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Abstract

Massively parallel RNA sequencing (RNA-seq) in combination with metabolic labeling

has become the de facto standard approach to study alterations in RNA transcription,

processing or decay. Regardless of advances in the experimental protocols and

techniques, every experimentalist needs to specify the key aspects of experimental

design: For example, which protocol should be used (biochemical separation vs.

nucleotide conversion) and what is the optimal labeling time? In this work, we provide

approximate answers to these questions using the asymptotic theory of optimal design.

Specifically, we investigate, how the variance of degradation rate estimates depends

on the time and derive the optimal time for any given degradation rate. Subsequently,

we show that an increase in sample numbers should be preferred over an increase in

sequencing depth. Lastly, we provide some guidance on use cases when laborious

biochemical separation outcompetes recent nucleotide conversion based methods

(such as SLAMseq) and show, how inefficient conversion influences the precision of

estimates. Code and documentation can be found at https://github.com/dieterich-lab/

DesignMetabolicRNAlabeling.

Author summary

Massively parallel RNA sequencing (RNA-seq) in combination with metabolic labeling

has become the de facto standard approach to study alterations in RNA transcription,

processing or decay. In our manuscript, we address several key aspects of experimental

design: 1) The optimal labeling time, 2) the number of replicate samples over sequencing

depth and 3) the choice of experimental protocol. We provide approximate answers to

these questions using asymptotic theory of optimal design.
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Introduction

Changes in gene expression are frequently observed in pathological conditions. In the simplest

model [1], steady state RNA levels are governed by synthesis (transcription) and degradation

rates (RNA stability). A paradigm is the generation of the hypoxic response in pathological

conditions such as heart insufficiency [2] and fast growing tumors [3]. Hypoxia (<2% O2)

results in a global decrease of total transcription [4]. However, the transcription of specific tar-

get genes is induced under hypoxic conditions by hypoxia inducible factor 1 (HIF1) [5], which

is composed of a stable β-subunit and an oxygen labile α-subunit [6]. Furthermore, different

RNA binding proteins such as HuR and TTP as well as miRNAs regulate the stability of their

cognate target mRNAs dependent on oxygen availability [7] and contribute to changes in gene

expression profiles.

Metabolic labeling experiments are a versatile tool to discern dynamic aspects in physiologi-

cal and pathological processes. These experiments drive our understanding of key processes

in molecular systems, such as synthesis and decay of metabolites, DNA, RNA and proteins.

Pulse-chase experiments help to determine the kinetic parameters of synthesis and decay in

various contexts. In the pulse phase of an experiment, the label is introduced to newly synthe-

sized compounds and unlabeled or pre-existing molecules are only subjected to degradation

or some other form of processing. In contrast, during the chase phase, the label in the system

is gradually replaced by unlabeled compounds. A typical metabolic labeling experiment may

include a pulse, a chase or both phases.

The first transcriptome-wide studies by [8] and [9] used 4-thiouridine (4sU) labeling in cell

culture experiments to infer kinetic parameters. This approach has become quite popular in

RNA biology, which is shown by a vastly increasing number of studies (see [10] for review).

Massively parallel RNA sequencing (RNA-seq) in combination with metabolic labeling has

become the de facto standard approach to study alterations in RNA transcription, processing

or decay at the transcriptome-wide level. At the time of writing, the most widely used approach

involves metabolic labeling with thiol-labeled nucleoside analogs such as 4sU (4sU-tagging)

[11]. Briefly, total cellular RNA is isolated and thiol groups are biotinylated. Subsequently,

total cellular RNA can be efficiently separated into newly transcribed (labeled) and pre-existing

(unlabeled) RNA.

Very recent innovations are new methods involving the chemical conversion of 4sU resi-

dues into cytosine analogs, which is observed as point mutations in RNA-seq data (T-to-C

transitions), (see [12], [13] and [14]). The absence of any biochemical separation method

makes metabolic labeling more accessible due to lower input amounts and less laborious

protocols.

Regardless of all advances in the experimental protocols and techniques, a few important

questions remain to be answered by any experimentalist, namely the specific characteristics

of experimental design: what should be measured (i.e. sequenced) and when? For example,

which approach should I take (e.g. biochemical separation vs. nucleotide conversion), when

should I collect my samples (e.g. time points in a pulse experiment) and how could this affect

my estimates on kinetic parameters. In [15], the authors proposed guidelines for the design of

metabolic labeling experiments, however they provide no kinetic or statistical models for the

optimization of such experiments.

Within this manuscript, we use kinetic and statistical models to infer the degradation rates

from a pulse experiment (see Fig 1 and Eqs 1 and 2), and derive several aspects on the optimal

design of metabolic RNA labeling experiments. We illustrate these implications on a pulse-

chase SLAMseq data set [12] and an example for a pulse labeling experiment with biochemical

separation.

On the optimal design of metabolic RNA labeling experiments
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Materials and methods

Tissue culture cell line

MCF-7 cells (ACC-115) were obtained from the Leibniz Institute DSMZ German Collection

of Microorganisms and Cell Cultures. Cells were routinely tested for mycoplasma contamina-

tion with Venor GeM Classic (Minerva Biolabs). MCF-7 cells were cultured at 37˚C and 5%

CO2 and maintained in DMEM (Thermo Fisher Scientific) supplemented with 10% fetal calf

serum (Merck), 1xMEM non-essential amino acids (Thermo Fisher Scientific) and 1xPenicil-

lin/Streptomycin (Thermo Fisher Scientific).

Tissue culture

MCF-7 cells were seeded 48 hrs prior to the experiment at a cell density of 0.3 × 105cells/cm2.

Cells were labeled with 4-thiouridine (4sU) (Sigma-Aldrich) at a final concentration of 200

μM for 2, 4 or 8 hrs. Cells were scraped in DPBS and the pellet resuspended in Trizol (Thermo

Fisher Scientific).

Isolation of total RNA

Total RNA was isolated using the Trizol method. Briefly, the cell pellet was resuspended in

750 μl Trizol, and incubated 5 min at room temperature before addition of 200 μl chloroform.

Samples were centrifuged (20 min, 10.000g, room temperature) and the aqueous phase re-

extracted with one volume chloroform: isoamylalkohol (24:1) (5 min, 10.000g, room tempera-

ture). The RNA in the aqueous phase was precipitated with one volume isopropanol (30 min,

20.8000g, 4˚C), washed twice with 1 ml 80% ethanol in DEPC-H2O and dissolved in 25 μl

DEPC-H2O (10 min, 55˚C, shaking).

