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Abstract

Background: Cancer microenvironment plays a vital role in cancer development and progression, and
cancer-stromal interactions have been recognized as important targets for cancer therapy. However, identifying
relevant and druggable cancer-stromal interactions is challenging due to the lack of quantitative methods to
analyze whole cancer-stromal interactome.

Results: We present CASTIN (CAncer-STromal INteractome analysis), a novel framework for the evaluation of
cancer-stromal interactome from RNA-Seq data using cancer xenograft models. For each ligand-receptor interaction
which is derived from curated protein-protein interaction database, CASTIN summarizes gene expression profiles of
cancer and stroma into three evaluation indices. These indices provide quantitative evaluation and comprehensive
visualization of interactome, and thus enable to identify critical cancer-microenvironment interactions, which would
be potential drug targets.
We applied CASTIN to the dataset of pancreas ductal adenocarcinoma, and successfully characterized the individual
cancer in terms of cancer-stromal relationships, and identified both well-known and less-characterized druggable
interactions.

Conclusions: CASTIN provides comprehensive view of cancer-stromal interactome and is useful to identify critical
interactions which may serve as potential drug targets in cancer-microenvironment. CASTIN is available at:
http://github.com/tmd-gpat/CASTIN.
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Background
Cancer cells generally survive in microenvironment sur-
rounded by non-cancer “stromal” cells such as endothe-
lial cells, fibroblasts and immune cells. Stromal cells in
cancer microenvironment promote maintenance, growth
and progression of cancer cells through the release of
humoral factors and direct cell contact. Conversely,
cancer cells promote fibroblast proliferations, immune
cell migration and angiogenesis through signal transduc-
tion. Thus cancer microenvironment is regarded as a
key contributor for epithelial-mesenchymal transition of
the cancer cells, angiogenesis, cancer progression and
metastasis, and development of drug resistance [1].

Recently, there has been a growing interest in targeting
cancer microenvironment for cancer treatment [1–4].
Inhibition of cancer stromal interaction may prevent
neovascularization, invasion, and metastasis and improve
anti-cancer drug delivery. For example, inhibition of
Hedgehog signaling improves delivery and efficacy of
gemcitabine in a mouse pancreatic cancer model [5].
However, compared to targeting driver ‘mutations’ which
are tractable by genome-wide comparison of mutation
frequency [6], exploration of driver ‘interactions’ is far
more challenging due to the exponential number of
possible interactions between proteins and lack of
high-throughput methods that can quantitatively inter-
pret the cancer-stromal interactions.
Xenograft cancers from human-derived cells grown in

immune-compromised mice have been extensively used
to study cancer and its microenvironment [7–12]. Xeno-
graft cancers establish microenvironment by inducing
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mouse-derived stromal cells such as fibroblast and
vascular cells, and can closely resemble the original
cancer growing in a patient [8]. Given that there is
approximately 15 % sequence difference between human
and mouse exon sequences [9], simultaneous transcrip-
tome analysis of cancer and stroma can be achieved
using RNA-Seq or species-specific microarray.
Several computational methods have been developed to

analyze microarrays or RNA-Seq data from cancer xeno-
graft mouse models. Like conventional single-species gene
expression analysis, all of these methods compare gene ex-
pression profiles in two conditions, e.g. xenograft vs in cell
line, or before vs after the addition of a molecule which
would change the cancer-microenvironment [7, 13–15],
and subsequently apply Gene Set Enrichment Analysis
(GSEA) [7] or pathway analysis [13–15]. These ap-
proaches are effective in identifying gene sets or pathways
contributing to the change. However, they have several
limitations. First, since expression profiles of cancer cells
and stromal cells are treated independently, interactions
between them cannot be explicitly evaluated. Second,
GSEA and pathway analysis only provide induced change
as a whole, thus individual interactions cannot be
evaluated. These limitations have created a bottleneck
especially when the purpose is to evaluate individual
interactions and to prioritize cancer-stromal interactions
as the targets for cancer treatment.
To overcome such limitations, we have introduced a

novel interactome analysis framework, CASTIN (CAn-
cer-STromal INteractome analysis) for quantitative pro-
filing of cancer-stromal interactome from RNA-Seq data
using cancer xenograft mouse models. CASTIN deter-
mines direction and strength of individual transmitting
signals between two interacting cells based on the ex-
pression levels of cancer and stroma. CASTIN focuses
on ligand-receptor interactions because they are central
to the cellular communication and, more importantly,
since they involve cell surface and extracellular mole-
cules, they are accessible by biomolecular drugs such as
antibodies, peptides, and aptamers. The ligand-receptor
relationships are extracted from public protein-protein
interaction databases and they are manually curated.
Summarization of each interaction into only three inter-
actome evaluation indices enables us not only to quanti-
tatively compare different interactions and to prioritize
one particular interaction for clinical approach, but also
to visually interpret the global cancer-stromal interac-
tome of individual cancer and the relative importance of
each interaction. To our knowledge, CASTIN is the first
computational method to quantitatively evaluate cancer-
stromal interactions from RNA-Seq data of cancer xeno-
graft mouse models.
We have demonstrated that CASTIN can successfully

characterize the individual cancer in pancreatic cancer

in terms of cancer-stromal relationships, and identify
both well-known and less characterized important
interactions.

Results and discussion
A system for cancer-stromal interactome analysis
Figure 1 shows the overview of the CASTIN algo-
rithm, which consists of four main steps: (i) read
assignment to human (cancer) and mouse (stroma)
derived transcripts, (ii) quantification of gene expres-
sion level, (iii) integrating the gene expression with
our in-house ligand-receptor database, and (iv) calcu-
lation and visualization of interactome evaluation in-
dices for individual interactions.
In step (i), reads from cancer xenograft mouse models

were assigned to RefSeq transcript sequences of human
or mouse. Reads mapped to both species or to multiple
genes in either species with the same number of mis-
matches were excluded from the subsequent analysis.
In step (ii), expression levels of each RefSeq gene in

human and mouse were estimated. Although this
estimation process resembles standard Transcripts Per
Kilobase Million (TPM) approach [16], our strategy
differs in the following two aspects:

1) CASTIN normalizes gene expression by mappable
length whereas standard TPM normalizes it by
transcript length. It is done by using precomputed
uniquely mappable regions among human and
mouse RefSeq transcript sequences. Since
homologous regions are found within species
or between human and mouse, some reads are
not mapped uniquely and estimating expression
levels without considering this may lead to
inaccurate results.

