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A complete calibration method to characterize a static planar two-dimensional

detector for use in X-ray diffraction at an arbitrary wavelength is described. This

method is based upon geometry describing the point of intersection between a

cone’s axis and its elliptical conic section. This point of intersection is neither the

ellipse centre nor one of the ellipse focal points, but some other point which lies

in between. The presented solution is closed form, algebraic and non-iterative in

its application, and gives values for the X-ray beam energy, the sample-to-

detector distance, the location of the beam centre on the detector surface and

the detector tilt relative to the incident beam. Previous techniques have tended

to require prior knowledge of either the X-ray beam energy or the sample-to-

detector distance, whilst other techniques have been iterative. The new

calibration procedure is performed by collecting diffraction data, in the form

of diffraction rings from a powder standard, at known displacements of the

detector along the beam path.

1. Introduction
The use of two-dimensional detectors is widespread in the

collection of X-ray diffraction data. Their high resolution and

suitability for use at high X-ray energies allows a variety of

experiments to be performed, such as protein crystallography

(Helliwell, 1982), single-crystal diffraction (Riekel, 2000), the

study of grain orientation and strain in polycrystals (Hofmann

et al., 2012), the evolution of twinning in response to strain

(Evans et al., 2012), and the study of thick samples in complex

environments (Sui et al., 2010).

We present a non-iterative method for the calibration of a

planar two-dimensional detector used for synchrotron-based

X-ray diffraction at an arbitrary wavelength. The calibrated

parameters include the sample-to-detector distance, the posi-

tion of the X-ray beam trajectory on the detector, the detector

tilt and the beam energy. Our approach is made possible

through the presentation of a single coherent geometrical

description and uses diffraction ring data collected from a

number of detector positions along the beam path. Our

method accounts for the random variation in detector tilt and

lateral position as the detector is moved during data collec-

tion. This calibration technique is useful in a facility where the

energy can be freely chosen but difficult to evaluate accurately

via other methods.

There are many diffraction geometries in use for the

collection of X-ray crystallographic data, and these have

previously been described (Helliwell, 2004). Here we are

concerned with the geometry of the detector relative to the

X-ray beam. Where possible, we have adopted a notation used

elsewhere (Hinrichsen et al., 2008). A description for the

geometry of the intersection of a cone’s axis and its elliptical

conic section has been attempted elsewhere (Hinrichsen et al.,

2008) and will be discussed in more detail later. We do not

consider parabolas or hyperbolas, and thus our method applies

to cases where both the energy is high enough and the

detector’s tilt is set appropriately such that calibration data

from a powder standard can be recorded as ellipses upon the

detector surface.

At low energies, the diffraction pattern of a calibration

standard can be recorded and the topology of that pattern

used to estimate the diffraction geometry and incident wave-

length (Norby, 1997). This method can be sufficiently accurate

at large X-ray wavelengths (>1 Å), when large diffraction

angles are present. With two-dimensional detectors, this

indirect calibration method is common practice, owing to its

practical implementation in various software packages

(Heiney, 2005; Hammersley et al., 1996; Ilavsky, 2012) which

are currently used in many facilities around the world.

With a two-dimensional detector it is possible and often

desirable to conduct the diffraction experiment at short

wavelengths – or high photon energies – in order to collect a

large section of reciprocal space. At high X-ray energies, the

small diffraction angles (<5�) lead to an interaction between

the sample-to-detector distance and the wavelength that can

be hard to separate mathematically when solving the relevant

nonlinear equations (Bragg’s law). This interaction makes

their simultaneous refinement difficult (Hong et al., 2012).

A diffraction ring resulting from an interplanar spacing

given by d, recorded on an orthogonal detector at a distance of

D from the sample, using high-energy X-rays of wavelength �,
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will have a radius approximately given by �D=d. It is not

possible to solve this equation for both � and D using

diffraction data taken from a single sample-to-detector

distance. At best the product of � and D can be found. Thus, at

high energies, it is often the case that either the sample-to-

detector distance or the beam wavelength needs to be accu-

rately determined prior to the refinement of the other cali-

bration parameters. One possible method to indirectly

determine the incident wavelength is to configure the mono-

chromator to produce a wavelength that matches the

absorption edge of a known sample with a well defined K

edge; however, this will only cover a discrete set of energies

and not always the desired one. An alternative method for

calibration at high energies, which uses the extra information

obtained by varying the position of the detector, exists (Hong

et al., 2012) but is iterative in its application and thus requires

the design of an exit strategy.

Another difficulty with calibrating a two-dimensional

detector using diffraction ring data is that determination of the

detector tilt relative to the beam direction is nontrivial. The

eccentricity of a diffraction ring,1 seen as an ellipse, can be

expressed as a function of the detector tilt and the Bragg angle

[see equation (11) derived later]; as such it is impossible to

calculate the detector tilt using a single diffraction ring

without knowledge of the Bragg angle (which in itself is a

function of the interplanar spacing and the beam wavelength).

Fig. 1(a) demonstrates this ambiguity, where it can be seen

that cones of various opening angle and orientation can

intersect a plane to produce an ellipse of identical eccentricity.

For each diffraction cone, as seen in Fig. 1(a), that projects

to give an identically shaped diffraction ring, the location of

the beam centre within each ellipse will differ as per equation

(5). The beam centre is not located at either the ellipse centre

or the ellipse focal point of a diffraction ring [see equation

(10) derived later]. As a consequence the beam centre cannot

be defined from one diffraction ring. For a set of concentric

cones the positions of the ellipse centres and the ellipse focal

points differ for rings originating from different (hkl) planes.

This viewpoint is in contrast to that presented elsewhere

(Norby, 1997; Rajiv et al., 2007; Hinrichsen et al., 2008), where

it was incorrectly stated that the cone’s axis intersects the

elliptical conic section at its focal point. Subsequent geome-

trical expressions involving the focal point were thus incor-

rectly derived (Rajiv et al., 2007; Hinrichsen et al., 2008).

By using more than one diffraction ring it is possible to

derive values for the detector tilt and the X-ray energy using

equation (11), if the interplanar spacings for each diffraction

ring are known. However, for small Bragg angles or detector

tilt �e� �ð2�Þ. Equation (11) becomes insensitive to the

precise value of the Bragg angle and so cannot be used to

attain a good value for the beam energy. To overcome this

problem, we use diffraction ring data collected from multiple

detector distances to first calculate the beam energy and then

give a value for the detector tilt.