In vitro transcription of spike ins

For in vitro transcription of linearized plasmids (pBSIIKS-Luc-pA-NB [16] and pBSIIKS-Re-

nilla-pA [17]), the MEGAscript T7 Transcription Kit (Thermo Fisher Scientific) was used

Fig 1. Pulse labeling experiment types to measure degradation rates. The conventional approach as in [18] utilizes biochemical

separation, which does not preserve the fraction ratio (labeled vs. unlabeled) in the read counts. Alternative novel approaches (e.g.

[12]) induce reverse transcription signature events (nucleotide conversions, typically T-to-C). Individual reads can be classified by

the presence or absence of this characteristic nucleotide conversions. In an ideal case, the fraction ratio is well reflected by the read

counts, however in practice a relatively low 4sU incorporation rate of 1:40 has to be taken into account ([12], [9]).

https://doi.org/10.1371/journal.pcbi.1007252.g001
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according to the manufacturers instructions. Briefly, the reaction was set up in a total volume

of 20 μl containing 1 μg linearized plasmid and 2 μl 10x reaction buffer, 3 μl 40 mM m7GppG-

cap analogon (KEDAR), 2 μl 15 mM GTP, 2 μl 75 mM CTP, 2 μl 75 mM ATP, 2 μl enzyme

mix and 2 μl 75 mM UTP (for RLuc) or 2 μl 75 mM 4-S-UTP:UTP in a 1:10 ratio (for FLuc).

Reactions were incubated 3 hrs at 37˚C. Plasmid-DNA was removed by addition of 1 μl

Turbo-DNase (15 min, 37˚C). In vitro transcribed RNA was purified by phenol extraction and

Chromaspin-100 (Clontech) purification. RNA was precipitated over night after addition of

sodium acetate to a final concentration of 0.3 M and 2.5 volumes 100% ethanol. After centrifu-

gation (30 min, 20.800g, 4˚C) the pellet was washed with 1 ml 80% ethanol and dissolved in 40

μl DEPC-H2O. Concentration was determined by Nanodrop (Thermo Fisher Scientific) mea-

surement and integrity checked by agarose gel electrophoresis.

Biotinylation of RNA

Total RNA was spiked with in vitro transcribed 4sU-labeled FLuc and non-labeled RLuc RNAs

and biotinylated using MTSEA biotin-XX (Biotium) as described by [18]. Briefly 80 μg total

RNA was incubated with 8 ng FLuc and 4.8 ng RLuc (equimolar amounts, 130 amol), 10 mM

HEPES pH 7.5, 1 mM EDTA and 5 μg MTSEA biotin-XX (freshly dissolved in DMF) in a total

volume of 250 μl. Reactions were incubated 30 min in the dark at room temperature. Biotiny-

lated RNA was recovered by extraction with one volume phenol: chloroform: isoamylalkohol

(24:24:1) and separated using Phase-Lock-tubes (5Prime) by centrifugation (5 min, 20.800g,

room temperature). RNA was precipitated by addition of 350 μl isopropanol, 25 μl 5 M

sodium chloride and 1 μl glycogen (Roche Diagnostics, 20 μg/μl) to assist precipitation (30

min, 20.800g, 4˚C). RNA was washed twice with 500 μl 80% ethanol in DEPC-H2O and dis-

solved in 25 μl DEPC-H2O (10 min, 55˚C, shaking).

Streptavidin purification

For purification of biotinylated RNAs the method described by [1] was adapted. 25 μg biotiny-

lated total RNA was adjusted to 100 μl with DEPC-H2O and filled up with Streptavidin binding

buffer (Strep-BB) (20 mM Tris, pH 7.4, 0.5 M sodium chloride, 1 mM EDTA) to 200 μl. RNA

was denatured 10 min at 65˚C and subsequently placed on ice. 100 μl magnetic streptavidin

beads (New England Biolabs) were washed once with 200 μl Strep-BB and resuspended in 100

μl Strep-BB. RNA and beads were incubated 15 min at room temperature on a rotating wheel.

Beads were washed three times with 500 μl Strep washing buffer (100 mM Tris pH 7.4, 1 M

sodium chloride, 10 mM EDTA, 0.1% Tween 20) prewarmed to 55˚C. RNA was eluted three

times by de-biotinylation with 100 μl freshly prepared 100 mM DTT and elution fractions

pooled for further analysis. RNA was recovered from total RNA, flow through and eluate by

phenol: chloroform: isoamylalkohol (24:24:1) extraction using Phase-Lock-tubes and isopro-

panol precipitation as described above. The amount of recovered RNA was determined by

Nanodrop measurement.

Dot blot-based detection of biotinylation

1 μg biotinylated RNA was applied to nylon membrane (Hybond-N, GE Healthcare) using a

dot blot device (Carl Roth). RNA was crosslinked twice at 254 nm using the “Optimal Cross-

link” mode of the Spectroline Select XLE-1000 crosslinker. The membrane was blocked 20

min with PBS + 10% SDS and incubated 2 hrs with Streptavidin-HRP (Thermo Fisher Scien-

tific, 1:5000 in PBS + 10% SDS). Prior to detection with SuperSignal West Pico (Thermo Fisher

Scientific) the membrane was washed each three times 10 min with PBS + 10% SDS, PBS + 1%

SDS and PBS + 0.1% SDS. Images were acquired with the LAS4000 system (GE Healthcare).
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Reverse transcription

1 μl RNA from streptavidin purification was reverse transcribed using the Maxima H Minus

First Strand cDNA Synthesis Kit (Thermo Fisher Scientific) with Random Primers according

to the manufacturers protocol. For absolute quantification reverse transcription reactions were

set up with different amounts of spike in RNAs, ranging from 1600% to 1.56% for FLuc and

400 to 3.12% for RLuc in 1:2 dilutions. Briefly, RNA was mixed in a total volume of 15 μl with

1 μl Random Primer and 1 μl dNTP solution and denatured (5 min, 65˚C). Reaction was com-

pleted by addition of 4 μl 5xRT buffer and 1 μl Maxima enzyme and incubated 10 min at room

temperature followed by 30 min, 50˚C and denaturation (5 min, 85˚C).

qPCR analysis

Reverse transcription reactions were diluted 1:10 and used for qPCR analysis on a StepOne-

Plus instrument (ThermoFisherScientific) with Power SYBR Green PCR Master Mix (Thermo

Fisher Scientific) and primers directed against FLuc (forward: CCTTCCGCATAGAACTG

CCT, reverse: GGTTGGTACTAGCAACGCAC [19]) and RLuc (forward: GTTGTGCCAC

ATATTGAGCC, reverse: CCAAACAAGCACCCCAATCATG [20]).