2) CASTIN removes read count biases arising from
regional GC content and distance from poly-A tail
(Additional file 1: Figure S1), whereas standard
TPM does not consider them. Although the GC
bias was very slight, it has been reported in many
literatures that extreme GC content leads to
an uneven coverage of the transcripts in the
next-generation sequencing [17, 18]. The bias
due to the distance from poly-A tail was strong
in many samples. This bias is reasonable since
the library construction process starts with the
generation of poly-A primed cDNAs, and more
fragmented the RNA is, the lower the mapped
count will be in the regions farther away from the
poly-A sites. The extent of RNA fragmentation
differs sample by sample, but engrafted cancer
tissues or cell lines would be severely influenced
by this bias as they frequently show focal necrosis
due to ischemia or inflammation.
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CASTIN estimates and removes the above biases
using a statistical model. Although bias correction
was performed in human and mouse simultaneously,
library size normalization was performed separately
because cancer-to-stromal ratio in each tissue sample
was different.
Then in step (iii), gene expressions were integrated to

our in-house ligand-receptor interaction database. Note
that ligands here included not only humoral factors but
also cell surface proteins. We have created a database
based on multiple protein-protein interaction databases
[19, 20]. As the establishment of high quality ligand-
receptor interaction database is critical in CASTIN,
researchers in the field of biology curated each
interaction by carefully reviewing the original literature
describing the validation experiments. Additional file 2:
Table S1 lists the 628 interactions used in the current
version of CASTIN.
In step (iv), three interactome evaluation indices, namely

ligand dependency, receptor dependency, and signal
strength, were calculated for each interaction (Fig. 2a).
The evaluation indices were calculated for the two direc-
tions of signal transduction, from cancer ligand to stromal
receptor and from stromal ligand to cancer receptor
(hereafter referred to as C-S direction and S-C direction,
respectively). Ligand dependency in C-S direction, defined
as the expression levels of human (cancer) ligand relative
to those of human (cancer) plus mouse (stroma) ligand,
reflects the dependency of input signal from cancer ligand.

Receptor dependency, defined as the expression levels of
mouse (stroma) receptor relative to human (cancer) plus
mouse (stroma) receptors, is the counterpart of the ligand
dependency and reflects the dependency of receiving sig-
nal by stromal receptor. Although these two indices are
mathematically simple, combination of the two enables us
to determine the major direction of signal transduction
(from cancer to stroma/cancer, or from stroma to cancer/
stroma). Interactions falling into the following six zones in
two-dimensional view of ligand and receptor dependency
are especially relevant:

1) C-S direction (Fig. 2b):
� Zone CS1 (strong cancer cell-ligand dependency

(≥0.5), strong stromal receptor dependency
(≥0.5)) : Interactions in this zone indicate that
input signal is dominantly created by cancer and
exclusively transmitted to stroma. The signal
transduction takes place only when both cancer
and stromal cells exist, and thus we call it
“mutually dependent interaction”.

� Zone CS2 (strong cancer cell-ligand dependency
(≥0.5), weak stromal receptor dependency (<0.5)) :
Input signal is created by cancer and transmitted
mainly to cancer itself. Thus interactions in this
zone indicate cancer autoregulation.

� Zone CS3 (weak cancer cell-ligand dependency
(<0.5), strong stromal receptor dependency
(≥0.5)) : Counterpart of zone CS2. Interactions

Fig. 1 workflow of the CASTIN algorithm. Total RNA extracted from cancer xenograft mouse model, which contains both human and mouse
RNA, is sequenced using next generation sequencing. a Human (cancer) cell- and mouse (stromal) cell-derived transcripts are differentially
assigned. b Accurate gene expression level is estimated using GC contents, distance from poly-A tails and originally defined mappable regions
among annotated transcripts. c gene expression levels are integrated with an in-house ligand-receptor interaction database. d three indices
(signal strength, ligand dependency, and receptor dependency) for quantitative evaluation of the interaction are calculated for the two directions
of signal transduction and plot for visualization
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in this zone indicate microenvironment
autoregulation.

2) S-C direction (Fig. 2c):
� Zone SC1 (strong stromal ligand dependency

(≥0.5), strong cancer cell-receptor dependency
(≥0.5)) : Interactions in this zone indicate
mutually dependent interactions. It is similar to
zone CS1, but the direction of signal transduction
is opposite.

� Zone SC2 (strong stromal ligand dependency
(≥0.5), weak cancer cell-receptor dependency
(<0.5)) : The direction of the signals is the same
as zone CS3, but signal strength is different
(See below); interactions in this zone indicate
microenvironment autoregulation.

� Zone SC3 (weak stromal ligand dependency
(<0.5), strong cancer cell-receptor dependency
(≥0.5)) : The direction of the signals is the same
as zone CS2, but signal strength is different
(See below); interactions in this zone indicate
cancer autoregulation.

The remaining regions were designated as Zone CS4
in C-S direction (cancer cell-ligand dependency and
stromal receptor dependency are both <0.5) and Zone
SC4 in S-C direction (stromal ligand dependency and
cancer cell-receptor dependency are both <0.5) for
convenience.
In terms of cancer-stromal interactions, probably the

most important zones among the 6 zones are CS1 and
SC1, where the signals involve specific interaction
between receptors of one cell type (i.e., cancer or stroma)
and ligands from the other cell type. These “mutually
dependent” or “exclusively trans-cell type” signals are
potentially important therapeutic targets.
The last index, signal strength, is expressed as the geo-

metric mean of the expression levels of cancer ligand
and stromal receptor in C-S direction, or that of stromal
ligand and cancer receptor in S-C direction. It is useful
to remove weak and possibly non-significant interac-
tions. As the gene expression levels were normalized so
that the total expression levels roughly represent the
number of mRNA molecules an average cell contains,

a)

b) c)

Fig. 2 Interactome evaluation indices. a Three indices for quantitative evaluation of each interaction. Each index is calculated for two signal
directions (C-S direction: cancer ligand to stromal receptor, and S-C direction: stromal ligand to cancer receptor). b Visualization of the evaluation
indices in C-S direction. X-axis represents cancer cell-ligand dependency and y-axis represents stromal receptor dependency, and positions of
interaction indicate the role of the interaction in cancer-stromal relationships, and the size of circle (proportional to log of signal strength)
indicates the strength of interaction. c Visualization of the evaluation indices in S-C direction, which is the counterpart of C-S direction
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the signal strength can be used to approximate the aver-
age number of mRNA molecules of the interacting genes
in two cells.
Using these three indices, one can easily know the

signal direction and strength of each interaction, and de-
termine which interactions are critical, that is to say
potentially druggable, in cancer-microenvironment rela-
tionships. Additionally, overall distributions of three
indices, namely the interactome profile, can reflect the
sample’s characteristics such as stromal contribution to
cancer.
As shown in Fig. 2, these indices are suitable for

visualization. To help users customize visualization of
the interactome, we have also developed an interactive
viewer of CASTIN (http://gpatgazeza.tmd.ac.jp/CAST
IN_viewer/, Additional file 3: Figure S2).

