated from
the geometric mean fluorescent intensity (gMFI) of surface MHC-I-mCherry on infected cells and normalized to the cell surface MHC-I-mCherry levels of
ΔNef-infected cells. Error bars were calculated from four independent repeats. (* indicates p-value < 0.01).

doi:10.1371/journal.pone.0125619.g003
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Fig 4. Visualizing the Nef/PACS-1 interaction using viral Bimolecular Fluorescence Complementation. (A) Schematic representation of proteins
produced from lentiviral expression system. (B) HeLa cells were infected with various viruses encoding different fusion proteins and visualized using
widefield fluorescence microscopy. BiFC (green, column 3) was visualized in the F2A-PACS-1-VN Nef-VC infected HeLa cells and not the control BiFC viral
infections (columns 1 and 2). Cells were mounted in DAPI Fluoromount G media for nuclear staining (blue). Scale bars represent 15μm. (C) Expression of the
VN or VC fragment was detected by a GFP specific Western blot, whereas the mCherry and mSB fusions, which acted as controls, were detected by an
mCherry specific western blot. Densitometry measurements for PACS-1-VN and Nef-VC were 10,500 and 29,200 arbitrary units, respectively, as determined
by Licor C-Digit. (D) Jurkat E6.1 T-cells were infected with F2A-PACS-1-VN Nef-VC and the corresponding non-functional Nef mutant (F2A-PACS-1-VN

ΔNef). At 72 hours post infection, cells were surface stained for MHC-I (W6/32 antibody), fixed, permeabilized and stained for intracellular p24 (KC57-RD1
antibody). Columns represent relative MHC-I surface expression calculated from the geometric mean fluorescent intensity (gMFI) of surface MHC-I on
infected cells and normalized to cell surface MHC-I levels of ΔNef-infected cells. Error bars were calculated from four independent repeats. (* indicates p-
value < 0.01).

doi:10.1371/journal.pone.0125619.g004
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Fig 5. Nef/PACS-1 viral BiFC signal is localized to specific Rab5 and LAMP-1 positive endosomes. (A)
HeLa cells were infected with the F2A-PACS-1-VN Nef-VC virus and immunostained for Rab5 or LAMP-1.
Cells were fixed, permeablized and stained using Rab5 or LAMP-1 specific primary antibodies. Viral BiFC
(green) was observed under the FITC channels and Rab5/LAMP-1 (red) fluorescence was observed under
the Far-Red channel. Cells were mounted in DAPI Fluoromount G media for nuclear staining (blue). Scale
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Viral BiFC can be used to study novel interactions between Nef and host
cellular proteins in the endocytic network
We demonstrated that viral BiFC can recapitulate previously characterized interactions be-
tween Nef and host cellular proteins, such as the Nef/PACS-1 interactions, and can be used to
examine the sub-cellular localization of such interactions (Fig 5). Therefore, we decided to test
if viral BiFC can spatially define the interaction between Nef and additional interacting part-
ners. We first tested the ability of Nef to interact with the cell surface receptor MHC-I. Indeed,
the Nef/MHC-I interaction has been demonstrated both in vitro and by crystallography, but
this complex has never been demonstrated within cells. Thus, we inserted the MHC-I allele
HLA-A2 into the 5’MCS of our viral BiFC vector to generate the vector pNL4-3 F2A-MH-
C-I-VN Nef-VC. To test for an interaction between MHC-I-VN and Nef-VC, HeLa cells were in-
fected and observed under widefield fluorescence microscopy. Interestingly, BiFC was
observed, demonstrating an interaction between Nef and MHC-I in cells (Fig 6A). Further-
more, we co-localized this interaction to vesicles that are positive for the adaptor coat protein-1
(AP-1; Fig 6B) consistent with the in vitro Nef/MHC-I/AP-1 crystal structure [14].