Sequencing

Total and enriched samples were depleted for ribosomal RNA (rRNA) contamination using

RiboZeroGold, which is based on the removal of rRNA with biotinylated oligos using strepta-

vidin beads. Thus, also the biotinylated 4sU-labeled molecules were removed from the total

samples by the RiboZeroGold procedure and were treated as flow through. Libraries of 2 bio-

logical replicate 4sU pulse experiment were sequenced 1x 50bp on an Illumina HiSeq4000. All

relevant details on sequencing depth and mapping rates are listed in S1 Table.

Read processing and counting

Sequencing adapters and low-quality reads were removed from the raw sequencing data with

flexbar v3.0.3 [21] using standard filtering parameters. We excluded all reads with more than 1

uncalled base from the output. All remaining reads (>18bp) were then aligned to a custom

sequence index including rRNA, tRNA and snoRNA gene loci using bowtie2 with the –very-

fast option [22]. Only reads that did not align to any of the contaminant sequences were con-

sidered for further analysis.

Reads were then aligned to the human genome (EnsEMBL 85) and splice sites from the

reference annotation with a splice-aware aligner (STAR, v2.5.3a; [23]). The BAM files were

analyzed with StringTie 1.3.3b [24] and the final read count matrix was prepared with the sup-

plemented python script prepDE.py.

Results

Model of the experiment

We describe RNA-seq read counts with the negative binomial distribution, which is widely

used in this setting and accounts for overdispersion [25]. For a given gene, the read count fol-

lows X� NB(m(μ, δ, t), k), where m is the mean read count, which depends on the time of

labeling t, the degradation rate δ and the expression level in the steady-state μ, and k is the

overdispersion parameter of the negative binomial distribution NB. In this case, the variance

is var(X) = m(m + k)/k, where low k values correspond to high overdispersion in the data.
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We describe the RNA amount m in metabolic labeling experiments using simple first order

kinetics:

dm
dt
¼ s � dm; ð1Þ

where s is the synthesis rate and δ is the degradation rate. In a steady-state, the expression level

of a gene is μ = s/δ. The expression level μ can be derived from the total fraction, which ensures

identifiability of at least this parameter. For that reason, we use μ and δ to parametrize the

model. In this section, we only discuss the case of pulse labeling experiments throughout.

However, our considerations extend to chase labeling experiments, where the equations are

the same, except that the labeled fraction behaves as the unlabeled one in the pulse experiment

and vice versa. For simplicity, we assume that fraction cross-contamination is negligible, in

which case, RNA amounts for a given gene are proportional to the means mL, mU and mT

derived from the kinetics for labeled, unlabeled and total fractions scaled by sample-specific

factors xi (see Eq 4 in section 2 of Extended Methods):

mTðtÞ ¼ 1 � m

mLðtÞ ¼ xLmð1 � e� dtÞ

mUðtÞ ¼ xUme� dt

ð2Þ

Here we treat the mean read count in the total sample as a reference (coefficient is 1), to

make the system identifiable. In the case of labeled and unlabeled fractions, expected read

numbers must be scaled by additional coefficients, xU and xL, because the RNA material

can be normalized by different degrees during library preparation from chemically separated

fractions.

A preservation of the ratio of labeled to unlabeled fractions (see Fig 1) yields xU = xL. If

the sequencing depth is approximately the same for all samples, we may assume for simplicity

xU = xL = 1, and in this case, mT(t) = mL(t) + mU(t) = μ.

In the conventional approach, where labeled and unlabeled molecules are separated, xU 6¼

xL, the fraction ratio must be inferred from the data itself or by using an external normalization

by spiking in labeled and unlabeled known molecules [26]. In the presence of cross-contami-

nation, the estimations for the rates are biased depending on the relation of the labeling time

and the degradation rate: if δt� 1 (slow rate), the bias is towards faster rate values, and, if

δt� 1 (fast rate), it is towards slower rate values, for more details see Eqs 13 and 14, section

2.1 in Extended methods. Efficiency of separation procedure may vary between species due

to different uridine content, which can be another source of bias, see section 2.2 in Extended

methods. This phenomenon can be modeled by introducing an additional coefficient to the

model, see, for example, [27] and [28]. Although both sources of a bias may potentially affect

estimates of certain RNA species, they are beyond the scope of our current work. Here, we

concentrate on theoretical results, which are derived from statistical properties of our outlined

model.

The best time to measure

In the following, we discuss pulse labeling experiments with different labeling times t. On the

one hand, subtle changes in the RNA level are masked by the measurement noise for short

labeling times. On the other hand, estimations at long labeling times are also less informative,

because the difference between the steady state level and the RNA levels at time t is negligible

and will be masked by the noise as well.
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To estimate the degradation rate δ from the RNAseq read counts, we use the method of

maximum likelihood estimation (MLE). This estimator d̂ varies from experiment to experi-

ment, and one is interested to minimize its variance, as a large variance results in large confi-

dence intervals and, hence, poor estimates of the true δ. In this paper, we use the asymptotic

properties of the MLE, when the number of experiment repetitions n!1, in which case the

system can be treated analytically [29, 30].

Under regularity conditions, the MLE θ̂ is asymptotically normally distributed:

ffiffiffi
n
p
ðθ̂ � θÞ � N ð0; I � 1

1
ðθÞÞ; ð3Þ

where I 1ðθÞ is the Fisher information matrix (FIM) for a single experiment repetition [29, 30].

The FIM characterizes the curvature of the log-likelihood function Lðθ;XÞ near the true

parameter values θ and is defined as

I ijðθÞ ¼ � E
@

2 logLðθ;XÞ
@yi@yj

: ð4Þ

We assume that the overdispersion parameter k is shared between all genes and neglect the

uncertainty in δ propagating from k, i.e. only two parameters, δ and μ, are used to construct

the FIM:

IðθÞ ¼
I ddðθÞ I dmðθÞ

IdmðθÞ ImmðθÞ:

0

@

1

A ð5Þ

The FIM is additive, i.e. if IUðθÞ and ILðθÞ correspond to the labeled and unlabeled frac-

tions, the total FIM for the experiment is IðθÞ ¼ IUðθÞ þ ILðθÞ, and for n such repetitions,

IðθÞ ¼ nðIUðθÞ þ ILðθÞÞ.

The diagonal terms of the inverse FIM estimate the variance of ŷi

varðŷiÞ ¼ ðI
� 1
ðθÞÞii: ð6Þ

In some cases we use 1=I iiðθÞ as a lower bound for ðI � 1ðθÞÞii. Since

ðI � 1
ðθÞÞ

dd
¼ ðI ddðθÞ � I dmðθÞImdðθÞ=ImmðθÞÞ

� 1
; ð7Þ

and using the fact that I dmðθÞ ¼ ImdðθÞ and ImmðθÞ > 0, the diagonal term of the inverse

matrix is bounded as

ðI � 1ðθÞÞ
dd
⩾ 1=I ddðθÞ: ð8Þ

ðI � 1ðθÞÞ
dd
¼ 1=I ddðθÞ if there is no uncertainty, propagating from other parameters, i.e.