By using data from multiple detector positions of known

separation we can solve for both � and D. Our method

considers geometries where the detector normal may exhibit

an arbitrary angle relative to the incoming beam, regardless of

whether the tilt is applied intentionally or not. It is important

to allow for a variation in tilt, due to mechanical runout, as the

detector stage is translated whilst collecting diffraction data

for calibration. For this reason simple ray tracing techniques

may be inaccurate.

The closed form solution we present here yields results for

all calibration parameters in a non-iterative manner and at the

same time adds understanding to the underlying geometrical

problem. Iterative techniques (Hong et al., 2012) lacking a

complete model may yield sufficiently accurate results, if the

exit strategy is suitably designed.

The quality of our method derives from a complete analy-

tical three-dimensional model which utilizes powder diffrac-

tion patterns from a standard, recorded at different sample-to-

detector distances (Fig. 2). This allows us to remove the

ambiguity in sample-to-detector distance and wavelength

(Bragg’s law) as well as the ambiguity in detector tilt and

opening angle of a diffraction cone (Fig. 1a).

Our method can be broken down into a number of distinct

steps (Fig. 3). Each diffraction ring recorded on a two-
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Figure 1
Geometry of a plane intersecting a cone, representing a two-dimensional
detector intersecting a diffraction cone. (a) A single elliptical conic
section cannot define the cone from which it came. (b) Plan view showing
the geometry of a plane (thick line) intersecting a cone of opening angle
4�, where � is equivalent to Bragg’s angle in the context of a powder
sample diffracting to produce a diffraction cone. The projection of the
resulting elliptical conic section is shown. (Diagrams are not drawn to
scale.)

1 For the purpose of this article a diffraction ring can be circular or elliptical. A
diffraction ring recorded upon an orthogonal detector will be circular in shape;
however, if the detector is tilted then the diffraction ring will be elliptical in
shape.



dimensional detector is an ellipse. The location of the ellipse

centre and the length of the semi-major axis in the coordinate

system of the detector need to be accurately determined.

Diffraction data are collected from a number of different

nominal sample-to-detector distances. At each detector posi-

tion, the ratio of the sample-to-detector distance to the sine of

the tilt and the location of the beam centre on the detector are

found by solving a nonlinear equation. Data from all detector

positions are then brought together in another nonlinear

equation which provides values for the sample-to-detector

distance and the beam wavelength. Finally, the detector tilt

and direction of tilt can be calculated from the sample-to-

detector distance and the beam centre, respectively. By using

data from all available diffraction rings we can improve the

accuracy of these calculated parameters. Solving an over-

determined system reduces the sensitivity of the calculated

parameters to noise.

Having fully calibrated the detector in terms of its five

spatial parameters and the incident beam wavelength, reci-

procal space values, Q, can be assigned to each detector pixel.

This can be achieved by using equations (19) and (20).

The method presented in this article requires the para-

meterization of the elliptical diffraction ring formed at the

intersection of the diffraction cone and the plane of the two-

dimensional detector. This procedure is beyond the scope of

this article; however, a number of techniques are known

(Hanan et al., 2004; Hart & Drakopoulos, 2013). The tech-

nique used in this article directly fits an intensity-weighted

ellipse to peak centres determined at equal intervals in

azimuthal angle. This technique works well for both complete

and spotty rings (Hart & Drakopoulos, 2013).

To aid our attempt in providing an accurate method for

detector calibration, we first present a complete geometrical

description of the intersection between a cone’s axis and its

elliptical conic section.

2. Ellipse geometry – the intersection of a cone’s axis
and its elliptical conic section

If a two-dimensional detector is positioned perfectly ortho-

gonal to the X-ray beam, then a diffraction ring will appear as

a circle. A deviation from orthogonality will result in an

elliptical ring. The right-hand diagram of Fig. 2 demonstrates

the convention used in this article in the case where a detector

exhibits a tilt. In the plane of an orthogonal detector we

consider a single tilt, t, of the detector, whilst the azimuthal
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Figure 3
Flow chart showing the steps required to calibrate a two-dimensional
detector. Steps labelled A, B and C indicate the part of the procedure
from which calibration parameters are determined.

Figure 2
The calibration procedure permits both the detector tilt and the lateral position of the detector to change in both a systematic and unknown manner, as
the detector is translated along the beam path. For the detector tilt we use a convention of a tilt angle, t, which occurs in a direction denoted by �.



direction of the tilt relative to the x axis, �, is perpendicular to

the axis of tilt. We use a subset of the Euler angles.

Fig. 1(b) shows a view (Kumar, 2006) along the tilt axis of

the detector, depicting the X-ray beam (propagating along line

S–H), a diffraction cone of half-angle 2�, where � is the Bragg

angle, and a representation of the detector surface (bold off-

horizontal line) intercepting the cone. The intersection of a

cone and the two-dimensional detector (placed at an angle t) is

an ellipse. This ellipse represents the recorded diffraction ring

on the detector. The ellipse is shown projected from the

detector surface, and both the semi-major, a, and semi-minor,

b, axes are indicated. The distance from the centre of the

ellipse to the point where the X-ray beam strikes the detector

surface, c, is also indicated. D is the distance from the sample,

S, to the detector at H. Labelled on both the plan view and the

ellipse, u is the radius of a ring as it would be recorded on an

orthogonal, t ¼ 0, detector at position H.

Other authors have stated that the direct X-ray beam or

axis of a cone intersects a detector or plane at the focal point

of the diffraction ring or ellipse (Norby, 1997; Rajiv et al., 2007;

Hinrichsen et al., 2008) or at a symmetry centre defined by the

diffraction ellipses (Cervellino et al., 2006, 2008). We postulate

that, should a cone intersect a plane to produce an elliptical

conic section, then the cone axis intersects the plane at a point

that lies between the ellipse centre and closest focal point of

the ellipse. This can be visualized by considering the three-

dimensional geometrical construct known as Dandelin spheres

(De Villiers, 2007; Dandelin, 1822).

A number of expressions describing the intersection of a

plane and a cone, in the context of two-dimensional X-ray

diffraction, can now be derived.