Since both PACS-1 and AP-1 are implicated in the Nef mediated downregulation of
MHC-I, we explored the possibility that Nef associates with another host cellular membrane
trafficking regulator, sorting nexin 18 (SNX18). We pursued SNX18 since this protein co-local-
izes with both PACS-1 and AP-1 within the endocytic network [40]. To test if there is an asso-
ciation between Nef and SNX18, we inserted the SNX18 gene in the 5’MCS of our viral BiFC
vector to produce pNL4-3 F2A-SNX18-VN Nef-VC. We then infected HeLa cells with pNL4-3
F2A-SNX18-VN Nef-VC and tested for BiFC. As for our previously tested interactions, BiFC
was observed between SNX18 and Nef demonstrating for the first time the close proximity be-
tween Nef and SNX18 (Fig 6A; bottom panels). Furthermore, this association co-localized with
AP-1, consistent with SNX18’s localization in the endosomal network (Fig 6) [40]. Important-
ly, infection with a vector harboring an empty 5’MCS (pNL4-3 F2A-X Nef-VC) demonstrated
that Nef-VC expressed from this vector can downregulate endogenous MHC-I in Jurkat E6.1
T-cells (Fig 6C and S3 Fig). This indicates that Nef fused to a split fluorophore is functional.
Overall, viral BiFC can be used to further study previously described interactions as well as
identify novel interactions between Nef and host cellular partners, and spatially define these in-
teractions within the cell.

Discussion
This study describes viral BiFC, a novel lentiviral expression system designed for studying pro-
tein-protein interactions and mapping their sub-cellular locations. This vector has the unique
capability of enabling the use of bimolecular fluorescence complementation from a single vec-
tor in the context of a viral infection. We demonstrate the application and utility of viral BiFC
for understanding the membrane trafficking pathways of cellular proteins interacting with the
HIV-1 protein Nef (Figs 5 and 6). This is of utmost importance as Nef is considered the patho-
genic factor responsible for the progression to AIDS [41]. Moreover, since Nef lacks any enzy-
matic activity its ability to interact with cellular partners is key to define its pathogenic nature.

bars represent 10μm. Panels on the right represent a magnification of the boxed region from the left panel.
(B) Twenty-one percent of the viral BiFC signal co-localized with Rab5, whereas 34% co-localized with
LAMP-1. Co-localization was determined by the Manders Coefficient. Pearson’s correlation values were
determined to be 0.36 and 0.42 for Rab5 and LAMP-1 co-localization, respectively. Error bars were
calculated from 3 independent experiments and quantification of at least 25 different cells. (* indicates p
value < 0.05).

doi:10.1371/journal.pone.0125619.g005
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Fig 6. Viral BiFC signals of MHC-I/Nef and SNX18/Nef are localized to AP-1 positive endosomes. (A)
HeLa cells were infected with either the F2A-MHC-I-VN Nef-VC virus (top) or the F2A-SNX18-VN Nef-VC virus
(bottom) and immunostained for AP-1. Cells were fixed, permeabilized and stained using an AP-1 specific
primary antibody. Viral BiFC fluorescence (green) was observed under the FITC channels and AP-1
fluorescence (red) was observed under the Far-Red channel. Cells were mounted in DAPI Fluoromount G
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Lentiviral vectors are ideal vehicles for introducing genes at high expression levels inside a
heterologous cell {for review see [18, 42, 43]}. However, the study of protein interactions often
requires gene expression from multiple vectors, which may result in suboptimal or differential
expression of the proteins of interest. One approach to express multiple genes with lentiviral
vectors involves using an internal ribosome entry site (IRES) [44]. However, significant differ-
ences in IRES activity have been reported in different cell types, thereby decreasing the utility
of these vectors [45, 46]. Moreover, the use of an IRES is limited, as there are significant restric-
tions imposed when cloning due to the substantial size of IRES sequences [23] and multiple re-
ports suggest certain cistrons inhibit IRES element activity [47, 48].

In contrast, effective protein expression from polycistronic RNA can be achieved using plas-
mids harboring the 2A peptide sequence, such as in this study, which permits independent
translation of coding sequences from a single transcript [23, 49, 50]. This approach allowed for
co-expression of PACS-1-mCherry or MHC-I-mCherry and Nef-eGFP, demonstrating that
Nef and host cell proteins can be efficiently expressed from a single integrating vector (Fig 3).
We validated the cleavage efficiency of the 2A site by constructing a modified vector with a mu-
tated F2A site (Fig 2). Production of cleaved mStrawberry-Flag was significantly reduced (a
six-fold decrease; p<0.05) in the vector encoding the mutated F2A site (Fig 2B and 2C), direct-
ly confirming the efficiency of cleavage mediated by the F2A site.