I dmðθÞ ¼ 0.

Since the FIM IðθÞ depends on the experiment parameters, such as the labeling time t and

the sequencing depth, it is our main interest to reduce the variance of the MLE by selecting the

optimal conditions accordingly. Due to additive property of the FIM, it suffices to optimize the

FIM of a single experiment repetition.

In the case of multiple parameters, it may be not possible to achieve the minimal variance

for all parameters at the same time. Different criteria can be constructed as a combination

of the elements of the inverse FIM [29, 31]. We are interested to optimize the estimation
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of δ only and do not consider variance of the expression level estimator m̂ in the design

criteria.

Let us consider first a simpler experimental setup, which preserves the fraction ratio

(e.g. SLAMseq). Here we first discuss the case of the Poisson model, which corresponds

to the case of no overdispersion (k!1). The derivations for the Poissonian and for

more general cases are left to section 3 of the Extended Methods, see Eqs 25 and 26. Let XL

and XU be the read counts corresponding to the labeled and unlabeled molecules for a given

gene in a SLAMseq sample, and let t be the time of labeling. In this case, the inverse FIM is

diagonal:

I � 1

slamðθÞ ¼ ðILðθÞ þ IUðθÞÞ
� 1
¼

edt � 1

mt2
0

0 m

0

B
@

1

C
A ð9Þ

The parameters δ and μ are information orthogonal, because I dmðθÞ ¼ 0 and inference

about δ can be done as μ were known exactly.

Indeed, for XL� Pois(mL(t)), XU� Pois(mU(t)), the conditional distributions P(XL|XU +

XL) and P(XU|XU + XL) are binomial with the rates mU(t)/(mU(t) + mL(t)) = e−δt and mL(t)/
(mU(t) + mL(t)) = 1 − e−δt and do not depend on μ. This model was recently discussed in a

Bayesian framework for SLAMseq experiments by [32].

For a diagonal IðθÞ, the inverse term ðI � 1

slamðθÞÞdd ¼ ððI slamðθÞÞddÞ
� 1
¼ ððIUðθÞÞdd þ

ðILðθÞÞddÞ
� 1
: The maximum of the term ðI slamðθÞÞdd corresponds to the minimal asymptotic

variance of d̂ due to Eq 3. By optimizing ðI slamðθÞÞdd with respect to t, we get

tslam ¼ 1:59t; ð10Þ

where τ = 1/δ is the characteristic time of degradation. That means, if one optimizes the

SLAMseq experiment and targets the gene with the characteristic time of degradation τ, the

measurement at time point 1.59τ corresponds to the asymptotically optimal design. For exam-

ple, if one is interested in an RNA species with half-life time of λ = 1 hr (i.e. the characteristic

time τ = λ/log(2)� 1.44 hr), a pulse phase of 1.59 × 1.44� 2.3 hr corresponds to the asymptot-

ically optimal design.

In Fig 2A, we depicted the dependency of ðI slamðθÞÞdd and corresponding values of

ðIUðθÞÞdd and ðILðθÞÞdd as functions of normalized time t/τ for the degradation rate δ = 1.

Interestingly, ðIUðθÞÞdd and ðILðθÞÞdd achieve maximum at tU = 2τ and tL� 0.64τ, and the

main contribution to the sum ðI slamðθÞÞdd ¼ ðIUðθÞÞdd þ ðILðθÞÞdd comes from the term cor-

responding to labeled counts at shorter labeling times, and from the term for unlabeled counts

at times longer than τ, see Fig 2A.

Cost of suboptimal timing

Usually one is interested to measure a rate with a certain relative precision. To reflect this, we

normalize the variance of the degradation rate estimator by δ2:

varðd̂Þ
d

2
�

1

I ddðθÞd
2
: ð11Þ
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Using a non-dimensional substitute α = t/τ, the corresponding denominator terms are

ðILðθÞÞddd
2
¼

a2m

e2a � ea

ðIUðθÞÞddd
2
¼ a2e� am

ðI slamðθÞÞddd
2
¼

a2m

ea � 1
;

ð12Þ

see Eqs 50, section 3.5 in Extended Methods.

Fig 2. The key characteristics of metabolic RNA labeling experiments. A: The diagonal term of the Fisher information matrix

(FIM) I ddðθÞ, as a function of the ratio of labeling time t to the characteristic time of degradation τ = 1/δ for the case of SLAMseq

experiment. Read counts follow the Poisson distribution, the expression level is μ = 1 and the degradation rate is δ = 1. B: 95%

confidence interval (CI) relative width of the degradation rates for different sets of time points included in the simulation of the

SLAMseq experiment. We simulated counts for a range of rates δ and assumed for simplicity that normalization factors are perfectly

known but not the rates and expression levels. Smoothed data from 10 simulation runs is shown. C: Relative standard deviation

(sdðd̂Þ=d) of the MLE for δ as a function of measurement time at different values of the overdispersion parameter k. With increasing

overdispersion, the profile of the dependency flattens. However, near the optimal time point, variance of the estimation is more

sensitive to time of labeling, which complicates the optimal design choice for different δ ranges. Expression level is fixed to μ = 100

reads in this example, the degradation rate is assumed to be δ = 1. The FIM IðθÞ ¼ nI 1ðθÞ is calculated for n = 1. D: Relative

standard deviation (sdðd̂Þ=d) for a model with overdispersion (k = 100, solid line) or with no overdispersion (k!1, dashed line).

The degradation rate is δ = 1, the labeling time is t = 1. The FIM IðθÞ ¼ nI 1ðθÞ is calculated for n = 1.

https://doi.org/10.1371/journal.pcbi.1007252.g002
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For labeling times much shorter than the characteristic degradation time of a given gene,

α� 1, the normalized FIM terms behave as a power function:

ðI slamðθÞÞddd
2
; ðILðθÞÞddd

2
� a; ðIUðθÞÞddd

2
� a2: ð13Þ

However, for labeling times much longer than the characteristic time of degradation τ, α�
1, the normalized FIM terms vanish exponentially:

ðILðθÞÞddd
2
� e� 2a; ðI slamðθÞÞddd

2
; ðIUðθÞÞddd

2
� e� a; ð14Þ

see derivations in Extended Methods, section 3.5, Eqs 51 and 52.

In a typical high-throughput experiment, the kinetic parameters are monitored for a large

set of genes (in the order of thousands), which may have different degradation rates. In this

case, every time point in the experiment will be only optimal for a subset of these genes. To

illustrate this effect, we simulated read counts for an ideal SLAMseq experiment (with no over-

dispersion) and fitted the model using various sets of samples. In our in silico experiment, we

always included the total fraction (t = 0 hr), and either one additional time point (labeled and

unlabeled fractions) or all time points (2, 4, and 8 hr). The normalization coefficients were set

to 1 to mimic an ideal SLAMseq scheme, as discussed earlier, Eq 2.