Evaluation of quantification of gene expression level in
CASTIN
Unlike the conventional RNA-Seq that deals with single
species, RNA-Seq of xenograft involves the separation of
human/mouse reads, and we first evaluated this effect
on quantification. Using uniquely mappable sequences
between human and mouse reference transcripts, human
and mouse-derived reads can be differentially assigned
to each species. However, sequencing errors, mapping
errors and nucleotide sequence variation could lead to
misassignment. To investigate the rate of misassignment,
cell lines derived from human cancer cells and mouse
endothelial cells, both of which do not contain tran-
scripts from any other species, were applied to CASTIN
(Table 1). The misassignment rate was 0.0053–0.0124 %
in human cell lines and 0.0056–0.0330 % in mouse cell
lines (Table 2). Thus the effect of misassignment is con-
sidered to be negligible unless content of one of the

species is extremely small, where interactome analysis is
essentially unsuitable. In the CASTIN system, we have
employed a deterministic approach when assigning se-
quencing reads into each species, and as a result very ac-
curate assignment was achieved. However probabilistic
approaches such as Expectation-Maximization algorithm
[16] could improve classification performance further.
CASTIN discards reads derived from human or mouse

when they were mapped on unmappable (identical se-
quence between human and mouse) regions, which
could result in inaccurate gene expression levels. How-
ever, as our algorithm considers “mappable” length in-
stead of transcript length, the effect should be minimal
as far as the read coverage within gene is close to uni-
form after removing the effect of distance from polyA
tail and regional GC content. To investigate the effect,
gene expression levels of human cell lines using map-
pable regions of only human and both human and
mouse were compared. Gene expression levels of mouse
cell lines were also evaluated in a same manner. Table 2
shows the Pearson correlation between the two condi-
tions for each sample. Very strong correlations in both
human and mouse indicate that correction of the effect
of mappable length worked well.
Additionally, we have performed RNA-seq analysis of

artificial mixtures of human (PANC-1 cell line) and
mouse (SVEC4-10 cell line) total RNA to evaluate the
reproducibility of gene expression quantitation under
various tumor-stromal ratios (human content: 0, 25, 50,
75, and 100 %) (Additional file 4: Table S2, Additional
file 5: Figure S3). In both human and mouse, the esti-
mated gene expression levels had very high correlation
(human; 0.97-0.99, mouse; 0.94-0.99) on the identical
line regardless of human-to-mouse ratios. Because
mixed RNA samples were sequenced with Illumina
GAIIx and pure human or mouse samples were se-
quenced with HiSeq2000, the correlations slightly de-
creased when comparing the results from different
sequencing platforms. Nonetheless, these results demon-
strated the highly reliable and reproducible gene expres-
sion quantitation under various conditions with different
tumor-stromal ratios.
Finally, we have compared the results obtained from

CASTIN with protein expression determined by immu-
nohistochemistry. We applied CASTIN to the dataset of
pancreas ductal adenocarcinoma (PDAC) consisting of 8
xenograft samples from different PDAC cell lines
(Table 3). We have selected FABP5/Fabp5 gene for
analysis because it showed various gene expression ratios
between human and mouse in PDAC xenograft samples
(human-to-mouse ratios ranged from 0.028 to 3.4,
Additional file 6: Figure S4a), and also the antibody with
human/mouse cross-reactivity and FFPE compatibility
was commercially available. FABP5/Fabp5 stained cancer

Table 1 Summary statistics of RNA-Seq for human and mouse
cell lines analyzed in this study

Sample Species Cell type Cell line Totala PFb

ExpID-112 Human PDACc PANC-1 62106630 43070936

ExpID-114 Human PDAC PK-8 58769786 44701524

ExpID-115 Human PDAC PK-9 60832395 44822240

ExpID-116 Human PDAC PK-45H 31898332 29286400

ExpID-117 Human PDAC PK-45P 35500162 32211253

ExpID-118 Human PDAC KLM-1 23673045 20778304

ExpID-119 Human PDAC MiaPaca-2 15255557 13715276

ExpID-120 Human PDAC Capan-1 41776004 35857527

ExpID-121 Human PDAC HOPE 21063312 19314964

ExpID-128 Mouse Endothelial SVEC4-10 32128404 29780901

ExpID-129 Mouse Endothelial IP-1B 34391406 31548417
aTotal Number of reads
bNumber of reads passing Illumina’s filter
cPancreas ductal adenocarcinoma
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cells homogeneously except for KLM-1 (Additional
file 6: Figure S4b); stromal cells were stained homoge-
neously or heterogeneously in each sample, reflecting
the different cell populations that comprise stroma
(e.g. fibroblasts, leukocytes, vascular endothelial cells). Al-
though immunohistochemistry is not strictly quantitative,
the relative staining intensity between human cancer and
mouse stromal cells well reflected the human to mouse
ratio of RNA-Seq reads from the same xenograft tumor.

Interactome profiles correlate to histology of pancreatic
cancer
To demonstrate that interactome profiles of CASTIN
correlate histology of cancer and stroma, we applied
CASTIN to the dataset of PDAC consisting of 8 xeno-
graft samples from cell lines (Table 3). PDAC was
chosen because one of its defining features is the
presence of extensive desmoplasia and recent studies

have shown that cancer-stromal interaction plays a key
role in PDAC development [21].
We hypothesized that the stronger the desmoplastic re-

action is, the stronger the signals in zones CS1 (cancer to
stroma), CS3 (stroma to stroma), SC1 (stroma to cancer),
or SC2 (stroma to stroma) will be. Thus we counted the
number of interactions in zone CS1 or CS3, and SC1 or
SC2 (Fig. 3a). It clearly showed that Miapaca-2 has weaker
signals related to stroma in both directions compared to
others such as Capan-1. Such tendency can also be easily
seen visually in interactome profiles (Fig. 3b). As expected,
Capan-1 shows desmoplastic histology with rich stroma,
whereas Miapaca-2 shows medullary histology with poor
stroma content (Fig. 3c), which is atypical in PDAC.
These results demonstrate that the global interactome

profile reflects the actual cancer-stromal interaction in
vivo well, and CASTIN is useful to characterize cancers
with respect to cancer-stromal relationships.

Table 2 Effect of mappable regions between human and mouse on estimated gene expression levels

Sample Species Cell line Humana Mouseb Error (%)c Correlationd

ExpID-112 Human PANC-1 32194053 1821 0.0057 0.9992012

ExpID-114 Human PK-8 34975755 1867 0.0053 0.9998013

ExpID-115 Human PK-9 32170808 3484 0.0108 0.9997474

ExpID-116 Human PK-45H 17278113 1331 0.0077 0.9998448

ExpID-117 Human PK-45P 18986898 1243 0.0065 0.9997115

ExpID-118 Human KLM-1 8950786 799 0.0089 0.999563

ExpID-119 Human MiaPaca-2 2251017 1192 0.0530 0.9997128

ExpID-120 Human Capan-1 2829135 2195 0.0776 0.9995722

ExpID-121 Human HOPE 8930382 1110 0.0124 0.9996743

ExpID-128 Mouse SVEC4-10 1052 18625926 0.0056 0.9987255

ExpID-129 Mouse IP-1B 6508 19707229 0.0330 0.9988737
aNumber of reads assigned to human by the CASTIN system
bNumber of reads assigned to mouse by the CASTIN system
cMisassignment rate (%)
dPearson’s correlation coefficient between gene expression levels of human (mouse) cell lines using mappable regions of only human (mouse) and both human
and mouse

