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The information encoded in a quantum system is generally spoiled by the influences of its environment,
leading to a transition from pure to mixed states. Reducing the mixedness of a state is a fundamental step in
the quest for a feasible implementation of quantum technologies. Here we show that it is impossible to
‘‘transfer’’ part of such mixedness to a ‘‘trash’’ system without losing some of the initial information. Such
loss is lower-bounded by a value determined by the properties of the initial state to purify. We discuss this
interesting phenomenon and its consequences for general quantum information theory, linking it to the
information theoretical primitive embodied by the quantum state-merging protocol and to the behaviour of
general quantum correlations.

I
n the ‘‘whisper-down-the-lane’’ game, players are aligned to form a chain and the first player whispers a
message to his nearest neighbour. Each player then does the same with the next one down the chain, until
the message reaches the last person. Clearly, errors typically accumulate in the process (each player passes what

he believes is the message to share) so that the statement that is revealed to the last in the lane may be significantly
different from the original one: the noise affecting the information travelling along the lane has spoiled its quality.
Needless to say, a reliable communication channel (of which the above is definitely not an example!) should be
such that the input and output messages overlap quite significantly, if not perfectly, regardless of the message, its
complexity and the actual length of the channel itself. In order to counteract the degradation of the message’s
quality, a classical communication channel is often interspersed by amplifiers and filters, aiming at increasing the
signal-to-noise ratio and thus getting a better quality transmission.

Quantum mechanically, it is often the case that the message to transmit is the pure quantum state of a system.
Such state will be acted upon by the surrounding world, during its transmission, through decoherence mechan-
isms that reduce its purity1. The latter is an indicator of the knowledge that we have on the preparation of the
system: losing purity (or, equivalently, making the state more mixed), implies pushing the system more ad more
towards classicality, losing at the same time information on the original message itself. A fully mixed state is just a
classical uniform probability distribution to find the system in one of its possible physical configurations, with no
quantum feature left. In this respect, purification may be the key2: by acting on the output state, using many copies
of it, the interactions with some ancillae and measurements, one can indeed retrieve part of the information lost
during the communication process. Experimentally, state purification has been demonstrated in linear optics for
the case of two copies of the state to manage3.

However, how close would the purified state be with respect to the original message that we aimed at sending
off? This question introduces another form of faithfulness that we should take care of, intuitively related to the
quality of the message transmitted across the lane of whisperers above. Moreover, it is very interesting to
determine whether a global improvement is possible, where the quality of the exchanged message is high with
respect to chosen purity and closeness indicators. Can we achieve an output state arbitrarily close to the input and,
at the same time, gain purity at the expenses of the noise? Classically, nothing seems to prevent this.

Here we show that, quantum mechanically, this is certainly not the case: by designing a special ancilla-based
purification protocol, we find the existence of a trade-off that prevents the purification of a state that also remains
close at will to the input one. Such an impossibility is strongly related to fundamental features of the system-
ancilla state, whose nature as a resource for quantum communication goals determines the efficiency of the global
optimization task mentioned above.

The scheme we consider is based on the idea of removing part of the mixedness present in our state without
losing any of the information encoded in it, or at least trying to minimize this loss. We do this using the ancilla as a
a ‘‘trash’’, which is discarded at the end of the process, as sketched in Fig. 1 (a). To address our question without
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unnecessary complications, we consider our input message as
encoded in the state of a two-level quantum system (labeled as s).
The ‘‘trash’’ ancilla (labeled as a) will also be two-dimensional, while
the model can clearly be extended to higher-dimensional cases.