The similarity of the triangle spanned by u and D, the

triangle spanned by G cosðtÞ and DþG sinðtÞ (Kumar, 2006),

and the triangle spanned by g cosðtÞ and D� g sinðtÞ gives the

following geometrical relationship:

u

D
¼ tan 2� ¼

g cos t

D� g sin t
¼

G cos t

DþG sin t
: ð1Þ

Using the substitutions g ¼ a� c and G ¼ aþ c, equation

(1) can be rewritten to give the semi-major axis, a, in terms of

the sample-to-detector distance, the detector tilt and the

distance from the ellipse centre to the beam centre:

a2
¼

Dc

sin t
þ c2: ð2Þ

Expressions for a and c can also be found in terms of the

sample-to-detector distance, the detector tilt and the Bragg

angle. Equation (1) gives

a ¼
Gþ g

2
¼

D tan 2� cos t

cos2 t � tan2 2� sin2 t
ð3Þ

and

c ¼
G� g

2
¼

D tan2 2� sin t

cos2 t � tan2 2� sin2 t
; ð4Þ

and thus

c ¼ a tan 2� tan t: ð5Þ

Equations (3) and (4) are equivalent to expressions derived

elsewhere (Hinrichsen et al., 2008).

In polar coordinates, the distance from the ellipse centre to

any point on the ellipse as a function of the angular coordi-

nate, �, measured from the major axis is

r ¼
ab

½ðb cos �Þ2 þ ða sin �Þ2�1=2
: ð6Þ

Use of the substitutions cos � ¼ c=r and sin � ¼ u=r gives

an expression for the semi-minor axis, b, in terms of the

sample-to-detector distance, the detector tilt and the Bragg

angle:

b ¼
D tan 2�

ð1� tan2 2� tan2 tÞ
1=2
; ð7Þ

and thus

b ¼ a cos tð1� tan2 2� tan2 tÞ
1=2: ð8Þ

The distance from the centre of the ellipse to the focus, f,

can now be given:

f ¼ ða2
� b2
Þ

1=2
¼

D sin 2� sin 2t

cos 4� þ cos 2t
ð9Þ

and

f ¼
c cos t

sin 2�
: ð10Þ

The eccentricity of the ellipse, e, can also be described:

e ¼
f

a
¼

sin t

cos 2�
: ð11Þ

Our expressions for the semi-minor axis and the eccentricity

[equations (7) and (11), respectively] disagree with those

derived elsewhere (Hinrichsen et al., 2008). We do, however,

agree with Hinrichsen in that the eccentricity is a function of

the tilt, t, and the Bragg angle, �, which is in contrast to an

alternative view that a single value for eccentricity can be used

to describe the detector tilt (Cervellino et al., 2006, 2008).

Furthermore, it is possible to conclude from equation (10)

that, if the detector tilt is such that the detector intersects the

diffraction cone to form an ellipse, then the point where the

cone’s axis intercepts the ellipse is closer than either focal

point is to the ellipse centre. In other words, if

0< jtj< ð�=2� 2�Þ, then f > c.

Directly derived from the Cartesian equation of an ellipse,

the following relationship linking the semi-major axis, a, the

semi-minor axis, b, the distance from the ellipse centre to the

beam centre, c, and the radius of the ring on an orthogonal

detector, u, holds:

ðabÞ
2
¼ ðauÞ

2
þ ðbcÞ

2
ð12Þ

The expressions derived are summarized in Table 1.

This geometrical description provides a framework upon

which our calibration procedure can be based.
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3. Experiment and method

The calibration of the diffraction geometry for a two-dimen-

sional flat-panel detector was carried out at the Joint Engi-

neering, Environmental and Processing beamline (I12) at

Diamond Light Source Limited (UK). The detector used was a

flat-panel Pixium RF4343 (Thales), with a pixel size of 148 �

148 mm. The Pixium family of detectors is widely used for

high-energy X-ray diffraction (Daniels & Drakopoulos, 2009;

Sui et al., 2010; Evans et al., 2012; Hofmann et al., 2012). Note

that this article does not address any spatial distortion which

may result from the curvature of a generic two-dimensional

detector. Images used in our calibration procedure should

already be corrected for such distortions.

A monochromatic beam with a nominal energy of

88.012 keV was generated using a double-crystal Laue X-ray

monochromator. The energy was set by scanning the mono-

chromator through the K-shell absorption edge of 125 mm-

thick lead foil. The beam size was defined to be 200 � 200 mm,

using a set of tungsten slits positioned before the sample stage.

Calibration data were collected, in transmission mode, from

a fine powder cerium dioxide (CeO2) standard (NIST Stan-

dard Reference Material 674b). The powder standard was

mounted in a 0.5 mm-thick planar arrangement so as to

minimize any azimuthal geometrical sample effects typically

produced by a sample in a capillary arrangement (Norby,

1997). The detector was fixed to a high-precision translation

stage (Advanced Design Consulting USA Inc.), allowing the

detector to be positioned at different sample-to-detector

distances. All data were collected on the Pixium detector in

high-resolution mode (2880 � 2881 pixels) with an exposure

of 4.0 s.

Data were collected for two commonly occurring situations:

the detector was positioned to be orthogonal (as determined

by the back reflection from a guidance laser), and the detector

was positioned with a nominal horizontal tilt of 6.4�. In both

cases data were collected at eight nominal sample-to-detector

distances, from 580 to 1980 mm in steps of 200 mm.

All data analysis was performed using custom-written

software.

4. Beam energy determination and calibration of a two-
dimensional detector

Calibration of the spatial position of the two-dimensional

detector and the determination of the beam energy requires

the collection of two-dimensional diffraction data from a

known standard at a variety of different sample-to detector

distances.

Determination of each beam centre is achieved through a

purely geometrical calculation. For this part of the calibration

procedure the sample only needs to produce diffraction rings

that can be accurately described. However, the part of our

procedure that determines the sample-to-detector distance

and the beam energy uses knowledge of the sample’s lattice

spacing. The measurement error in the Bragg angle as

measured from a fitted ellipse is greater than that of the lattice

spacing from a known standard. Use of the sample’s lattice

spacing allows for a more accurate calibration procedure,

whilst at the same time introducing the beam energy as an

important parameter. This is why a fine powder CeO2 standard

has been selected for use.

During data collection, the sample maintains a constant

position whilst the detector is moved to different fixed posi-

tions along the beam path. It is important to know accurately

the relative change in detector position along the beam path.