We fitted the model using the pulseR package and computed the 95% confidence inter-

vals (CI) for δ using the profile likelihood approach [33]. Since we assume no overdispersion

(Poisson distribution), for high read counts (μ = 10000) the quadratic approximation of the

log-likelihood function applies, and the confidence intervals for the rate estimations may be

approximated by the Wald intervals, i.e. ðd̂ � 1:96

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðI � 1
ðθÞÞ

dd

q

; d̂ þ 1:96

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðI � 1
ðθÞÞ

dd

q

Þ, and

hence, they reflect the behavior of the FIM term for δ. As expected, the relative CI width is

minimal only for a certain subset of the rates, depending on the set of measurements included,

see (Fig 2B).

If the degradation rate is very fast in comparison to the experiment time scale, the CI width

for these fast genes is defined by the earliest time point in the experiment (see Fig 2B).

Since every labeling time is optimal only for a single degradation rate, it might be beneficial

to focus the design on genes with faster rates δ, if sample size is limited and no other criteria of

optimality are given. The justification follows from the faster decay of the FIM term for α� 1

(i.e. genes with faster kinetics), Eqs 13 and 14.

Increasing sample numbers is preferred over higher sequencing depth

Read count data from RNA-seq experiments exhibit overdispersion (variance> mean), and

the negative binomial distribution (NB) is the model of choice to account for that [25]. In this

section, we explore how overdispersion would affect MLE of δ. The overdispersion parameter

k of the NB distribution describes the level of overdispersion in the data, in which case the vari-

ance is defined as var(X) = m + m2/k for counts X� NB(m, k) with mean m. Smaller values of

k correspond to higher overdispersion level, and, for k!1, the NB distribution converges to

the Poisson distribution, for which var(X) = m. For simplicity, we assume that distributions of

read counts in all samples share the same value of k. In addition, we do not consider uncer-

tainty in the overdispersion parameter k when we make inference about δ for individual genes,

in a way as it is implemented in some packages for differential expression analysis, for exam-

ple, in DESeq, [25]. A more advanced quasi-likelihood approach, which accounts for uncer-

tainty in the overdispersion parameter, is discussed in [34].

In the case of NB distribution, the FIM is not diagonal for the SLAMseq experiment, see

Eqs 29 and 30 in section 3 of the Extended Methods. Hence we need to work with the inverse
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FIM, and the diagonal term for the SLAMseq design is

ðI � 1

slamðθÞÞdd ¼
edt � 1

mt2
þ

2ð1 � e� dtÞ2

kt2
: ð15Þ

The presence of overdispersion shifts the optimal time to higher values. But the most

important change is that the profile of I � 1
ðθÞ

dd
is more sensitive to the labeling time t near

the optimal point. For higher overdispersion values, the variance of the rate estimator d̂

increases faster in the vicinity of the optimum (see Fig 2C). This imposes stricter conditions

on the experimental design. The second term in the Eq 15 vanishes for times t� 1, and the

equation coincides with the case of no overdispersion. The contribution of the second term is

higher for smaller values of k (higher overdispersion) and for shorter labeling times t, with the

maximal value at t! 0:

lim
t!0

2ð1 � e� dtÞ2

kt2
¼

2d
2

k
: ð16Þ

Another limitation, which arises in the over-dispersed model is that an increase of the

sequencing depth has a limited effect on the variance. Indeed, only the first term in Eq 15 can

be eliminated by an increase of sequencing depth:

lim
m!1
ðI � 1

slamðθÞÞdd ¼
2ð1 � e� dtÞ2

kt2
: ð17Þ

In contrast, repeating the experiment n times affects both terms in I � 1

dd
ðθÞ, since for n repe-

titions,

I � 1ðθÞ ¼
1

n
I � 1

1
ðθÞ; ð18Þ

where I � 1

1
ðθÞ is the inverse FIM for one repetition.

In the Poissonian case, when k!1 and the second term is absent (see Eq 9), doubling the

number of samples or increasing the sequencing depth by two fold results to the same FIM

and, consequently, the same approximation of the variance varðd̂Þ. Standard deviation of the

rate estimate is a linear function of the depth μ on the logarithmic scale and is not bounded

below (Fig 2D, dashed line). In contrast, due to Eq 17, presence of overdispersion imposes a

limit, which can not be overcome by arbitrary high sequencing depth (Fig 2D, solid line with

the horizontal asymptote).

In essence, spreading the sequencing capacity between several biological replicates can be

more beneficial than increasing the sequencing depth on a smaller number of samples. A simi-

lar phenomenon is discussed by [35] in the context of differential gene expression analysis by

RNA-seq.

Biochemical separation still matters

If one is interested in estimating the rates of extreme values by using very short (e.g. TT-seq,

[36]) or long labeling times, it may be less efficient to use the protocols, which preserve the

ratio of labeled and unlabeled molecules (e.g. SLAMseq). Let us consider a study of fast gene

kinetics, where very short labeling times are used. In this case, δt� 1 for the majority of the

genes, the labeled fraction constitutes only a minor proportion of the input SLAMseq sample,

because mL(t) = μ(1 − e−δt)� μδt� 1. After a short labeling time, any SLAMseq sample

mainly consists of unlabeled molecules from genes with slower synthesis, which leads to
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spending sequencing resources on mostly non-informative material. The same idea holds for

very long times, when δt� 1 and when most of the unlabeled molecules were already

degraded, mU(t) = μe−δt� 1.

In contrast, conventional experimental setups with a separation step can be used to focus

sequencing capacity on the relevant molecules. However, the conventional approach suffers

from the need to normalize sequencing results from different fractions as it does not preserve

the ratio of labeled and unlabeled molecules as defined by the input sample. In typical RNA-

seq experiments, the normalization coefficients are assumed to be shared between all the genes

in a given sample [25], but nevertheless, it introduces additional uncertainty into rate estima-

tions. As previously mentioned, a whole range of normalization approaches has been discussed

in literature [26]. In the following derivations, we neglect the uncertainty in estimating the

fraction normalization coefficients xi from Eq 2.

To illustrate the benefit of the conventional approach, let us consider a set of fast turned

over genes F , such that there exists labeling time t, when the majority of genes i =2F do not

contribute to the labeled fractions, i.e. μ(1 − e−δi t)� 1 for i =2F , but μ(1 − e−δit)� 1 for i 2 F .