As a measure of mixedness, we will consider the purity of the
system under investigation defined asP~Trs %

2
s

� �
, where Tri denotes

the partial trace with respect to system i 5 s, a, %s~Tra %sa½ �
%a~Trs %sa½ �ð Þ is the reduced density matrix corresponding to system

s (the ancilla a) and %sa is the density matrix describing the quantum
state of the joint system. We use the Bloch vector formalism1 accord-
ing to which a single-qubit state is in one-to-one correspondence
with a vector l 5 (l1, l2, l3). Pure (Mixed) states correspond to vectors
of length equal to (smaller than) 1 and thus lie on the surface (occupy
the interior) of the so-call Bloch ball. The purity of a given state is
related to the length ‘ of the vector l through the simple expression
P~ 1z‘2ð Þ=2.

The other information benchmark that will be used throughout
this work is precisely the direction of the Bloch vector. In the three-
dimensional geometric space introduced above, two states with com-
parable purities are similar to each other if the corresponding Bloch
vectors point along close directions. Therefore, given a state %s to
purify, we identify the direction of the associated vector ls and con-
sider the ‘‘reference’’ given by the pure state jlæs, whose Bloch vector
points precisely along ls. At the end of the purification protocol, we
will distinguish between the length of the Bloch vector of the output
state %o

s (i.e. we will quantify its purity) and its direction with respect
to the reference state jlæs. The latter figure of merit is formally embod-
ied by the so-called state fidelity F~s lh j%o

s lj is1, which is linearly
dependent on the projection of the Bloch vector of the output state
onto the vector associated with jlæ [the information initially encoded
in the state of s corresponds to F~ 1z‘ð Þ=2]. The above discussion
has thus sketched the situation that we consider in this work, as
shown in Fig. 1 (b,c): given a state to purify, we device a protocol
based on a joint unitary interaction Û with the ancilla a (to be dis-
carded later) such that the length of the Bloch vector of %o

s has grown
(which corresponds to an increased output purity) without changing
its direction significantly (so that the fidelity with the reference state
remains close to the initial value). In order to fix the ideas, here we
consider initial states of s having the form

%s~pw lj is lh jz 1{pwð Þ̂I
�

2 ð1Þ

with Î the 2 3 2 identity matrix and pw g [0, 1]. A simple calculation
shows that ‘:pw, so thatPin~ 1zp2

w

� ��
2. Physically, Eq. (1) corre-

sponds to the action of a form of noise (sometimes referred to as
white noise1) that shrinks ls isotropically from unity to its length pw.
However, this does not imply that we are restricting the study only to
a specific form of noise: any single-qubit mixed state can be written as
in Eq. (1).

The protocol should be state-independent, which means that,
besides assigning the value of pw in Eq. (1), we do not impose any
restriction to the form of jlæs. Our figures of merit will thus be aver-
aged over any possible choice of such pure-state component. On the
other hand, we decide to prepare system a in a fiducial state that,
unless otherwise specified, we have taken to be j0æa. While any other
pure-state preparation is equally legitimate, the assumption of pure
ancillary state is important. It implies that the ‘‘trash’’ system a is able
to accept more of the mixedness that we aim at transferring (needless
to say, due to the unitarity of Û , the global mixedness of %sa is pre-
served). A generalization of our results to initially mixed ‘‘trash’’
systems is also briefly discussed later on. As a final remark, we point
out that we set no constraint on the form of the unitary interaction
between s and a (which could also include single-qubit operations).

Results
We have constructed Û by resorting to the theory of random uni-
taries4. Starting from an ensemble of M random mixed states having
the form given in Eq. (1) (such ensemble is used to calculate average
values of the figures of merit under scrutiny here), we have applied N
random unitary operations (constructed using 15 parameters, uni-
formly drawn with respect to the proper Haar measure as described
in Methods) so as to obtain N distributions of M output states. The
ensemble-averaged purities P and fidelities F with respect to the
pure reference state have been calculated and plotted against each
other for each of the N random gates. Intuitively, one should expect
the existence of a price to pay for transferring mixedness from s to a
and that a successful purification protocol would necessarily deplete
the information content as quantified by state fidelity. Such a pre-
diction is indeed confirmed by the results shown in Fig. 2 (a), where
we see that, by chosing the proper set of unitaries, an arbitrary high
degree of average purity is achievable through our protocol and
regardless of the initial purity Pin, although the fidelity with the
reference state is strongly reduced. Moreover, as expected and dis-
cussed previously, the purity of the auxiliary qubit a plays a key role
in the performance of the protocol: by taking a mixed state of a we