At each detector position, diffraction data are recorded for

calibration. The mechanical runout displayed by the transla-

tion stage is taken into account by our calibration procedure.
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Table 2
Summary of parameters required for the calibration of a two-dimensional
detector for use in X-ray diffraction.

The subscript i denotes the position of the detector along the translation stage,
whilst the special case of i ¼ 0 denotes the position at which the detector is
initially calibrated. Calibration parameters can be found for all i. The subscript
� denotes the diffraction ring.

Parameters to be determined for detector calibration at position i ¼ 0.

�fitB Wavelength of the X-ray beam used during calibration.
DfitB

0 Sample-to-detector distance.
tfitB
0 Angular tilt of the detector.
�fitC

0 Direction of the detector tilt.
ðhfitA

x0
; hfitA

x0
Þ Position on the detector of the X-ray beam intersection.

Parameters determined as part of the calibration procedure.

ðhfitA
xi6¼0
; hfitA

xi 6¼0
Þ Position on the detector of the X-ray beam intersection, as the

detector is translated along the beam path.
kfitA

i Ratio of the sample-to-detector distance to the sine of the tilt,
as the detector is translated along the beam path.

Observables required to perform the calibration procedure.

aobs
i;� Magnitude of the semi-major axis for each diffraction ring/

ellipse, as the detector is translated along the beam path.
ðoobs

xi;�
; oobs

yi;�
Þ Centre of each diffraction ring/ellipse, as the detector is

translated along the beam path.
dobs
� Lattice interplanar separation that results in each diffraction

ring/ellipse. Mathematically this is an observable; however,
in practice these values are calculated from a calibrated
unit-cell parameter.

�Dobs
i Change in distance from the calibration position, as the

detector is translated along the beam path.

Table 1
Summary of formulae describing the ellipse formed at the intersection of
a cone and a plane.

The cone has a half-angle of 2�. The plane is separated from the cone apex by a
distance of D and is tilted at an angle of ð�=2� tÞ to the cone axis.

Function Expression

u ¼ fnðD; �Þ u ¼ �uD tan 2�, �u ¼ 1
a ¼ fnðD; �; tÞ a ¼ �aD tan 2�, �a ¼ cos t=ðcos2 t � tan2 2� sin2 tÞ
b ¼ fnðD; �; tÞ b ¼ �bD tan 2�, �b ¼ 1=ð1� tan2 2� tan2 tÞ1=2

c ¼ fnðD; �; tÞ c ¼ �cD tan 2�, �c ¼ tan 2� sin t=ðcos2 t � tan2 2� sin2 tÞ
f ¼ fnðD; �; tÞ f ¼ �f D tan 2�, �f ¼ cos 2� sin 2t=ðcos 4� þ cos 2tÞ

a ¼ fnðD; c; tÞ a ¼ ðDc=sin t þ c2Þ
1=2

b ¼ fnða; �; tÞ b ¼ a cos tð1� tan2 2� tan2 tÞ1=2

c ¼ fnða; �; tÞ c ¼ a tan 2� tan t
f ¼ fnðc; �; tÞ f ¼ c cos t=sin 2�
e ¼ fnð�; tÞ e ¼ sin t=cos 2�

ðabÞ2 ¼ ðauÞ2 þ ðbcÞ2



For each diffraction ring at each detector position, the

ellipse centre, ðox; oyÞ, and the length of the semi-major axis, a,

in the coordinate system of the detector are required. Also

note that only equations (2) and (3) are used in our calibration

procedure.

Table 2 shows a summary of the parameters that are to be

calculated in order to calibrate a two-dimensional detector for

use in X-ray diffraction. The required observables are also

summarized. To aid understanding we segregate fitted para-

meters, with the superscripts fitA, fitB and fitC indicating

which part of the procedure they are calculated from (Fig. 3).

4.1. Beam centre calculation

To calculate the beam centre, the parameters describing the

diffraction ellipses from different ðhklÞ are required.

The location of the beam centre, at a given detector posi-

tion, can be calculated from the data provided in a single

diffraction image containing multiple rings. We calculate the

location of the beam centre for multiple detector positions.

As a result of translation stage runout, the beam centre on a

diffraction image is likely to be nonstationary as the detector

is translated along the beam’s path. For a given image, the

recorded diffraction rings result from diffraction cones with a

range of opening angles 4�. These diffraction cones share a

common axis, and thus a common beam centre exists within

the diffraction image for all diffraction rings. The ellipses that

describe the diffraction rings do not, however, share a single

common ellipse centre; instead the ellipse centres are posi-

tioned along a line coincident with the major axes of the

ellipses. The beam centre is also located along this line, and the

distance from the beam centre to each ellipse centre can be

given by equation (4).

For each detector position, i, employing the method of

linear least squares, the ellipse centres are used to give a line

of best fit with intercept, �i, and gradient, 	i. Each line of best

fit can be considered to be coincident with the major axis of

the ellipse, and thus to relate the x and y coordinates of the

beam centre, ðhxi
; hyi
Þ:

hyi
¼ �i þ 	ihxi

: ð13Þ

For diffraction ellipse �, where � denotes different fhklg, at

detector position i we can write a general expression for the

semi-major axis, ai;�. From equation (2),

aobs
i;� ¼ ðkici;� þ c2

i;�Þ
1=2; ð14Þ

where

ki ¼
Di

sin ti

¼
D0 ��Dobs

i

sin ti

ð15Þ

and ci;� can be written as a function of the coordinates of the

ellipse centre, ðoobs
xi;�
; oobs

yi;�
Þ, and the x coordinate of the beam

centre, hxi
, of the diffraction image:

ci;� ¼ ½ðhxi
� oobs

xi;�
Þ

2
þ ð�i þ 	ihxi

� oobs
yi;�
Þ

2
�
1=2: ð16Þ

Di is the sample-to-detector distance of a detector at position

i, and �Dobs
i is the difference between the sample-to-detector

distance at a chosen detector position, D0, and Di. For the

purpose of this calculation we have arbitrarily chosen D0 to be

the distance from the sample to the detector at the detector’s

furthest position from the sample as used during data collec-

tion. Calibration parameters can be found for all detector

positions.