Table 3 Summary statistics of RNA-Seq for PDAC xenograft models analyzed in this study

Sample Cell line Totala PFb Humanc Moused Mouse (%)e

ExpID-88 KLM-1 40315040 36210281 14306947 915402 6.01

ExpID-89 Capan-1 42088225 37433177 18147400 2041946 10.11

ExpID-90 PANC-1 42912362 38177843 18700371 2007413 9.69

ExpID-91 PK-1 36841310 33534549 14071808 5663160 28.70

ExpID-92 PK-8 37239118 33971461 15024350 2902408 16.19

ExpID-93 PK-45P 38612205 35070083 11713564 9796740 45.54

ExpID-94 PK-9 40328852 36514269 16929209 2015939 10.64

ExpID-95 MiaPaca-2 39641561 35751983 20439739 2037175 9.06
aTotal Number of reads
bNumber of reads passing Illumina’s filter
cNumber of reads assigned to human by the CASTIN system
dNumber of reads assigned to mouse by the CASTIN system
ePercentage of mouse reads, expressed by d/(c + d)
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CASTIN detects known interactions targeted by existing
drugs and less-characterized druggable interactions
Next we have investigated profiles of interactions tar-
geted by existing drugs. In particular, we focused on the
interactions involving kinases because kinase inhibitors
are currently the most successful molecular targeted
drugs [22]. PDAC dataset used in the previous section
was also analyzed in this section. To summarize eight in-
teractome profiles into a single profile, each averaged
evaluation index for every interaction was used (Fig. 4).
As shown in Fig. 4a and b, interactions inhibited by

currently available molecular targeted cancer drugs
such as HGF1 -MET2 (e.g. Tivantinib), EGF3-EGFR4

(e.g. Erlotinib), VEGFA5-KDR6(e.g. Ramucirumab) and
VEGFB7-FLT18(e.g. Pazopanib) tend to have strong
signals and reside around zones SC1 and CS1. While
the receptors of the former two interactions (MET and
EGFR) are mainly expressed in cancer cells [23, 24] and
promote cancer cell proliferation, the receptors of the
latter two interactions (KDR and FLT1) are mainly
expressed in vascular endothelial cells in microenviron-
ment [25], and drugs targeting these molecules inhibit

a)

b) c)

Fig. 3 Relationships between interactome profiles and desmoplastic reaction in the PDAC samples. a The number of mutually dependent
interactions with strong signals in 8 PDAC samples. top left: signal strength >10 in C-S direction, top right: signal strength >10 in S-C direction,
bottom left: signal strength >50 in C-S direction, bottom right: signal strength >50 in S-C direction. b Interactome profiles of PDAC samples
obtained from mice models transplanted with Capan-1 (top), which has the strongest mutually dependent interactions, or MiaPaca-2 (bottom),
which has the weakest mutually dependent interactions, transplanted mouse models. Left: C-S direction, right: S-C direction. c Hematoxylin
and eosin (H&E) staining of formalin-fixed, paraffin-embedded PDAC tissue obtained from Capan-1 (top) and MiaPaca-2 (bottom) xenograft
mouse models
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cancer neovascularization. Based on the signal direction
trend of these successfully marketed drugs, the interac-
tions in zones SC1 and CS1 or “mutually dependent”
interactions are suggested to be prioritized targets of
therapeutic intervention.
Hedgehog signaling between cancer and stroma is

known to induce desmoplastic reaction in stroma, and
the effect of its inhibition is applied in clinical trials [26]
as the improvement of anti-cancer drug delivery was
observed in PDAC mouse model [5]. Three hedgehog-
related ligand-receptor interactions are included in our
database: sonic hedgehog (SHH)– patched 1 (PTCH1),

indian hedgehog (IHH)-PTCH1, and IHH–patched 2
(PTCH2). In our analysis, all 3 hedgehog-related interac-
tions were found in zone CS1 with strong signals in
Capan-1 xenograft mouse (Additional file 7: Figure S5),
suggesting the importance of this signal in pancreatic
cancer. However, the signal strength and direction are
highly variable between the 8 pancreatic cancer cells. It
seems that that the contribution of hedgehog signaling
differs among each PDAC sample and that even though
hedgehog inhibitor is ineffective for pancreatic cancer as
a total [26], personalized medicine may be achieved by
developing companion diagnostics to stratify patients

a) b)

c) d)

e) f)

Fig. 4 Interactome profiles of PDAC samples. Interactome profiles of kinases in (a) C-S direction and (b) S-C direction, GPCR in (c) C-S direction
and (d) S-C direction, non-GPCR, non-Kinase in (e) C-S direction, and (f) S-C direction. Interactions targeted by molecular targeted drugs on the
market are indicated by arrows
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based on the contribution of hedgehog signaling in their
cancer tissues. Based on the results above, we have
searched for less-characterized druggable interactions,
which have strong signals and reside in zone CS1 or
SC1, in PDAC data. Mutually dependent interactions
were extracted in both directions from PDAC data, and
interactions with ligand dependency >0.75, receptor
dependency >0.75, and signal strength >50 were selected.
A literature survey of these interactions were summa-
rized in Table 4.
In C-S direction, semapholin 3C (SEMA3C) -

neuropilin-1 (NRP1) interaction (Additional file 8: Figure
S6a) has the strongest signal. NRP1 is a transmembrane
receptor for SEMA3C and vascular endothelial cell
growth factor 165 (VEGF165) [27]. NRP1 promotes
angiogenesis through binding to VEGF, but mediates
antiangiogenic effects by interacting with semapholin 3B
and 3 F, the other class 3 semaphorins, indicating that
they act as the antagonists that block NRP1 binding to

VEGF [28]. Meanwhile, SEMA3C was found to induce
growth and migration of endothelial cells [29], which
suggests its angiogenic role in cancer. Interestingly,
NRP1 also causes desmoplastic reaction in cancer;
genetic depletion or antibody neutralization of NRP1
from stromal myofibroblast was shown to reduce cancer
growth and fibronectin fibril assembly in vivo [30],
although the ligand of NRP1 was not investigated in the
report. Considering pronounced desmoplasia of PDAC,
our data suggests that NRP1 may contribute to desmo-
plastic reaction in PDAC.
In S-C direction, interactions including collagens and

fibronectins have strong signals. This is reasonable be-
cause stromal cells (e.g. fibroblast) highly express extra-
cellular matrix molecules, such as collagen, fibronectin,
and laminin [31]. A notable example among these inter-
actions is the one between type I collagen (COL1A1 and
COL1A2) and alpha-2 integrin (ITGA2). α2β1 integrin-
mediated adhesion on type I collagen has been reported
to promote the malignant phenotype in PDAC [32].
Other than collagens and fibronectins, semapholin