Figure 1 | (a) Sketch of the investigated scenario: part of the mixedness

present in system s is transferred to the ancillary system a, which is

discarded after the operation. (b) Bloch-sphere picture of the process. We

show the vectors representing the mixed initial state %s that should be

purified, the pure reference state | læs and the output state %o
s resulting from

the application of our protocol. A successful protocol requires a small angle

between the vectors representing %s and %o
s and the latter being longer than

the former. (c) The whole scheme can be implemented on a quantum

circuit exploiting a joint unitary transformation Û over the unknown state

%s of the system and state | 0æa of the ancilla.

Figure 2 | (a) Trade-off between the information gathered on the state of s

and the final purity achieved through the protocol. Both the fidelityF and

purityP are the results of an average over randomly generated initial states

of s with a set value of purity Pin. We have taken the ancilla as prepared in

| 0æa andPin~0:545, 0.68 and 0.905 [corresponding to pw 5 0.3, 0.6 and 0.9

in Eq. (1)], going from the light-colored to the dark-colored points

respectively (green, orange, blue). The dashed vertical lines show the points

at which the output purity equals the input one. (b) Same as panel (a) but

for an ancilla prepared in a mixed state of purity 0.82, 0.905 and 1 (from

light-colored to dark-colored points) and Pin~0:78125
(pw 5 0.75).
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limit its capability of receiving mixedness and so lower the efficiency
of the purification protocol. Fig. 2 (b) shows that the range of average
output purities achievable strongly depends on the mixedness of the
ancilla. However, some undoubtedly striking features emerge from
our random-unitary analysis, in particular with respect to the trade-
off between the purification capabilities of the protocol and the out-
put state fidelity.

Let us analyze these results more closely. The points along the
vertical dashed lines in Fig. 2 (a) correspond to output purity equal
to the input one. The top-most point has output state fidelity ident-
ical to the initial one and vertical trait is spanned by the cases cor-
responding to the application of local unitary operations on qubit s
(which do not alter the purity, yet reduce the fidelity). What is strik-
ing, though, is that as soon as we try to increase purity, i.e. we move to
the right of the vertical line, we observe a large drop of fidelity: there is
non-trivial trade-off between purity and fidelity. We are thus in a
position to state the key point of our investigation, which can be
formulated as the following no-go result:

Statement. Under a mixedness-trashing protocol, purity cannot be
increased past its initial value without reducing significantly the
information content of the output state.

In order to characterize properly the boundaries of our plots, we
have performed a constrained-optimization with the following strat-
egy. A heuristic analysis based on a numerical exploration suggests
that the unitary gate Û in our general scheme can be easily decom-
posed in terms of only three building blocks (the set of gates com-
posed by CN̂OT and single-qubit rotations is universal for quantum
computing, i.e. any quantum circuit can be decomposed in terms of
the elements of this set)5. In the ordered two-qubit computational
basis {j00æ, j01æ, j10æ, j11æ}as, these are given by the single-qubit
rotations R̂ að Þ~cos aÎzi sin aŝy and the two-qubit gates

CN̂OTas~

1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0

0
BBB@

1
CCCA, CN̂OTsa~

1 0 0 0

0 0 0 1

0 0 1 0

0 1 0 0

0
BBB@

1
CCCA: ð2Þ

CN̂OTas is a controlled-NOT operation that flips (leaves unchanged)
the state of s when a is prepared in j1æa (j0æa). CN̂OTsa flips (leaves
unchanged) the state of a when s is prepared in j1æs (j0æs). Needless to
say, not all such gates are necessary in order to span the boundaries of
the physically allowed (F , P) plane. Guided by the numerical
exploration mentioned above, we have identified five different
decompositions of Û , depending on the region of the F vs. P distri-
bution. These are provided in Fig. 3 (although such figure refers to
the specific case of pw 5 0.75, the quantum circuit decompositions
are independent of the initial value of the purity being considered).