BiFC is a valuable tool for visualizing protein-protein interactions within a cell {for review
see [15, 16]}. This powerful technique can be used to identify the specific sub-cellular locations
where protein interactions occur, and to define protein interaction interfaces by elucidating the
residues critical for a protein interaction to occur [9, 15, 16, 51]. In the case of Nef, previous re-
ports have utilized BiFC to demonstrate the dimerization of Nef and to study the interaction
between Nef and the host cellular proteins PACS-1 and PACS-2 [9, 51–53]. However, these
studies utilized a dual vector expression system, which may result in the need to laboriously op-
timize the expression levels of two different plasmids in order to observe BiFC [51, 53]. This
fine-tuning of plasmid levels is effectively removed in our system, which relies on protein ex-
pression from a single vector. In addition, previous studies were not conducted under the con-
ditions of viral infection, precluding generalizability of these studies to the nature of HIV-1
infection. Our single vector expression system has the added advantage that all infected cells
express both proteins of interest concomitantly within the context of a viral infection (Figs 3
and 4). This is of particular interest when studying interactions between Nef and PACS-1. In-
deed, the Nef/PACS-1 interaction modulates the downregulation of cell surface MHC-I via a
mechanism that depends on the length of infection [13]. Our viral BiFC system will facilitate
full elucidation of the mechanisms governing the influence of the HIV-1 genome on the time-
dependent action of the Nef/PACS-1 interaction through deletion of specific HIV-1 proteins
within our viral vector. This molecular dissection will be possible using a single vector system
that detects Nef interactions (Figs 5A and 6A) and is functionally capable of downregulating
MHC-I (Figs 4D and 6C).

media for nuclear staining (blue). Scale bars represent 10μm. Panels on the right represent a magnification of
the boxed region from the left panel. (B) 78% percent of the Nef/MHC-I BiFC signal co-localized with AP-1,
whereas 37% of the Nef/SNX18 BiFC signal co-localized with AP-1. Co-localization was determined by the
Manders Coefficient, and mean Pearson’s correlation was determined to be 0.74 and 0.40 for Nef/MHC-I and
Nef/SNX18, respectively. Error bars were calculated by 3 independent experiments and quantification of at
least 25 different cells. (C) Jurkat E6.1 T-cells were infected with F2A-X Nef-VC virus and the corresponding
non-functional Nef mutant (F2A-X ΔNef). At 72 hours post infection, cells were surface stained for MHC-I
(W6/32 antibody), fixed, permeabilized and stained for intracellular p24 (KC57-RD1 antibody). Columns
represent relative MHC-I surface expression calculated from the geometric mean fluorescent intensity (gMFI)
of surface MHC-I on infected cells and normalized to the cell surface MHC-I levels of ΔNef-infected cells.
Error bars were calculated from four independent repeats. (** indicates p-value < 0.01).

doi:10.1371/journal.pone.0125619.g006
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Interestingly, our observation of the Nef/PACS-1 interaction at distinct endosomal com-
partments (Fig 5) is in accordance with the previously defined sub-cellular localization of this
interaction [9], thereby validating that viral BiFC demonstrates protein interactions between
Nef and host proteins at bone fide cellular compartments. Indeed, this system can define the
interacting interfaces between Nef and multiple Nef-binding partners as well as map the sub-
cellular location of their interactions. Specifically, the interaction between Nef, MHC-I, and
the membrane adaptor protein-1 (AP-1) is critical in orchestrating the downregulation of
MHC-I to evade immune detection and this interaction has been studied in vitro [39, 54, 55].
However, the exact sub-cellular localization of these interactions currently remains un-
known. By inserting the MHC-I gene into our viral BiFC system and co-localizing the Nef/
MHC-I interaction to AP-1 positive endosomes we effectively recapitulated the Nef/MHC-I/
AP-1 interaction in HIV-1 infected cells (Fig 6). This information is critical to understand
the exact molecular players that are subverted by Nef in order to traffic MHC-I molecules
from the plasma membrane. A novel membrane trafficking regulator that may play a role in
this process is SNX18. Our analysis is the first to demonstrate that SNX18 associates with Nef
in an AP-1 positive compartment (Fig 6). This is consistent with the reported presence of
SNX18 in compartments that are PACS-1 and AP-1 positive [40]. Future studies will be re-
quired to correctly decipher the role of SNX18 in Nef mediated MHC-I downregulation and
to confirm if the Nef/SNX18 interaction is direct. An attractive hypothesis is a required role
for SNX18 in biogenerating specific vesicles required for Nef to correctly remove MHC-I
from the cell surface. This implies that Nef may require the fissiogenic ability of proteins
such dynamin, which is recruited by SNX18 to correctly shuttle host proteins such as MHC-I
to sub-cellular locales [40].