If the sequencing depth of the labeled fraction is approximately the same as for the total sam-

ple, then the normalization factor is

xL ¼
P

imiP
imið1 � e� di tÞ

�

P
imiP

i2Fmi
; ð19Þ

which can be high at short times. Such “zooming” effect can be considered as corresponding

increase of the sequencing depth in SLAMseq experiments by the factor of xL for the labeled frac-

tion. The same idea can be applied to the unlabeled fraction and long labeling times, when the

sequencing depth is shared out between the most stable set of genes. Since the normalization fac-

tor depends on the rate distribution and the expression level in a given system, it is not possible

to derive the optimal design criteria analytically without imposing additional assumptions.

As in the case of SLAMseq, inference can be improved to a limited extent by increase of

sequencing depth, if overdispersion is present in the data, compare to Eq 17:

lim
m!1
ðILðθÞÞdd ¼

t2e� 2dtk
ð1 � e� dtÞ2

⩽
k
d

2

lim
m!1
ðIUðθÞÞdd ¼ t2k

ð20Þ

For derivations, see Eqs 58 and 59 in section 4 of Extended Methods. It is interesting to

note, that for the case of the unlabeled fraction, the bound can be improved by use of longer

labeling times (provided very high sequencing depth), which is not the case for the labeled

fraction (with the upper bound ILðθÞ ! k=d2
at t! 0).

In summary, biochemical separation should be considered for estimation of degradation

rates of RNA species with extreme values. Another design choice is to reduce the number of

sequencing reactions by using external spike-ins. For slowly turned over RNA species, one

may sequence total and unlabeled fractions, and, for fast turned over RNA species, the total

and the labeled fractions. The use of external spike-ins ensures identifiability of the normaliz-

ing coefficient from only two fractions.

Application to a pulse-chase SLAMseq experiment

In this section, we consider a published SLAMseq pulse-chase experiment from [12]. Here,

mESCs were treated for 24 hrs with 100 μM 4sU (pulse phase) with samples being collected after

0, 0.5, 1, 3, 6, 12 and 24 hr of label chase, and subjected to QuantSeq mRNA 3’ end sequencing.
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While inspecting the data, we noticed that not all the molecules were fully labeled (i.e. not

all reads show T! C conversions) after a 24hr pulse phase. In this case, the labeled fraction

does not reach the total level μ. We adapted our pulse-chase model to reflect this by introduc-

ing a parameter describing the background level of the unlabeled fraction μ1 and the maximal

level of the labeled fraction μ2, so μ1 + μ2 = μ:

mUðtÞ ¼ m1 þ m2ð1 � e� dtÞ

mLðtÞ ¼ m2e� dt:
ð21Þ

The equations for the pulse-only experiment and derivations of other results from this sec-

tion are described in section 3.3 of the Extended methods.

Inefficient nucleotide conversion or too short pulse times may result in high values for the

background level μ1� μ2. In this case, the changes due to RNA kinetics, which are propor-

tional to μ2, constitute only a small part of the read counts, Eq 21. In the extreme case of μ1/μ2

!1, the unlabeled fraction does not contribute to the FIM term, limm1=m2!1
ðIUðθÞÞdd ¼ 0,

since it provides information solely on the nuisance parameter for the background μ1, see Eqs

45 and 47 in Extended Methods. Moreover, if the sequencing depth is fixed to μ = μ1 + μ2,

the amount of labeled molecules is small, μ2! 0 as μ1/μ2!1 and, hence, ðILðθÞÞdd ! 0,

see Eq 46 in Extended Methods. It results in high variance of the rate estimate d̂, because

varðd̂Þ ¼ ðI � 1

slamðθÞÞdd ⩾ 1=ðI slamðθÞÞdd, but ðI slamðθÞÞdd ! 0. Consequently, the sequencing

capacity is spent for measuring the background level.

Using the inverse FIM to approximate varðd̂Þ ¼ ðI � 1ðθÞÞ
dd

would result in a rather cum-

bersome expression. But even with our simplified approach, it is possible to see, how inefficient

conversion may be detrimental for estimation of δ and no design optimization with respect to

time of chase-phase could recover the situation.

To illustrate, how the choice of time point affects the confidence intervals of the estima-

tions, we analyzed different subsets of samples from [12]. Since the model includes one more

parameter to take the background level into account (μ1), one needs to use at least two differ-

ent time points. In our example, we use combinations of different chase-times and always

include t = 0, because these samples directly provide the information on the μ1 and μ2, since

mU(0) = μ1 and mL(0) = μ2.

As expected, for a short (relative to the characteristic time) chase phase, subtle changes in

the levels of the labeled and unlabeled molecules are masked by the noise and the majority of

the degradation rates are not identifiable (Fig 3, sample sets for [0, 0.5] hr, [0, 3] hr). Using one

more early time point ([0, 0.5, 1] hr) did not substantially improve the estimates, S1 Fig. At

longer chase phases, the confidence intervals are more narrow ([0, 6] hr), and for longer time

the estimations for fast genes become worse, since most of their labeled RNA molecules are

already degraded ([0, 12] hr, right side of the x-axis).

To illustrate, how the FIM term for a single sample depends on the time of the chase phase,

we calculated ðI slamðθÞÞddd̂
2 for a range of different values of t/τ ratio. ðI slamðθÞÞddd̂

2 depends

on other parameters as well (see Eq. 48 in section 3.3 of the Extended Methods). In this exam-

ple, we used parameter values from the model fitted to the full data set, i.e. including 0, 0.5, 1,

3, 6, 12 and 24 hr chase time points (overdispersion parameter k̂ ¼ 10:4 and medians of m̂1

and m̂2, 251 and 89 correspondingly).

Similar to the simpler case in Fig 2A, there is an optimal time, where ðI slamðθÞÞddd̂
2 is maxi-

mal, t� 2.9τ (Fig 4A). Genes with a characteristic time τ, which diverge from t/2.9, will have
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confidence intervals with a large relative width, and, vice versa, the relative interval width will

be more narrow for the genes with τ� t/2.9.

To be in line with our estimation for a gene with the median m̂2, we plotted the genes with

m̂2 located around the median (in 40-60% percentile) for illustration. For 6 and 12 hr points,

there is a distinct minimum in relative confidence intervals at 6/2.9� 2 hr and 12/2.9� 4 hr

(Fig 4B). The median of the characteristic time estimates is t̂ ¼ 5:4 hr, and the optimal chase

time for such “median” gene would be around 15 hr. In agreement with this observation, the

degradation rate estimates, calculated using [0, 12] hr and [0, 24] hr points, have the highest

correlation to the rates, which were derived from the full data set (S2 Fig).

Although in majority of cases several different time points are used, the results of this sec-

tion show that too long or too short times barely contribute to the estimations. Another factor,

which influences the quality, is efficiency of the labeling protocol. The presence of non-infor-

mative background RNA creates additional noise to the measurements and wastes sequencing

capacity.