However, this leaves the parameters of the rotations involved in such
circuits undetermined. In particular, we are interested in finding the
values associated with the top-most boundaries in Fig. 3, i.e. the
rotation angles {v 5 a, b} that allow us to achieve the largest state
fidelity per set values ~P of the purity. This problem can be efficiently
formulated in terms of the Lagrange-multiplier formalism. We have
thus considered the functional

Lj vj
� �

~F j vj
� �

zlj
~P{Pj vj

� �� �
, ð3Þ

where j 5 A, .., E is a label identifying the trait j of the boundary
considered each time, F j vj

� �
Pj vj
� �� �

is the corresponding average
fidelity [purity] and lj is an unknown Lagrange multiplier. L is
extremized by solving the set of simultaneous equations
LvjL vj

� �
~0 Vvj, with additional constraintPj vj

� �
~ ~P. The results

are shown as the solid curve enclosing the distribution of points in
the (F , P) plane of Fig. 3. This completely solves the problem
addressed in this work.

Interpretation. We now aim at understanding this result from an
information theoretical viewpoint. In particular, we show that the
impossibility to increase the output state fidelity past the point at
P~Pin could be related to the information cost of quantum state
merging6,7, a primitive that we now shortly describe. Consider two
random variables A and S, accessible to Aidan and Susy, respectively.
In particular, information over A completes the one brought about
by S. How much information should Aidan send to Susy if she aims at
having full information over his random variable? Slepian and Wolf
provided the answer to this question, which is a fundamental point of
classical information theory, finding that the amount of information
required for the task is given exactly by the conditional entropy
H(AjS) 5 H(AS) 2 H(S) with H the Shannon entropy8. State
merging6,7 is the quantum extension of the Slepian-Wolf result and
considers Aidan and Susy as holding qubits a and s, respectively,
prepared in state %as. We now take a purification jyæase of such
density matrix. Here, with no loss of generality, e is a second qubit
held by Susy, who also has available a ‘storing qubit’ e9 whose role will
be clarified soon. Which is the minimal quantum information that

Aidan should send to Susy in order for her to construct a state ~y
�� E

see0

close to jyæase? The answer to such question (which clearly embodies
a strict analogy of the scenario addressed by Slepian and Wolf) states
that, if the two parties have n R ‘ copies of the purification, with
asymptotically vanishing errors, such amount of information is given
by the quantum conditional entropy E %a %sjð Þ~S %asð Þ{S %sð Þ, where
S is the von Neumann entropy6,7. The interesting part stays in the
physical consequences related to the ‘sign’ of E %a %sjð Þ: when
negative, Susy can get the full state with LOCC operations only
and is able to distill {E %a %sjð Þ ebits of entanglement per copy of
the purification that could be later used as a resource. Differently, a
positive conditional entropy implies that state merging can be

Figure 3 | Comparison between the distribution of output fidelity F and purity P for N 5 105 random unitaries (dark blue points) and the results
achieved through numerical extremization (boundary red traits). We have taken pw 5 0.75, corresponding toPin~0:78125 andF in~0:875. Each point

is obtained as the ensemble average over 5 3 104 input states (all with the same initial purity Pin). The boundary points result from the use of the

quantum circuits identified by the circled letters shown in the figure.

www.nature.com/scientificreports
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successful only when a sufficient amount of entanglement per copy
of the purification is consumed.