4D (SEMA4D) and plexin B1 (PLXNB1) interaction has
the strongest signal in zone SC1 (Additional file 8:
Figure S6 b). It has been reported that binding of
SEMA4D to PLXNB1 promotes cancer cell motility in
PDAC [33]. Additionally, increased expression of both
SEMA4D and PLXNB1 was associated with poor progno-
sis [34]. Immunohistochemical analysis showed that
SEMA4D was predominantly expressed in the cancer
stroma and PLXNB1 was predominantly expressed in can-
cer epithelial cells in PDAC [34], which is compatible with
the evaluation indices at transcript level in our study.
Previous studies have suggested the importance of

semapholin signaling in cancer-microenvironment
[29, 33–35]. However, its relative importance among all
the cancer-stromal interactions has not been quantita-
tively evaluated due to the lack of methods. Our interac-
tome analysis using CASTIN suggested that semapholin
signaling, especially SEMA4D and SEMA3C, plays par-
ticularly important roles and these molecules/proteins are
potential targets in pancreatic cancer.
Although many researchers have investigated various

cancer-stromal interactions which are potential thera-
peutic targets, prioritization among multiple interactions
have not been done as these interactions have been
evaluated only individually in most cases. One of the
advantages of CASTIN is that using three evaluation
indices we can compare multiple interactions based on
their role in cancer-stromal interactions and identify
which interactions are vital and should be inhibited for
clinical approach. Importantly, our ligand-receptor data-
base contains interactions involving extracellular and cell
surface proteins, which are easily accessible by biomolec-
ular drugs (large molecules such as antibodies). It is well

Table 4 Mutually dependent interactions with strong signals in
PDAC dataset

ligand receptor direction signal
strengtha

possible relevance for
cancer-stromal interactions

SEMA3C NRP1 C-S 101.5 SEMA3C induces growth
and migration of endothelial
cells [29], suggesting its
angiogenic role; NRP1 also
causes desmoplastic reaction
in cancer [30].

WNT7B GPC3 C-S 50 In hepatocellular carcinoma,
GPC3 promotes cancer cell
growth by Wnt signaling
including WNT7B [53].

COL1A2 CD44 S-C 753 CD44 expressed in PDAC
regulates its invasion [54].

COL1A1 CD44 S-C 668.4 CD44 expressed in PDAC
regulates its invasion [54].

FN1 ITGA3 S-C 496.6 Not reported

COL1A2 ITGA2 S-C 348.4 α2β1 integrin-mediated
adhesion on type I collagen
promotes the malignant
phenotype in PDAC [32].

COL1A1 ITGA2 S-C 341.1 α2β1 integrin-mediated
adhesion on type I collagen
promotes the malignant
phenotype in PDAC [32].

FN1 ITGB6 S-C 180.8 Promotes breast cancer
invasion [55].

SEMA4D PLXNB1 S-C 63.4 Promotes cancer cell
motility in PDAC [33].

SFRP1 FZD6 S-C 62 FZD6 overexpressed in
several cancers [56]; SFRP1
is a Wnt antagonist.

IGF1 IGF1R S-C 54.5 IGF1R induces PDAC growth
and metastasis [57].

aC-S: signal transduction from cancer cell-ligand to stromal receptor
S-C: signal transduction from stromal ligand to cancer cell-receptor
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known that biomolecular drugs greatly expands target
interactions/proteins outside of classical druggable pro-
teins, that could be targeted by small molecule drugs. In
our study, more than half (431/628) of the interactions
identified by CASTIN do not involve kinases or GPCRs,
which are typical “druggable” proteins. (Fig. 4e, f ).

Contribution of “functional modules” in cancer-stromal
interactome
CASTIN assigns each ligand-receptor interaction into
zones which reflect the direction of signal transduction in
cancer-stromal relationships. As genes with similar func-
tion are expected to behave similarly, analyzing interac-
tions having similar functions collectively using CASTIN
will help us to understand the role of “functional modules”
in cancer-stromal relationships. Hence we have investi-
gated the interactome profiles of genes with various mo-
lecular functions. Here again we applied CASTIN to the
PDAC and the averaged interactome profile was analyzed.
We defined an interaction having molecular function
when either ligand or receptor in the interaction belonged
to Gene Ontology (GO) functional categories. Functional
modules with characteristic pattern among 44253 GO cat-
egories were shown in Figs. 5 and 6.
Functional modules located in zone CS1 and CS2 indi-

cate that only cancer cells secrete ligands (Fig. 7a). Actu-
ally, however, most interactions in this type are
predominantly located in CS2, which indicates auto-
regulation of cancer cells. Interestingly, all the functional
modules are related to ephrins and Eph receptors. The
most representative example is ‘ephrin receptor binding’
(Fig. 7a). Eph-ephrin complexes produce bidirectional
signals and affect cancer growth, invasiveness and me-
tastasis [36]. For example, EPHA2 and EPHB4 within
ephrin family are widely expressed in cancer cells, and
their expression has been linked to cancer progression
[36]. Downregulation of EPHA2 or EPHB4 expression
with siRNAs or antisense oligonucleotides results in
inhibition of malignant cell behavior in culture and
cancer growth in vivo [36]. This is in line with our result
that both EPHB4-EFNB2 and EPHA2-EFNA1 interac-
tions have strong signals (Fig. 7a).
Functions located in zone CS1 and CS3 are clustered

into two groups: functions related to vascular endothelial
growth factor (VEGF), platelet-derived growth factor
(PDGF), and semaphorins, and functions related to
transforming growth factor beta (TGFβ). The VEGF and
PDGF related interactions preferentially located in zone
CS1 and CS3, which is indicative of stromal cells receiv-
ing strong signal from cancer or microenvironment
(Fig. 7b). Meanwhile, the TGFβ related interactions
predominantly located in zone CS3, which is indicative
of microenvironment autoregulation. VEGF and PDGF
signaling contribute to angiogenesis in PDAC [37], and

VEGF expression in cancer and PDGF receptor expres-
sion in stroma are associated with poor prognosis in
several types of cancers including PDAC [38, 39]. Sema-
phorins are important regulators in cancer cells [35],
and high expression of SEMA4D was associated with
poor survival in PDAC [34] as mentioned in the previ-
ous section. TGFβ has the ability to induce fibroblast
proliferation in PDAC [40], and autocrine TGFβ signal-
ing regulates myofibrogenesis in carcinoma-associated fi-
broblasts during fibrosis in breast cancer [41], indicating
that stromal cells could be a source of TGFβ in other
cancer. In particular, our analysis suggested that TGFβ1
and its receptor TGFβ1 receptor 1 (TβR1) produce
strong signal (Fig. 7c). Indeed, TGFβ1, by interacting
TβR1, directly elicits desmoplastic reaction in pancreatic
cancer [42]. Many TβR1 inhibitors have been developed
to improve chemopenetration, and among them, SD-208
reduced fibrosis in cancer microenvironment [43]. An-
other interaction with strong signaling is TGFβ1–endo-
glin (EGN). Endoglin is a cell-surface glycoprotein and is
part of the TGFβ receptor complex [44]. It also has a
crucial role in angiogenesis and is abundantly expressed
in vascular endothelial cells at sites of active angiogen-
esis [44]. In pancreatic cancer tissues, endoglin is highly
expressed in endothelial cells forming small capillary-
like vessels [45].
GO functional modules predominantly located in zone