Example from a pulse labeling experiment

MCF-7 cells were pulse labeled with 200 μM 4sU for 2, 4 or 8 hrs. 4sU-labeled and unlabeled

RNA were separated by streptavidin purification after MTSEA biotin-XX catalyzed biotinyla-

tion of 4sU-labeled RNA, which has an efficiency of 95% [18]. The efficiency of purification

Fig 3. Estimates for pulse-chase SLAM-seq data [12]. Degradation rates and 95% confidence intervals are shown for different

chase time points. For short chase times, the majority of genes have poorly identified degradation rates (see subsets [0, 0.5], [0, 3],

[0, 6] hr). On the other hand, longer chase times do not allow to precisely estimate rates for unstable genes ([0, 12] hr).

https://doi.org/10.1371/journal.pcbi.1007252.g003
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was monitored in a dot blot assay that detects biotinylated RNA with streptavidin-HRP (Fig

5A, S3 Fig). This analysis revealed a gradual increase in biotinylation with increasing labeling

time. Importantly, biotinylated transcripts were efficiently depleted from the flow through. No

biotinylation signal could be detected in these samples, which illustrates the high efficiency of

the streptavidin purification. Biotin-enriched RNAs are eluted by three rounds of de-biotinyla-

tion with DTT. Therefore, we estimated the purification efficiency by the amount of purified

RNA determined by A260nm absorption measurement. The amount of purified RNA increased

gradually with increasing labeling time (Fig 5B) comparable to the biotinylation signal increase

in the respective input fractions (Fig 5A). To determine the efficiency and specificity precisely

for individual transcripts, we spiked the 4sU-labeled total RNA from MCF-7 with in vitro tran-

scribed 4sU-labeled FLuc and unlabeled RLuc that were followed by RT-qPCR analysis using a

standard curve for quantification (S3 Fig). This analysis revealed a purification efficiency of

Fig 4. Application to the SLAMseq experiment. A: Diagonal term of the FIM ðIðθÞÞ
dd

as a function of chase time. Similar to Fig 2,

we normalize it as ðIðθÞÞ
dd
d

2
, so it corresponds to the lower boundary of the relative variance varðd̂Þ=d2 ⩾ 1=ððIðθÞÞ

dd
d

2
Þ. Using

time points with low ðIðθÞÞ
dd

values results in higher variance of d̂. In this example, as values of m̂1 and m̂2, we use medians of their

estimations from the model fitted to the full set of points. B: Relative width of 95% confidence intervals (CI) for the rate estimations

d̂. We use the genes with m̂2 located between 40%-60% percentiles (i.e. near the median). Genes, which have ratio close to the

optimum t/τ� 2.9 (subfigure (A)), have smaller relative CI for d̂.

https://doi.org/10.1371/journal.pcbi.1007252.g004

Fig 5. Purification of labeled and unlabeled RNA fractions. MCF-7 cells were pulse labeled with 4sU for up to eight hr as

indicated. Total RNA was spiked with in vitro transcribed 4sU-labeled FLuc and unlabeled RLuc, biotinylated with MTSEA-biotin

and subjected to streptavidin purification. (n = 3). A: Dot blot-based detection of biotinylation with streptavidin-HRP in input and

flow through of streptavidin purification. B: The amount of RNA enriched by the streptavidin purification was determined by

absorption measurement. C: In vitro transcribed spike in RNAs 4sU-labeled FLuc and unlabeled RLuc in the flow through and

biotin-enriched fraction were measured by RT-qPCR analysis and normalized to a standard curve given in S3 Fig.

https://doi.org/10.1371/journal.pcbi.1007252.g005
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4sU-labeled FLuc of about 60% (58.56). The specificity was determined by the cross-contami-

nation of RLuc in the biotin-enriched fractions and FLuc in the flow through fractions, which

was about 5% for each transcript (RLuc in enriched = 5.32%, FLuc in flow through = 5.01%,

see Fig 5C).

The kinetic model was fitted to the read counts from the sequenced samples for genes with

mean read count>50 in the total samples. Two total samples were collected at 0 hr, labeled

and unlabeled fractions at other time points (2, 4 and 8 hrs) in two replicates (see S2 Table). In

the model fitting, we assumed no cross-contamination between fractions and shared normali-

zation coefficients for samples originating from the same time point and fraction.

Having the estimations for expression levels, degradation rates, overdispersion parameter

and normalization coefficients, we calculated the FIM diagonal elements I ddðθÞ for the ana-

lyzed genes for different time points and fraction types.

In Fig 6A, the value of the diagonal FIM element multiplied by d̂2, i.e. I ddðθÞd̂
2 (compare to

Eqs 11 and 12), is depicted for both fractions. As mentioned in the previous section, I ddðθÞ
can be interpreted as an information gain from the experiment assuming other parameters

were known, which represents an upper bound, see Eq 8. In addition, these terms are bounded

Fig 6. Application to experimental data from the MCF-7 pulse labeling time course experiment. A: We plot the diagonal term of

the FIM computated at estimated parameter values and multiplied by d̂2, I ddðθÞd̂
2, to illustrate contributions from labeled and

unlabeled fractions to estimations of degradation rates for different experimental points (MCF-7 experiment, 2, 4, and 8 hr) and

fractions (labeled and unlabeled). The black lines are the limiting values for the I ddðθÞ according to Eq 20. B: The modified FIM

term I ddðθÞd̂
2 is computed for a range of labeling times for one of the fastest (at the 0.1% quantile) and one of the slowest (at the

99,9% quantile) genes (δfast = 0.79hr−1, δslow = 0.019hr−1). The normalization coefficient for the labeled and unlabeled fractions is

adjusted in such a way that their sequencing depth (total mean read count) at time t equals the sequencing depth of the total sample.

https://doi.org/10.1371/journal.pcbi.1007252.g006
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due to presence of overdispersion in the data, (Eq 20 and dashed lines in Fig 6A), and increase

of sequencing depth can not improve these limits.

At short labeling times, the FIM term is higher for the labeled fraction than for the unla-

beled one for majority of the genes, (Fig 6A, 2hr), which is a result similar to the SLAMseq

case. At longer labeling times, the contribution from the unlabeled fraction increases, and

ðIUðθÞÞdd > ðILðθÞÞdd for majority of the genes (Fig 6A, 8hr). However, the proportion of

RNA amount from genes with high degradation rates δ in the unlabeled sample exponentially

decreases, since

lim
t!1

mfaste� dfastt

mslowe� dslowt
¼ lim

t!1

mfast

mslow
e� ðdfast � dslowÞt ¼ 0: ð22Þ

It results in very low counts and decrease in the IUðθÞ for these fast genes, see Fig 6A, 8hr,

reduced values at the right tail of the distribution (blue dots).