We have thus calculated the conditional entropy associated with
the states giving rise to the points along the boundary of the F vs. P
graph in Fig. 3, and evaluated its average value in the same way as
previously done for the average output fidelity and purity. We are
interested in three different regions, close to P~Pin. For PvPin

and large values of the state fidelity (therefore corresponding to trait
B), the conditional entropy is negative and decreasing in modulus
when the purity is increasing, as shown in Fig. 4 (a). Reaching
P~Pin, the conditional entropy becomes null and so remains across
the whole trait A of the boundary curve, as shown in Fig. 4 (b). This is
the region of sign-flip of E that marks the change in resources needed
in order to run the state merging protocol: for PwPin, i.e. if the
output state of our process is indeed purified and we want to retain
a large state fidelity (upper part of trait E), the conditional entropy is
positive and increasing when the purity is increasing, as in the case of
state merging requiring the consumption of a growing number of
ebits. The connection between quantum state merging and the puri-
fication protocol addressed here allows us to explore even further
interesting implications of our work. It has been found in Ref. 9 that
the minimum increase in the average cost of quantum state merging,
when a measurement is performed on Aidan side, is exactly equal to
the quantum correlations within %as as measured by quantum dis-
cord12,13 (see also Ref. 14 for a related result). The latter quantifies the
genuine content of quantum correlations (beyond entanglement)
shared by the parties in a bipartite state. Among the various formula-
tions of measures for quantum correlations, geometric discord for
two qubits can be easily calculated15,16 [cf. Methods for the formal
definition of discord and its geometric version]. Through the usual
random-unitary approach, we have explored the distribution of the
average output geometric discord against the average output purity
for Pin~0:78125 (qualitatively similar results are found for any
other value of the input state purity). The results, shown in Fig. 4
(c), are quite interesting: at a set value of output purity, the amount of
quantum correlations shared by system and ancilla is constrained to
a non-convex region showing the existence of upper and lower
bounds. By using again the Lagrange-multiplier approach, we have
found that the upper part of trait E corresponds to the curve that
minimizes the degree of geometric discord at set output purity, for
PwPin. Quite intuitively, the points along trait A accumulate on a
single point at null discord and purity equal toPin. Approaching this
point moving along E for decreasing P results in an abrupt jump in
the values of the output discord. On the other hand, when we move
along B, for increasing values ofP towardsPin, the geometric discord
smoothly vanishes. Also in this case, trait B corresponds to the curve
that minimizes the degree of geometric discord at set output purity,
for PvPin. This clearly shows the intimate relation between the

no-go result that is the key of our study and deep information the-
oretic concepts addressing information and quantum correlations.
Needless to say, a qualitatively similar behaviour is found for any
measure of bipartite entanglement (for instance, we have checked
that analogous conclusions are reached by studying the distribution
and bounding curves when negativity is used).

Discussion
We have explored the trade-off between purity and fidelity in a state
purification protocol, finding that such quantities are related in a
highly non-trivial way, intimately connected to the nature, as a
resource, of the ancilla-system state. Seen from a complementary
perspective, our no-go result can also be interpreted as an attempt
to quantify the amount of information that we can transfer to the
ancilla a by slowly decreasing its purity, until the amount that would
be passed using a (classical) SŴAP gate (and local unitaries) is
reached. It will be interesting to extend the breath of such findings,
looking for similar negative results when addressing bipartite states
and the distillation of entanglement, as well as seek for an experi-
mental verification of the predictions of our analysis.

Methods
Random unitary matrices. Here we briefly outline the recipe to generate a random
unitary matrix. The parameterization is based on the original work presented by
Hurwitz in 189710. Any unitary matrix, Ur, of dimension n, can be decomposed as

Ur~eiaE1E2 . . . En{1 ð4Þ

where Ei is an n 3 n matrix. Matrices Ei9s are readily constructed using products of
proper rotation matrices R(i,j)(wi j, yi j, xi j), each depending on the respective set of
Euler’s angles {wi j, yi j, xi j} as follows

E1~R 1,2ð Þ w12,y12,x12ð Þ,

E2~R 2,3ð Þ w23,y23,0ð ÞR 1,3ð Þ w13,y13,x13ð Þ,

E3~R 3,4ð Þ w34,y34,0ð ÞR 2,4ð Þ w24,y24,0ð Þ,

|R 1,4ð Þ w14,y14,x14ð Þ,

..