SC1 and SC2 (Fig. 6a) consistently have strong stromal
ligand dependencies, indicating that both cancer and
stromal cells are receiving strong signal exclusively from
stromal cells. We have found that most of them are re-
lated to extracellular matrix such as ‘extracellular matrix
structural constituent’ (Fig. 7d). A notable example is
the interaction between type I collagen (COL1A1 and
COL1A2) and alpha-2 integrin (ITGA2), which we re-
ferred in the previous section.
Functional modules located in zone SC1 and SC3 have

very low signal strength (Fig. 6b). Top 2 categories ‘excita-
tory synapse’ and ‘negative regulation of protein kinase B
signaling’ has relatively strong signals. However, interac-
tions contributing to the strong signals are related to FN1
and laminin, both of which are related to extracellular
matrix and predominantly located in SC1. Thus the we do
not discuss the functional modules in this category further.
As shown above, functional modules preferentially

located in each zone have distinctive profile reflecting
the role in cancer-stromal interactions. These results
demonstrate that our interactome analysis reflects mo-
lecular functions and useful to prioritize important
interactions between cancer and stroma.

Conclusions
We have developed CASTIN that can quantitatively
assess cancer-stromal interactome using RNA-Seq data

Komura et al. BMC Genomics  (2016) 17:899 Page 10 of 18



from cancer xenograft mouse models. Key aspects of
CASTIN are high quality, manually curated ligand-receptor
database and three evaluation indices, which are easy to
interpret and also suitable for visualization. By showing
some examples using PDAC dataset, we have shown that
these unique features provide researchers with useful
information for interpreting cancer-stromal interactome
such as a role of each interaction in signal transduction
between cancer and stromal cells thus enables prioritization
of drug target, and characterization of individual cancer
sample in terms of cancer-microenvironment interactions.
So far, there are no comparative methods that can perform
comprehensive analyses like CASTIN. We have also made
the CASTIN software and its viewer publicly available. The
software accepts FASTQ (single-end and paired-end)
files of RNA-Seq from xenograft samples.

The CASTIN method could also be used to analyze
xenograft models of other human cancer types. In the
future this method might even be used to identify the
cancer-stroma interactome in PDX models and to apply
personalized medicine to each patient depending on the
many interactions identified. We note that CASTIN is
not applicable to early passage PDX models in which
human stroma can still be detected, as it would lead to
stromal contamination in estimated cancer gene expres-
sion levels.
There are several limitations in CASTIN. First, some

ligand-receptor relationships may have been left out
from our interaction database as our curation process
and the database (KEGG or HPRD) only included
relationships with adequate experimental evidences. Newly
reported protein interactions with sufficient evidence

a)

b)

Fig. 5 GO categories predominantly located in CS1, CS2 and CS3. a Top 9 GO categories predominantly located in CS1 and CS2. 10th GO
category was removed because its mean signal strength was < 10. b Top 10 GO categories were predominantly located in CS1 and CS3. GO
categories were sorted by the percentage of interactions located in the corresponding zones, and then sorted by the mean signal intensity of all
the interactions in the GO category. The number of interactions in each zone (CS1, CS2, CS3, and CS4) is shown in ‘zones in C-S direction’ and
the intensity of red color is proportional to the number of interactions. False discovery rate (q-value) is shown in ‘qvalue’. Representative genes or
gene families, which appear in at least 2 GO categories and signal strength >10 for at least 1 interaction, is depicted by green boxes. ‘Mean signal’
refers to the mean signal strength of the interactions in the GO category. Four boxes in ‘zones in C-S direction’ indicate the number of
interactions within each zone. Zones CS1 (top right), CS2 (bottom right), CS3 (top left), and CS4 (bottom left)
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will be included in our ligand-receptor database through
continuous updating. Second, it is known that cross species
reactivity varies depending on each ligand-receptor inter-
action [46, 47], which potentially leads to false findings. De-
tailed information regarding such cross-species interactions
is needed in the future. Also, human xenograft models usu-
ally involve the use of immunodeficient mice, which have
greatly reduced number of lymphocytes. Therefore, the in-
teractions between cancer cell and such lymphocytes,
which are possibly druggable, will not be covered by the
CASTIN analysis.
Despite the above limitations, currently there are no

comparable bioinformatics methods, that can perform
comprehensive and quantitative analysis of cancer-stroma
interactome like CASTIN. It is hopefully expected that
CASTIN will accelerate researchers’ understanding of the
whole picture of cancer-stromal interactome quantita-
tively and visually, and discover critical interactions that
are clinically relevant but couldn’t be discovered by
sample cancer sequencing analysis so far.

Methods
Cell culture
PDAC cell lines KLM-1, MiaPaca-2, PANC-1, PK-8,
PK-45P and PK-45H were purchased from RIKEN Bio-

Resource Center (Saitama, Japan), PK-1 and PK-9 were
purchased from Tohoku University Cell Resource Center
(Sendai, Japan), and Capan-1 was purchased from Ameri-
can Type Culture Collection (ATCC, Manassas, USA).
KLM-1, Panc-1, PK-1, PK-8, PK-45P, PK-9, PK-45H cells
were cultured in RPMI1640 (WAKO Pure Chemical
Industries, Osaka, Japan) supplemented with 10 % FBS and
100 mg/ml penicillin/streptomycin (WAKO Pure Chemical
Industries, Osaka, Japan). Capan-1 was cultured in DMEM
(WAKO Pure Chemical Industries, Osaka, Japan) supple-
mented with 20 % FBS, 100 mg/ml penicillin/streptomycin
and 200 mmol/L L-Alanyl-L-Glutamine (WAKO Pure
Chemical Industries, Osaka, Japan). MiaPaca-2 was
cultured in DMEM supplemented with 10 % FBS and
100 mg/ml penicillin/streptomycin.

Animal study
Five to six weeks old BALB/cAJcl-nu/nu female nude
mice (CLEA Japan, Tokyo) were used as the host for
cancer xenograft model. Briefly, 5 × 106 cells were sus-
pended in 100 μl of phosphate buffer saline (PBS (−)),
and were injected subcutaneously into the right flank of
mice. The animals were sacrificed when the diameter of
tumor reached 5 mm.

a)

b)

Fig. 6 GO categories predominantly located in SC1, SC2 and SC3. a Top 10 GO categories predominantly located in SC1 and SC2. b Top 4 GO
categories predominantly located in SC1 and SC3. Fifth to 10th GO categories were removed because their mean signal strength was <10. Data
are processed and presented as in Fig. 5. Four boxes in ‘zones in S-C direction’ indicate the number of interactions within each zone. Zones SC1
(top right), SC2 (bottom right), SC3 (top left), and SC4 (bottom left)
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For immunohistochemistry, samples were formalin-
fixed and embedded in paraffin, and then cut into 7-μm
thick serial sections and mounted onto microscope
slides.