Equations (14) and (16) are used for nonlinear least-squares

optimization of the x coordinate for the beam centre, hfitA
xi

, and

the ratio kfitA
i at each detector position i. Only data from two

diffraction rings are required to solve for hfitA
xi

and kfitA
i ;

however, the use of all available rings will minimize fitting

noise. The y coordinates of the beam centres, hfitA
yi

, for all i are

subsequently found using equation (13). The optimization is

performed using previously determined ellipse parameters,

aobs
i;� and ðoobs

xi;�
; oobs

yi;�
Þ (Hart & Drakopoulos, 2013), from a

number of diffraction rings that are recorded on the two-
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Figure 4
Plots showing the location of observed ellipse centres (black dots) at each detector position for the ‘orthogonal’ (a) and ‘tilted’ (b) cases. The calculated
coordinates on the detector where the X-ray beam strikes the detector surface are indicated by the open black circles.



dimensional detector. For this nonlinear least-squares opti-

mization, a good initial value for the ratio kfitA
i is the length of

the major axis squared from the largest ellipse used, and the

initial value for the x coordinate of the beam centre can be

taken as the x coordinate of the ellipse centre from the

smallest ellipse. The fitted value for the x coordinate of the

beam centre is also constrained to lie to one side of all ellipse

centres (Fig. 1b).

For two cases – ‘orthogonal’ (the detector is positioned

orthogonal to the X-ray beam) and ‘tilted’ (the detector is

positioned with a tilt measured to be approximately 6.4� about

the vertical axis) – Fig. 4 shows the coordinates of the ellipse

centres (dots) for eight different sample-to-detector distances,

Di. Successive images are separated by detector movements of

200.0 mm along the beam path. At each detector position, data

from the (hkl) = (111), (002), (022), (311), (004), (422) and

(333)/(511) diffraction rings were used where available, and

best fit ellipses were found (Hart & Drakopoulos, 2013). For

each set of ellipse centres, a line of best fit is shown together

with the calculated beam centre (circles). For ideal detector

displacements, the beam centres show a linear relationship in

hx and hy. Deviations from this are caused by mechanical

runout of the translation stage (Fig. 4). For the ‘tilted’ case, we

can see that the ellipse centres for each image lie along

straight lines; these lines are conceptually coincident with the

major axes of the ellipses. In the ‘orthogonal’ case we can see

that the ellipse centres also exhibit a linear relationship, which

is contrary to what may be expected for an orthogonal

detector (a perfectly orthogonal detector will exhibit

concentric circular diffraction rings). This is due to the diffi-

culty in aligning the detector to be perfectly orthogonal, and

thus a small but quantifiable tilt remains. The small tilt coupled

with the variation in the angular position of the detector

results in a larger variation in the azimuthal direction of the

detector tilt for the ‘orthogonal’ case as compared to the

‘tilted’ case.

4.2. Beam energy, sample-to-detector distance and detector
tilt calculations

This part of the calibration procedure makes use of data

collected from multiple detector positions. This information

allows for the simultaneous determination of the beam energy

and the sample-to-detector distance. Knowledge of the

detector’s movement along the beam path is required.

In cases where the path of the translation stage is parallel to

the beam path, the differences in distance of the detector

position along the beam path, �Dobs
i , can be taken as the

reported movement of the translation stage itself. If the

translation stage axis is not parallel to the beam path, then the

best fit values for the beam centre, ðhfitA
xi
; hfitA

yi
Þ, can be used to

calculate �Dobs
i . In the nonparallel case, if �Ddet

i denotes the

changes in reported position of the translation stage along its

own axis, then �Dobs
i ¼ �Ddet

i = cos ðarctan jmdetjÞ, where mdet

is the gradient of the best fit line relating the values

½ðhfitA
xi
� hfitA

x0
Þ

2
þ ðhfitA

yi
� hfitA

y0
Þ

2
�
1=2 to �Ddet

i .

As a function of detector position the azimuthal direction of

detector tilt may be nonstationary. This does not, however,

affect the accuracy of our method, as our calculation makes

use of the length of the semi-major axis, a, and the ellipse

major axes should all lie within the same plane for a given

detector position.

Rewriting equation (3) as a general expression using

equation (15) gives

aobs
i;� ¼

ðD0 ��Dobs
i Þ tan 2�� 1� ½ðD0 ��Dobs

i Þ=kfitA
i �

2
� �1=2

1� ½ðD0 ��Dobs
i Þ=kfitA

i �
2
ð1þ tan2 2��Þ

;

ð17Þ

where

�� ¼ sin�1 �=2dobs
� ð18Þ

from Bragg’s law. By substituting the Bragg angles for the

interplanar spacing of the crystal lattice, we not only introduce

the beam wavelength as an important parameter but also

improve the accuracy of our calibration procedure, as the

interplanar spacings for a diffraction standard are known to a

high degree of accuracy.

Equations (17) and (18) are used for nonlinear least-squares

optimization of the beam wavelength, �fitB, and the sample-to-

detector distance, DfitB
0 . Only data from two diffraction rings at

different detector positions are required to reasonably solve

for �fitB and DfitB
0 ; however, use of all available data across all

rings from all detector positions will improve the accuracy of

the fitted parameters. Once DfitB
0 has been found, the sample-

to-detector distances for all detector positions can easily be

calculated from �Dobs
i .

The observables used when solving equation (17) are the

previously determined values for the semi-major axes, aobs
i;� ,

and the ratios kfitA
i , obtained from solving equation (14). As

already stated, the d spacings, dobs
� , used in equation (18) are

known to a high level of accuracy as a diffraction standard is

used for detector calibration. The wavelength and the sample-

to-detector distance are often approximately known, and

these can be used as initial values to improve the speed of this

nonlinear optimization. In this case the wavelength is

approximately set to be at the K edge of Pb. The sample-to-

detector distance at the detector’s furthest position for the
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Table 3
Comparison between the calculated and theoretical values for a number
of peak locations from a CeO2 standard.

{hkl} ‘Tilted’ case Q (Å�1) Theoretical Q (Å�1) Fractional error

111 2.011022 2.010994 1.41 � 10�5

002 2.322116 2.322096 0.86 � 10�5

022 3.283983 3.283940 1.33 � 10�5

311 3.850707 3.850761 �1.38 � 10�5

222 4.021878 4.021988 �2.75 � 10�5

004 4.644089 4.644192 �2.21 � 10�5

331 5.060693 5.060891 �3.91 � 10�5

042 5.192384 5.192364 0.38 � 10�5

422 5.687668 5.687950 �4.96 � 10�5

333/511 6.032938 6.032982 �0.74 � 10�5



‘orthogonal’ case has been measured, using a tape measure, to

be approximately 1977 mm.