Although constructed as a robust tool to decipher membrane trafficking networks in HIV-1
infected cells, our vector system also has potential as a drug discovery tool. Recently, Poe et al.
elegantly demonstrated that BiFC can be utilized for high-throughput screening of small mole-
cule inhibitor libraries for molecules that block specific protein-protein interactions [52]. By
performing small-molecule screens of compound libraries in cells infected with our viral BiFC
system we will be able to identify compounds that disrupt the interactions between Nef and
Nef-binding partners such as PACS-1 or the Nef/MHC-I/AP-1 complex. Our system will allow
for identification of novel inhibitors of these interactions in a model of infection, thereby af-
fording us key information about the Nef interaction interfaces that mediate immune evasion
during HIV-1 infection.

Due to the essential role Nef plays in HIV-1 pathogenesis, our viral BiFC system was de-
signed to study the many interactions Nef must make to modulate infected cells. However, it
will be interesting to determine in future studies if removal of Nef from the 3’MCS will allow
viral BiFC to be applicable to any protein-protein interaction analysis. Given that Nef itself has
been determined to play a role in viral replication [56], additional studies are required to deter-
mine if Nef can be replaced by a heterologous sequence. Previous studies suggest that viruses
harboring a Nef gene deletion could still efficiently replicate suggesting that heterologous se-
quences can be placed in the 3’MCS [56]. Moreover, the MCSs in our lentiviral system will not
only enable insertion of genes of interest, but also sequences capable of silencing host genes,
such as short hairpin RNA sequences [57, 58].

In summary, viral BiFC is a powerful tool that enables the study of vesicular trafficking in
the context of HIV-1 infection and provides an efficient method to introduce transgenes di-
rectly into a lentiviral vector. Viral BiFC will enable researchers to study Nef interactions at
specific sub-cellular locales, thereby elucidating key cellular events that mediate HIV-
1 pathogenesis.
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Supporting Information
S1 Fig. MHC-I-mCherry is correctly trafficked to the cell membrane and sensitive to Nef.
Jurkat E6.1 T-cells were infected with a virus expressing MHC-I-mCherry in the presence
(F2A-MHC-I-mCherry Nef-eGFP) or absence (F2A-MHC-I-mCherry ΔNef) of eGFP tagged
Nef. At 48 hours post-infection cells were washed and stained for surface HLA-A2 using APC/
Cy7-conjugated BB7.2 monoclonal antibody. Cells were then washed, fixed and permeabilized
to allow for intracellular staining of p24 (using a PE conjugated anti-p24 antibody).
(EPS)

S2 Fig. Nef-VC expressed from a viral BiFC vector expressing PACS-1-VN is able to down-
regulate MHC-I. Jurkat E6.1 T-cells infected with a virus expressing PACS-1-VN in the pres-
ence (F2A-PACS-1-VN Nef-VC) or absence (F2A-PACS-1-VN ΔNef) of Nef-VC. At 72 hours
post-infection cells were washed and stained for surface MHC-I (using an APC/Cy7 conjugat-
ed pan-selective monoclonal antibody). Cells were then washed, fixed, permeabilized and
stained for intracellular p24 (using a PE-conjugated anti-p24 antibody).
(EPS)

S3 Fig. Nef-VC expressed from a base viral BiFC vector is able to downregulate MHC-I. Jur-
kat E6.1 T-cells were infected with a base viral BiFC virus containing Nef-Vc (F2A-X Nef-VC)
or a virus that does not produce Nef (F2A-X ΔNef). At 72 hours post-infection cells were
washed and stained for surface MHC-I (using an APC/Cy7 conjugated pan-selective monoclo-
nal antibody). Cells were then washed, fixed, permeabilized and stained for intracellular p24
(using a PE-conjugated anti-p24 antibody).
(EPS)
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