.

En{1~R n{1,nð Þ wn{1 n,yn{1 n,0ð Þ| . . .

|R 1,nð Þ w1 n,y1 n,x1 nð Þ:

ð5Þ

The matrix elements are taken as

R i,jð Þ
k,k ~1 for k=i,jð Þ,

R i,jð Þ
i,i ~eiy cos w, R i,jð Þ

i,j ~eix sin w,

R i,jð Þ
j,i ~{e{ix sin w R i,jð Þ

i,j ~e{iy cos w,

ð6Þ

and zero otherwise. The angles are drawn from the ranges wi j[ 0,p=2½ �, yi j[ 0,2p½ �,
xi j[ 0,2p½ � and a[ 0,2p½ �, uniformly with respect to the corresponding Haar measure11.

Figure 4 | (a) Average conditional entropy E corresponding to the unitary operations Û lying along the boundaries in Fig. 3 studied against the average

output purityP. (b) Same as in panel (a) but for the fidelityF being shown in the horizontal axis. The relevant boundary zones are clearly labelled as done

in Fig. 3. Notice that we only show the parts of the boundary curve close to the zone of sign-flip of the conditional entropy. (c) Geometric discordG against

the average output purity P for Pin~0:78125. The (orange) points show the average geometric discord obtained using a random-matrix sample

analogous to the one used in Figs. 2 and 3, while the blue lines are the curves that correspond to part of the unitary operations Û lying along the boundaries

in Fig. 3. Interestingly, these are also the unitary operations that minimize G at set values of output state purity. As before, we are only concerned with the

region close to the sign-flip of the conditional entropy.
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Quantum discord. As originally proposed12,13, quantum discord can be associated
with the difference between two classically equivalent versions of mutual information,
which measures the total correlations within a quantum state. For a two-qubit state
r(r,r9), the mutual information is defined as I r r,r0ð Þ� �

~S r rð Þ� �
zS r r0ð Þ� �

{S r r,r0ð Þ� �
.

Alternatively, one can consider the one-way classical correlation
J/ r r,r0ð Þ� �

~S r rð Þ� �
{H P̂if g r r0jð Þ12,13, where we have introduced

H P̂if g r r0jð Þ:
P

i piS ri
r r0j

� 	
as the quantum conditional entropy associated with the

the post-measurement density matrix ri
r r0j ~Trr0 P̂ir

r,r0ð Þ� ��
pi obtained upon

performing the complete projective measurement {Pi} on spin r0 pi~Tr P̂ir
r,r0ð Þ� �� �

.
Discord is thus defined as

D/~ inf
Pif g
I r r,r0ð Þ
� 	

{J/ % r,r0ð Þ
� 	h i

ð7Þ

with the infimum calculated over the set of projectors P̂i

 �

12,13. Analogously, one can
define D? , which is obtained upon swapping the roles of r and r9.

Quantum correlations can also be defined by taking a geometric perspective and
quantifying them as the minimum distance between a given state r(r,r9) and the set of
states s that are left unmodified by at least one measurement operated on one of the
qubits. Therefore, by assuming the Hilbert-Schmidt norm d að Þ~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Tr aa{ð Þ

p
as a

metric (with a an arbitrary square matrix), we can define the geometric discord as

DG~2 min
s

d2 s{r r,r0ð Þ
� 	

, ð8Þ

where the minimization is performed over all possible s defined above. The explicit
calculation of DG is possible without heavy computational efforts and, actually,
analytically as illustrated in Refs. 15,17.
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