For each detector position i, once the sample-to-detector

distance has been calculated, the detector tilt, tfitB
i , can be

determined using equation (15), and the azimuthal direction

of the tilt, �fitC
i , can be determined from the gradient, �i, of the

line of best fit through the fitted ellipse centres (Hart &

Drakopoulos, 2013).

The complete characterization of the detector geometry can

be used to calculate theoretical diffraction rings for our CeO2

standard. These theoretical rings can then be compared with

the observed rings used during calibration (Table 3). The

difference between the values for the observed, aobs
i;� , and

theoretical semi-major axis lengths, afitB
i;� , are shown in Fig. 5.

The small values of these residuals together with a lack of any

apparent trend give an indication of quality for both the model

used in this article and the performance of the nonlinear least-

squares optimization. We cannot show residuals for the beam

centre as the direct X-ray beam is blocked from reaching the

detector during data collection.

In practice, accurate calibration values can be attained from

one set of diffraction data. Table 4 demonstrates the repeat-

ability of our method and shows average fitted values for the

beamline energy and the calibration parameters of the

detector at its furthest position from the sample. Mean values

are calculated from 29 separate sets of data, whilst the

calculated errors are taken as the standard deviation. Also

shown is the mean coefficient of determination, R2, for the

ellipse semi-major axes, associated with the final fit that

determines the beam energy and the sample-to-detector

distance. Note that the error reported for the measured beam

energy reflects our uncertainty in configuring the mono-

chromator to output an energy corresponding to the K edge of

lead. This error is based upon our knowledge of the mono-

chromator and a Monte Carlo method (Lenz & Ayres, 1992)

which is used to estimate the error in fitting a Gaussian to the

first derivative of the absorption edge.

Given accurate wavelength and detector parameters for a

fixed experimental detector position (i.e. the subscript i can

now be dropped), 2� or Q values can be assigned to each pixel

of the detector by using equations (19) (Hammersley et al.,

1996) and (20).

2�x;y ¼ tan�1
��

cos2 tð�x cos �þ�y sin �Þ2

þ ð�y cos ���x sin �Þ2
�

�
½Dþ sin tð�x cos �þ�y sin �Þ�2

�1=2
; ð19Þ
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Figure 5
The two plots show the residuals for the semi-major axes when using equation (17) to calculate the beam energy and sample-to-detector distance. The
residuals are roughly of the same size for the ‘orthogonal’ (a) and ‘tilted’ (b) cases.

Table 4
Summary of the calculated calibration parameters compared with the
nominal measured calibration parameters for both the ‘orthogonal’ and
‘tilted’ cases.

The R2 coefficient for the semi-major axis is also shown for the final fit that
determines the X-ray beam energy and the sample-to-detector distance.

‘Orthogonal’
calculated

‘Orthogonal’
measured

Beam energy, EfitB ¼ fnð�
fitBÞ 88.0399 (7) keV 88.012 (42) keV

(Pb K edge)
Sample-to-detector distance, DfitB

0 1976.497 (10) mm 1977 (1) mm
Detector tilt, tfitB

0 0.096 (12)� 0.0 (5)�

Azimuthal tilt direction, �fitC
0 9.8 (95)� None

Beam centre, x coordinate, hfitA
x0

1398.673 (5) pixels

Beam centre, y coordinate, hfitA
y0

1445.558 (11) pixels
R2 coefficient 1.00–1.45 (25) � 10�8

‘Tilted’ calculated ‘Tilted’ measured

Beam energy, EfitB ¼ fnð�
fitBÞ 88.0442 (27) keV 88.012 (42) keV

(Pb K edge)
Sample-to-detector distance, DfitB

0 1991.805 (24) mm 1992 (1) mm
Detector tilt, tfitB

0 6.375 (3)� 6.6 (5)�

Azimuthal tilt direction, �fitC
0 0.234 (24)� 0.0 (5)�

Beam centre, x coordinate, hfitA
x0

1442.381 (3) pixels

Beam centre, y coordinate, hfitA
y0

1445.624 (3) pixels
R2 coefficient 1.00–1.45 (75) � 10�8



where �x and �y are the x and y coordinates of the pixels

relative to the beam centre and are given by �x ¼ x� hx and

�y ¼ y� hy.

Qx;y ¼ 4� sin �x;y=�: ð20Þ

Now each detector pixel has associated with it not just an

intensity value but also a 2� or a Q value. Each pixel can then

be assigned to an appropriate bin of a given interval in 2� or Q,

and a one-dimensional diffraction pattern can be directly

formed (Fig. 6).

5. Discussion

Two-dimensional X-ray diffraction is an established scientific

technique. Owing to the relationship between beam energy

and sample-to-detector distance, other calibration techniques

have required the accurate determination of one of these

values during the course of an experiment prior to data

reduction or a process of iteration. For two-dimensional

detectors, accurate independent measurement of the sample-

to-detector distance is difficult because the sensor plane is

normally within the detector behind a protective layer. Instead

the beam’s energy can be set to match the absorption K edge

of an element such as those provided by the National Institute

of Standards and Technology. This procedure can, however, be

both time consuming and of limited accuracy. The measured

width of the K edge is often appreciably wider than the

theoretical width of the absorption K edge, as a result of

several instrumental broadening effects. In addition, such an

approach restricts an experiment to be performed at an energy

matching the K edge of an available element.

With the aid of a high-precision translation stage used to

alter the position of the detector along the beam axis, this

article has presented an accurate method to simultaneously

determine the beam energy and spatial position of the

detector relative to both the beam and the sample. The entire

calibration procedure, from data collection to data processing,

can be accomplished within 10 min, limited only by motor

speed, exposure time and computation power. The method

does not require prior knowledge of any calibration para-

meter, other than an estimate of the sample-to-detector

distance. Furthermore, each best fit of the calibration para-

meters is set up such that at most only two parameters are

determined at a time; this increases both the accuracy and the

speed at which a final solution can be found.