The optimal design for such experiments is complicated by the fact that it depends not only

on the degradation rates of some target genes, but on the overall rate distribution in the system

being studied. We illustrate a dependency of the ðIðθÞÞ
dd
d

2
terms on labeling time for one of

the fastest (0.1% quantile) and one of the slowest (99.9% quantile) genes. The normalization

coefficients for the labeled and unlabeled fractions were adjusted in such a way, that at every

time point t the sequencing depth equals the sequencing depth of the total sample. In the case

of low or no overdispersion, use of labeled fraction and shorter labeling times is preferred for

estimation of fast genes, because ðILðθÞÞdd > ðIUðθÞÞdd, see Fig 6B, dashed red line over the

blue line. For slow genes, one may benefit from use of unlabeled fraction, since the highest

FIM values correspond to ðIUðθÞÞdd at longer times, see Fig 6B, dashed blue line over red line.

At high values of overdispersion (i.e. low k), the FIM term is bounded ðILðθÞÞddd
2
< k due

to Eq 20. In this case, there may exist values of labeling times at which the terms from the unla-

beled fraction ðIUðθÞÞddd
2

is larger than maximal ðILðθÞÞddd
2

value, Fig 6B, solid lines. As a

protection against such situation in the case of fast genes, use of samples from unlabeled frac-

tion may be a solution. Although one may have a prior guess about the range of degradation

rates in a system, it is unlikely that there is information about the distribution of the rates and

overdispersion level. Hence, such design suggestions are possible only in sequential approach,

when an exploratory experiment is done first.

It is important to note the “zooming” effect of the conventional design, which we discussed

in the previous section Biochemical separation still matters. At a short labeling time, the term

ðILðθÞÞddd
2

decreases as t approches zero in the case of the SLAMseq design, Fig 2A, the red

line. In contrast, due to higher sequencing depth of individual fractions in the conventional

setting, ðILðθÞÞddd
2

has a horizontal asymptote, Fig 6B, red lines.

Discussion

In this study, we discuss some aspects of the optimal design of RNA labeling experiments

using the results of the asymptotic theory. First, we show that there exists an optimal time

point for which the maximum likelihood estimator possess a minimal variance asymptotically.

This first result was developed for the case of experiments, which preserve the fraction ratio

and hence do not require normalization between fractions (e.g. SLAMseq, TUC-seq, Time-

Lapse-seq).

In the case of negligible overdispersion, the optimal labeling time for a gene with the char-

acteristic degradation time τ is tslam = 1.59τ, and shorter labeling times show better rate esti-

mates in comparison to longer times: the variance increases exponentially for times longer
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than τ and only by a power law for shorter labeling times. This result is similar to the observa-

tions in a simulation study by [32]. Herein, for a given gene with a half-life λ = 2 hr, the most

precise estimation were at labeling times 3 hr and 6 hr (toptimal = 1.59 � 2/log(2) = 4.6 hr), and

the worst estimations were observed at the longest and the shortest times (12 hr and 0.5 hr).

However, the exact ranking of time points is different for the given half-life time, probably due

to the influence of prior distribution utilized in the Bayesian framework.

We show that at short labeling times (in comparison to the characteristic time of degrada-

tion for a given gene), the labeled fraction contributes most to the Fisher information term

corresponding to the degradation rate, and, vice versa, at long times the highest contribution is

seen for the unlabeled one.

In addition, we show that in the presence of overdispersion, the variance of rate estimates is

more sensitive to choices of labeling times different from the optimal, which make it more dif-

ficult to optimize conditions for a range of rates. The overdispersion imposes a bound on the

asymptotic relative standard deviation for the estimator of the rate (sd(δ)/δ, see Fig 2C), and,

from a certain level, increase in sequencing depth is very inefficient (Fig 2D).

We present similar results for SLAMseq data from a published pulse-chase experiment.

Herein, we extended our model to reflect incomplete labeling and demonstrate that every

chase time is optimal only for genes with a certain ratio of the characteristic degradation time

and the chase time (tslam� 2.9τ, see Fig 4).

Moreover, we discuss possible benefits of use of the conventional experimental approach,

especially for estimation of extreme degradation rates, which deviate highly from the general

pool. For nucleotide conversion setups with too short or too long labeling times, the majority

of reads in a sample originate from the unlabeled or labeled fractions correspondingly. In con-

trast, the conventional scheme, which involves biochemical fraction separation, allows to con-

centrate the experimental costs only on the relevant material. This approach strongly relies on

normalization between the samples, as the fraction ratio is not preserved. Besides the use of

labeled and unlabeled spike ins additional normalization strategies have been developed to

ensure this, see [26].

Obviously, there are certain limitations to our study. First, the method involving FIM calcu-

lation describes only the asymptotic behavior of the estimator. Hence, all the conclusions are

only approximate, since we do not investigate the behavior of the likelihood function itself, but

only the quadratic approximation of its logarithm using the FIM.

Secondly, we do not consider uncertainty from the shared parameters, such as the overdis-

persion parameter of the negative binomial distribution and the normalization coefficients

for the fractions. Inference on these parameters is based on the whole pool of the genes, and

would involve more complex analytic treatment and assumptions on the distribution of rates.

Thirdly, this study is concerned with the statistical aspects, rather than kinetic modeling,

and the simplest model of synthesis and degradation is used. More complex models, which

describe biochemical networks or RNA maturation can be more relevant depending on the

research question. Other phenomena, like dilution due to cell division, may have an effect on

the RNA level as well and should be taken into account in the case of the long-lived transcripts

[26].

Lastly, cross-contamination between fractions is a highly relevant problem for inference,

especially in the absence of external reference molecules (spike ins), which are typically used

to assess this phenomenon. However, in section 2.1 of the Extended methods, we show that

cross-contamination shifts estimations of fast rates to slower values, and slow rates towards

faster values. Previously, [28] included a global transcriptome-wide cross-contamination term

to presented kinetic model, yet future work is needed to assess possible effect sizes on rate

estimations.
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With regards to our own experimental results, we used unlabeled RLuc and 4sU-labeled

FLuc to control the efficiency and specificity of biochemical separation. We reckon that the

recovery of only 65% 4sU-labeled FLuc may be caused by inefficient elution or loss during the

washing steps. RNA species with a high 4sU content are more likely to be affected by ineffi-

cient elution, whereas the loss during the washing steps may be observed for RNAs with very

few 4sU. These effects will also introduce a bias in rate estimates, which originate from the bio-

tin-enriched fraction.

We hope that our work will encourage further development of the methodology to

address the discussed limitations and to improve suggestions on design of metabolic labeling

experiments.
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