Transcriptome sequencing of xenograft and cell line
samples
Tumors resected from the mice were frozen and the
suspended in trizol reagent (Thermo Fisher Scientific
Inc, Waltham, USA), and total RNA was extracted
according to the manufacturer’s instruction. Cultured
cells were suspended in trizol reagent (Thermo Fisher
Scientific Inc, Waltham, USA), and total RNA was
extracted according to the manufacturer’s instruction. One
microgram of total RNA was used as the starting material

for a 50-bp paired-end transcriptome-sequencing protocol
using an Illumina GAIIx sequencer (Illumina, San Diego,
CA, USA). Briefly, PolyA+ RNA was purified from total
RNA and fragmented using divalent cations. RNA quality
as assessed by RNA integrity number (RIN) using a
bioanalyzer (Agilent), gave a median RIN of 9.0 (ranged
from 6.1 to 10). Double stranded cDNA was synthesized
using SuperScript II Reverse Transcriptase (Invitrogen),
and its overhang was converted into blunt end using T4
DNA polymerase. 3’ end of the blunt end was adenylated
by Klenow fragment, and PE adapter was ligated. Without
size selection, the cDNA library was amplified using
PCR. For PCR amplification, 1ul of PCR primer PE
1.0 and 2.0, and 0.5 μL of Phusion DNA polymerase
(Finnzymes Oy) were used in a final volume of 50 μL. The

a) b)

c) d)

Fig. 7 Interactome profiles of PDAC samples for various gene functional categories. a Ephrin receptor binding, (b) Vascular endothelial growth
factor binding, (c) Type I transforming growth factor beta receptor binding and (d) Extracellular matrix structural constituent. Arrows highlight
interactions referred to in the main text
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PCR condition was as follows: 98 °C for 5 min, then 15 cy-
cles of 98 °C for 10 s, 65 °C for 30 s, and 72 °C for 30 s,
followed by 72 °C for 5 min before cooling to 4 °C. PCR
primers were removed by QIA quick PCR Purification Kit.
Each library was loaded into its own single Illumina flow
cell lane, producing 50-mer paired-end reads for each
sample. The raw sequences have been deposited in the
DDBJ Sequence Read Archive under accession number
DRA004736.

Transcriptome sequencing of mixture of human and
mouse cell lines
Total RNA of each cell line was extracted and RNA
quality was assessed by RIN as described in the previous
section. Total RNA from cell lines PANC-1 (human)
and SVEC4-10 (mouse) was mixed at the ratios of 1:3,
1:1, and 3:1 ratio. The amount of total RNA was Assayed
in the Qubit RNA assay kit (Thermo Fisher Scientific
Inc, Waltham, USA).
One microgram of total RNA was used as the starting

material for the preparation of transcriptome-
sequencing library using TruSeq stranded mRNA li-
brary preparation kit (Illumina, San Diego, CA, USA)
following the manufacturer’s directions. Libraries were
sequenced 100 bp paired-end on Hiseq2000 sequencer
(Illumina). Four libraries were loaded into single lane
of Illumina flow cell, producing more than 30 million
paired-end reads for each sample. Only the first 50 bp
of each paired-end was used for the analysis to compare
gene expression levels with the samples sequenced with
Illumina GAIIx.

Read mapping and differential taxonomy assignment
Paired-end reads were aligned to all RefSeq transcripts of
human (hg19 coordinates) and mouse (mm10 coordi-
nates) allowing up to one mismatch. Alignments were
performed by using TMAP version 3.4.1 [48] with the –a
2 –s 1 –g 3 –u 50 preset. Paired-end reads were consid-
ered as RefSeq transcripts if both ends in the pair were
mapped to the same RefSeq transcript and each read in
the pair was not mapped to other RefSeq transcripts of a
different gene. A pair can be mapped to multiple RefSeq
transcripts if the condition was met for multiple splice
variants of a same gene. NCBI Gene IDs were used to
map RefSeq transcripts to genes. Homologene [49]
downloaded from NCBI website was used to convert Gene
ID of mouse to that of human. When a single human gene
was homologous to multiple mouse genes, sum of the
expressions of these mouse genes were used.

Quantification of gene expression
After the read mapping, we removed biases of gene
expression levels derived from gene length, distance
from poly-A tail, mappability, and regional GC content.

We modeled the count of reads for j-th nucleotide of
gene i using a Poisson linear model:

E logcij
� � ¼ log

NimijX
k
mij

vi þ αgij þ βdij

Where cij assumed to follow a Poisson distribution is
the count of reads covering the j-th nucleotide from
poly-A tail of gene i, Ni is the length of gene i, mi,j is the
number of mappable 50 bp covering the j-th nucleotide,
vi is the true expression of gene i, vi,j is the GC% around
50 bp of the j-th nucleotide, di,j is the distance from
poly-A tail, α is the coefficient of the effect of GC
content, and β is the coefficient of the effect of dis-
tance from poly-A tail. α and β depend on experi-
ments, but are independent of genes or nucleotide
positions. We assume that all the estimated parame-
ters are identical in human and mouse because se-
quencing process is the same. 50 bp mappability of
each nucleotide was computed using vmatch version
2.0 [50], allowing up to one mismatch. Parameter
optimization of the model was performed iteratively as
described previously [18]. Initial value of vi was
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cik , where Ni
' = min(Ni, 3000). cij is sig-

nificantly affected by the bias arising from the distance to
poly-A tail when j and Ni are large, and thus the conver-
gence would be faster if Ni

' instead of Ni was used for the
initialization. Poisson regression in each iteration was
done using a glm function of R environment via rJava
interface. In order to reduce computational time while
maintaining accuracy of the estimated parameters, only
transcripts satisfying the following conditions were
used for parameter optimization: (i) no splicing variant
existed, (ii) the transcript length was more than 8kbp
and (iii) more than 80 % of the transcript was covered
with at least 1 read. After parameter optimization, esti-
mated copy number of gene i is calculated as follows:
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where cij
' is the count of reads starting at the j-th nucleo-

tide of gene i and Z is a normalization factor so that

sum of vie
0
below the 95th percentile be 300,000, which

is roughly the average number of mRNA molecules
present in a cell [51]. Note that cij

' instead of cij was used
in the estimation step because the effect of GC% was
expected to be corrected more accurately. Conversely, cij
was used in the optimization step since cij

' was so sparse
that the parameter could not be estimated accurately.
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Indices for interactome data evaluation
For the purpose of quantitative and comprehensive
evaluation of interactome, we have introduced three
evaluation indices for each signal direction for each
gene. We assume that there are P pairs of ligand and
receptor genes in our in-house database. Let
LCi, LSi, RCj, and RSj be normalized gene expression
levels of ligand gene i (i = 1,…, P) of human (cancer),
ligand gene i (i = 1,…, P) of mouse (stroma), receptor
gene j (j = 1,…, P) of human (cancer), receptor gene
j (j = 1,…, P) of mouse (stroma), respectively. We de-
fine three evaluation indices, ligand dependency X, re-
ceptor dependency Y, signal strength Z for each
direction as follows:

� C-S direction

XC→S;i ¼ LCi
LCi þ LSi

YC→S;j ¼ RSj

RCj þ RSj

ZC→S;i;j ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
LCi⋅RSj

p

� S-C direction

XS→C;i ¼ LSi
LCi þ LSi

YS→C;j ¼ RCj

RCj þ RSj

ZS→C;i;j ¼
ffiffiffiffiffiffi
LSi

p
⋅RCj

In-house ligand-receptor database construction
We have constructed an in-house ligand-receptor
database. The database construction consisted of three
main steps (i) extraction of localization information
from Human Protein Reference Database (HPRD) [20]
(ii) extraction of ligand-receptor interaction from Kyoto
Encyclopedia of Genes and Genomes (KEGG) data [19]
(iii) curation by reviewing original literature.
First, proteins localized primarily to extracellular space

and plasma membrane were selected as ligand and
receptor candidates, respectively. Information of primary
localization was downloaded from Human Protein
Reference Database (HPRD, release 8) [20] on 9 September
2009.
Among all the pairs of ligand and receptor candidates,

only those appeared in protein-protein interaction in
Kyoto Encyclopedia of Genes and Genomes (KEGG)
pathway database [19] (release 55.0, downloaded on 7
August 2010) proceeded to the next curation step.

Direction of interaction was determined according to
relations (activation, inhibition, binding/association, or
indirect effect) in KEGG database. For example, if ‘A
activates B’ appeared, A and B became candidates of
ligand and receptor, respectively. If the relationship was
undirectional such as ‘binding/association’, direction
was determined at random with one exception: proteins
in Ephrin and Ephrin-receptor families appeared in
Axon guidance pathway (Entry: hsa04360), were
assigned as ligand and receptor, and vice versa [36]. In-
teractions occurring within the same cell were removed
manually.
Finally, researchers in the field of biology curated each

interaction by carefully reviewing the original literature
attached in the KEGG database.

Visualization interface of the CASTIN output
We have also developed a web interface for interactive
2D-visualization of the CASTIN output (http://gpatgaze
za.tmd.ac.jp/CASTIN_viewer/index.php). Here we intro-
duce a brief description of the interface (Additional file 3:
Figure S2). Please refer to the manual for detail.
There are two 2D scatter plots, each of which corre-

sponding to S-C and C-S direction of signals. In each
scatter plot, horizontal axis represents ligand depend-
ency and vertical axis represents receptor dependency.
Each circle represents ligand-receptor interactions, with
its radius proportional to the log of signal strength of
the interaction.
When users hover cursor over the circles, gene sym-

bols of the ligand and the receptor and its signal
strength is shown.
By inputting the threshold value of signal strength in

“Threshold of signal strength” box and pressing “View”
button, users can hide weak (and thus possibly non-
significant) interactions. Additionally, users can search
specific genes by entering gene symbol (s) in “Search
Genes (Gene Symbol)” box.

Gene ontology analysis
We used all the gene ontology categories of human,
irrespective of their hierarchies. All gene ontology
categories and the genes belonging to each category
were retrieved from Gene Ontology Consortium [52] on
February 10, 2016.

Immunohistochemistry
Cut specimens of formalin-fixed and paraffin-embedded
mouse tumors (Capan-1, KLM-1, MiaPaCa-2, PANC-1,
PK-1, PK-8, PK-9 and PK45-P) were obtained from
tumor transplanted mice as described above. After
de-paraffinized by Xylene (Wako Pure Chemical Industries,
Japan) for 10 min at room temperature, the specimen slides
were treated with Citrate buffer (pH 6.0) (Abcam,
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UK) by an autoclave (TOMY Seiko, Japan) at 121 °C
for 5 min in order to retrieve protein antigens.
Endogenous peroxidase activity was masked by incu-
bating the slides with 3 % H2O2 (Sigma Aldrich,
USA) for 10 min at room temperature. The slides
were incubated with 2 % BSA (Sigma Aldrich) / PBS
for 1 h at room temperature to block non-specific
protein-antibody reactions. Then the slides were incu-
bated with anti-FABP5 antibody (Rabbit #39926, Cell
Signaling Technology, USA) at 1/200 dilution for an
over-night at 4 °C. Histostar (MBL, Japan) and DAB solu-
tion (MBL) were used to detect the FABP5 1st antibody sig-
nals under a microscope (Olympus, Japan) with the nuclear
staining with Hematoxylin (Sakura Finetek Japan, Japan).

Statistical tests
All the p-values were calculated by Binomial test (one-
sided) and transformed into q-values for false discovery
rate (FDR) analysis using the ‘qvalue’ package from
Bioconductor.

Endnotes
1Hepatocyte growth factor
2MET proto-oncogene, receptor typrosine kinase
3Epidermal growth factor
4Epidermal growth factor receptor
5Vascular endothelial growth factor A
6Kinase insert domain receptor
7Vascular endothelial growth factor B
8FMS related tyrosine kinase 1
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Additional file 1: Figure S1. Read count biases in a xenograft sample
from PDAC cell line (PK-1). Randomly chosen 100,000 read count
residuals from fitted model are plotted against (a, b) distance from poly-A
site and (c, d) regional GC content. Residuals with biases (a, c) and
without biases (b, d). Randomly chosen 100,000 points are plotted.
Straight line in each plot indicates the bias estimated from 200 genes
using Poisson linear model (see Methods). (PDF 70 kb)
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of total RNA from human (PANC-1) and mouse (SVEC4-10) cell lines.
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Additional file 5: Figure S3. Comparison of gene expression levels
of samples with different RNA mixture ratios (PANC-1 and SVEC4-10)
estimated by CASTIN. (a) gene expression levels of human (human
content: 25 %, 50 %, 75 %, 100 %) and (b) mouse (mouse content: 100 %,
75 %, 50 %, 25 %) after global normalization in each species. On the
bottom of the diagonal: the bivariate scatter plots with the identity line.
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Additional file 6: Figure S4. FABP5/Fabp5 expression in RNA-Seq
(estimated by CASTIN) and Immunohistochemistry. (a) gene expression

levels. (b) Immunohistochemical (IHC) and hematoxylin and eosin (H&E)
staining of close sections. Sections of PDAC xenograft cancer derived
from each cell line were stained for FABP5/Fabp5 (left) or with H&E
(right). The slightly different distribution of tumor and stromal cells
between H&E and the corresponding IHC sections was due to the
physical distance between the two sections. (PDF 10295 kb)

Additional file 7: Figure S5. Distribution of hedgehog-related
interactions in PDAC samples. a) Cancer cell SHH to stromal PTCH1.
b) Cancer-cell IHH to stromal PTCH1. c) Cancer-cell IHH to stromal
PTCH2. (PDF 162 kb)

Additional file 8: Figure S6. Distribution of mutually dependent
interactions with strong signals in PDAC samples. a) Stromal SEMA3C to
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