To help implement our method of calibration, the geometry

of a cone and an intersecting plane was revisited. We have

found that the point of intersection between the cone axis and

its elliptical conic section has been neglected in the literature

and thus have not been able to find any nomenclature for this

point. It is the only common point for a set of concentric

elliptical conic sections generated from a single intersecting

plane. In addition, it appears that the diffraction community

considers this point of intersection to be one of the focal

points of the ellipse formed by the intersecting cone and plane

(Norby, 1997; Hinrichsen et al., 2008), in other words, that the

beam centre as recorded on a detector coincides with the focal

point of the surrounding diffraction ellipses. In our opinion

this assumption is incorrect. By visualizing the construct of

Dandelin spheres (De Villiers, 2007; Dandelin, 1822) it is seen

that the cone axis does not intersect the plane at a focal point

of the ellipse. Our subsequent derivation for the focal point,

f ¼ fnðD; �; tÞ [equation (9)], and the distance from an ellipse

centre to this point of intersection, c ¼ fnðD; �; tÞ [equation

(4)], supports this view.

As all diffraction ellipses recorded on a two-dimensional

detector result from a single incident X-ray beam striking a

sample, all diffraction ellipses share a common beam centre.

The distance from the ellipse centre to the point on an ellipse

that is coincident with the beam centre, c ¼ fnðD; �; tÞ, is a

function of �. This implies that the ellipse centres for the

diffraction ellipses do not occupy the same point in space. The

same can be said for the focal points, because in general f 6¼ c.

It is also the case that diffraction ellipses recorded on a single

image do not have the same eccentricity: they are dissimilar in

shape. The eccentricity of an ellipse is a function of � [equation

(11)].

Our new understanding of the geometry allowed us to

create a method for determining the beam centre in relation to

the diffraction rings recorded on a detector [equation (14)].

Our method utilizes information from multiple diffraction

ellipses but does not require accurate prior knowledge of the

sample-to-detector distance. To guarantee a high-quality fit it

is important to ensure that the diffraction data are of high

resolution and that a decent method for the determination of

ellipse parameters is used. Azimuthal peak broadening effects

should also be minimized by using a radially symmetric cali-

bration sample.

Having found the beam centre for each diffraction image,

which is later used in assigning a Q value to each detector

pixel, it is actually the ratio of the sample-to-detector distance

to the sine of the detector tilt [equation (15)] that is used in a
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Figure 6
A one-dimensional diffraction pattern of CeO2 generated from a single
two-dimensional diffraction image. The inset shows a single diffraction
peak close up.



subsequent calculation to determine the sample-to-detector

distance itself and the beam wavelength [equation (17)].

The discrepancy between the calculated beam energy values

and the theoretical value (Table 4) is considered to be within

the limits of uncertainty to which the monochromator can be

set to the K edge of Pb. We discuss errors and potential

systematic corrections in Appendix A.

The sample-to-detector distances for the two cases differ,

but this is expected as the vertical rotation axis of the stage on

which our detector lies does not pass through the plane of the

detecting surface.

In the ‘orthogonal’ case it was found that a small detector

tilt exists. This is expected and results from the difficulties in

ensuring true orthogonality of the detector to the incoming

X-ray beam during experimental setup. This small tilt can

explain the relatively large error in the reported value for the

azimuthal direction of the tilt. The diffraction rings are very

close to circular. In the ‘tilted’ case the tilt is relatively large,

allowing the azimuthal tilt direction to be more easily deter-

mined. In both cases the coefficient of determination, R2, for

the ellipse semi-major axes, as determined when solving

equation (17), is very close to unity. Such high values of R2

provide confidence in the quality of both the model used and

the data provided.

With the help of Nika (Ilavsky, 2012), a software package

that can calibrate and reduce two-dimensional diffraction

data, we can check whether our calculated calibration para-

meters are self-consistent. For accurate calibration, Nika

requires knowledge of either the beam energy or the sample-

to-detector distance, but by using our calculated beam energy,

consistency between the other calibrated parameters and the

beam energy can be confirmed. Using an image from the

‘tilted’ case with a calculated energy of 88.0452 keV as an

input (note that this is different from the reported average

energy shown in Table 4, as this comparison is performed

using a single set of calibration data) provides a very good

agreement between our calibration parameters and those

calculated using the Nika software package. The differences in

value are sample-to-detector distance 0.055 mm, beam centre

0.009 mm and detector tilt 0.025�. Reasonable agreement was

also found when using the Fit2D package (Hammersley et al.,

1996). To perform the comparison in Fit2D we first used the

‘tilt’ command to find the detector tilt and the beam centre,

and then used the ‘calibrant’ command to find the sample-to-

detector distance. For Fit2D, the differences in values are

sample-to-detector distance 0.23 mm, beam centre 0.11 mm

and detector tilt 0.052�.

Within a single procedure we have demonstrated that it is

possible to accurately determine not just the beam energy but

also the spatial position and orientation of the two-dimen-

sional detector relative to the sample and the beam, and thus

the complete diffraction geometry.

The performance of our approach in assigning 2� or Q

values to each detector pixel can be further examined by

looking at the peak locations for CeO2 as measured from a

one-dimensional diffraction pattern. Each peak position is

found by locating the maxima of a fitted parabola. Table 3

compares theoretical values (generated using a lattice para-

meter of 5.41165 Å) for a selection of CeO2 diffraction peaks

with values generated from a single set of data from the ‘tilted’

case at the furthest detector position. The coefficient of

determination, R2, for the peak locations is 1.00–1.07 � 10�9.

Across 29 data sets at the furthest detector position using ten

diffraction rings, the average absolute percentage error in

calculated peak position was 0.00238%, the standard deviation

of the absolute error was 0.00186% and the maximum abso-

lute error was 0.0124%. In other words, the majority of peak

positions were calculated to be within 1 in 25 000 of the

theoretical value, whilst in the worst case an error of 1 in 8000

occurred.

6. Conclusion

Our method of calibrating a two-dimensional detector for use

in X-ray diffraction has a number of benefits. Provided

multiple rings can be recorded from various positions of the

detector along the beam path, the experimenter is free to

choose whatever energy they desire. This energy is easily

determined as part of the calibration procedure. There is no

longer a requirement to know either the sample-to-detector

distance or the beam wavelength, prior to calibration, as is the

case with other calibration procedures such as Fit2D

(Hammersley et al., 1996) or Nika (Ilavsky, 2012). By

collecting data from a range of detector positions and

accounting for arbitrary detector tilt, we have provided a

method for accurately determining all calibration parameters.

This calibration procedure is based upon our geometrical

description for the intersection of a cone’s axis and its ellip-

tical conic section.

APPENDIX A
Sources of error

There are a number of factors that can affect the accuracy of

the calibration procedure, some random and some systematic.

Note, however, that we are working in the superresolution

paradigm where we are determining parameters at a scale that

is up to two orders of magnitude better than the instrument

resolution (given by the energy bandwidth of the mono-

chromator, the sample thickness and the angular resolution of

the detector).

The thermal stability of the sample and detector environ-

ment can be controlled; however, it is normal for some

thermal variation to occur within an experimental hutch. This

thermal variation affects not just the expansion of the cali-

bration standard but also the displacement of the stage upon

which the detector rests. The entire instrumental setup

including the steel support structures is subject to thermal

expansion. The translation stage also exhibits a systematic

error due to a variation in flatness of the floor-mounted guide

rails, which thus creates a variation in tilt and displacement at

the level of the detector. An additional random error can be

attributed to mechanical runout.
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Geometrical attenuation effects can also be considered, in

particular the attenuation of the X-rays passing through the

standard and the attenuation that occurs within the scintil-

lating plane of the flat-panel detector. Both effects lead to a

systematic shift in the recorded position for the centre of mass

of a diffraction peak as recorded by the detector. Such

attenuation affects can be quantified and applied to the cali-

bration procedure. These corrections should improve the

accuracy of the calculated beam energy; however, it could be

argued that, unless equivalent transformations to correct for

attenuation can be applied to experimental data for all Q,

these corrections should not be applied to the calibration

procedure. For the purpose of facilitating high-quality data

reduction we feel it is better to allow the calibration para-

meters to take values that compensate for the attenuated

diffraction geometry, assuming that the experimental data

cannot be mapped into this attenuation-free ‘perfect’ space.

A1. Error due to thermal expansion of the calibration
standard

At room temperature the coefficient of linear thermal

expansion for cerium dioxide is approximately 10�5 K�1. This

translates to a thermal dependence in the calculated energy of

approximately 0.8 eV K�1. The thermal stability of the

experimental hutch at I12 is approximately �0:1 K. This

thermal dependence can be considered as an uncertainty in

the calibration procedure, or if the temperature of the stan-

dard is known at the time of data collection, then the lattice

parameter of the standard can be suitably scaled.

A2. Error due to detector stage displacement

The detector stage displacement is an important parameter

for the calibration procedure, as the diffraction patterns

recorded at the various detector positions define the geometry

of the diffraction cones. By using a Renishaw XL-80 inter-

ferometer we are able to determine the displacement of the

translation stage more accurately. Compared to the nominal

displacements used in the main body of this article, we found a

systematic error in displacement of up to 125 mm in size

dependent upon translation stage position. By performing

repeated movements of the translation stage we were able to

determine that runout and thermal expansion of the transla-

tion assembly due to the motor contribute to an uncertainty in

the stage position of up to �10 mm, which results in a �0:5 eV

uncertainty in the calculated energy. Correcting for the

nominal sample-to-detector distances in a representative

calibration calculation reduced the spread in residuals for the

ellipse semi-major axis [see equation (17) and Fig. 5] by

approximately 30%. However, by applying this correction for

the pseudo-random detector position, underlying drifts in the

residuals (ordered by increasing semi-major axis length)

grouped by diffraction image become apparent.

These drifts can be removed by considering X-ray

attenuation of the sample and the detector’s scintillating

surface, as presented in the next section.

A3. Error due to X-ray attenuation

X-ray attenuation at the sample and the detector’s scintil-

lator shift the effective position of a diffraction ring. In the

case of sample attenuation (in a planar arrangement), an

integral over all possible diffraction paths results in a shift in

the centre of mass of the diffraction peak towards lower Q. A

similar, but smaller, centre of mass shift occurs in the scintil-

lating volume, due to the absorption of photons arriving at an

angle to the detector surface. For an orthogonal detector with

scintillator thickness wscin, the corresponding change in spatial

peak position, �pscin, at Bragg angle � can be approximated by

�pscin ¼ mð�scin; 0;wscinÞ �mð�scin; �;wscinÞ cos 2�
� �

tan 2�;

ð21Þ

where

mð�; ’;wÞ ¼ �
1

�
ln

1

2
exp �

�w

cos 2’

� �
þ 1

	 
� �
ð22Þ

and �scin is the linear attenuation coefficient of the scintillator.

For an orthogonal detector and a planar sample of thickness

wsam, the change in peak position due to attenuation at the

sample, �psam, at Bragg angle � can be approximated by

�psam ¼

�
wsam �mð�sam; 0;wsamÞ

�
expð
wsamÞð
wsam � 1Þ þ 1


½expð
wsamÞ � 1�

�
tan 2�; ð23Þ

where


 ¼ �sam 1� 1=cos 2�ð Þ ð24Þ

and �sam is the linear attenuation coefficient of the sample.

At 88 keV correcting for attenuation at the sample

(�sam ¼ 11:7 cm�1) and the detector (�scin ¼ 19:5 cm�1)

reduces the calculated beam energy by 1.3 eV. Note that the

effect of the increasing shift in diffraction peak location

towards lower Q, with increasing diffraction angle, can be

considered equivalent to diffraction from a point source onto

a curved virtual detector surface/scintillator of infinitesimal

thickness.

A4. Other sources of error

This list of errors is by no means exhaustive but is repre-

sentative of the types of corrections that can be implemented

to improve the calibration procedure. Other sources of error

include the flatness of the scintillator surface, the detection

efficiency of the pixels, X-ray attenuation at the scintillator for

a tilted detector and energy drift of the monochromator.

Errors can be segregated in terms of whether they are directly

associated with our technique or with the process of attaining

calibration data.

In our measurements we experienced experimental errors

of 3 eV, which we believe can be attributed to monochromator

instability. The monochromator used does not have active

thermal stabilization and the ‘orthogonal’ and ‘tilted’ data sets

were collected two hours apart. We believe that energy drift

from the monochromator can account for the majority of the
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energy difference. The monochromator was configured to use

the Si 111 reflection. Using Bragg’s law and �E=E ¼

��= tan �, with �E ¼ 3 eV and E ¼ 88 keV, gives �� ¼
7:7� 10�1 mrad.
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