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DSBs are repaired as noncrossovers (NCOs) without the exchange 
of flanking arms (Figure 1a).2

Homologous recombination occurs in meiotic chromosomes. The 
meiotic chromosome is proposed to be organized as a linear array 
of loops, and the base of these loops plus a large number of proteins 
compose the chromosome axis (Figure 1b and 1c).7 The density of 
loops along a chromosome axis is highly conserved among various 
organisms (approximately 20 loops per micron of axis).8 Therefore, 
loop size is negatively correlated with axis length.8,9

The process of homologous recombination is accompanied by 
elaborate meiotic chromosome dynamics and tightly integrated 
into meiotic chromosome structure.7,10–15 At the DNA level, DSB 
sites are mapped to sequences located in chromatin loops. However, 
cytologically, recombination complexes are observed on axes that 
are DSB cold spots.16–20 This paradox is resolved by the proposed 
tethered loop-axis complex (TLAC; Figure 1d).16,17,21 In this model, 
SPO11 complexes located on chromatin loops are recruited to axes 
and activated to generate DSBs. After resection, one end of a DSB is 
released to search for its homologous template (Figure 1d). In most 
organisms, most of the DSB-mediated interhomolog interactions 
seem to be responsible for homolog alignment. However, homolog 
synapsis mediated by the synaptonemal complex (SC) initiates only 

INTRODUCTION: MEIOTIC RECOMBINATION IS 
INTEGRATED INTO THE DEVELOPMENT OF CHROMOSOME 
STRUCTURE
Meiosis, a specific type of cell division generating gametes with half 
DNA complements of progenitor cells, is essential for successful 
sexual reproduction. During meiosis, DNA is replicated only once 
but is followed by two successive rounds of chromosome segregation. 
Homologous chromosomes (homologs) are segregated during 
meiosis I and sister chromatids (sisters) are segregated during 
meiosis II.

Meiotic homologous recombination, a crucial feature of 
meiosis, is initiated from DNA double-strand breaks (DSBs) 
catalyzed by SPOrulation 11 (SPO11) transesterase.1–5 After SPO11-
oligo complexes are removed, the DSB ends are further resected by 
exonuclease to yield long 3' single-stranded tails (ssDNA). With the 
help of Recombinase A (Rec A) related strand-exchange proteins, 
Disrupted Meiotic cDNA 1 (DMC1) and RADiation sensitive 51 
(RAD51), the ssDNA tails search for and invade intact homologous 
duplexes to form displacement loops (D-loops).6 Among a large 
number of DSBs, only a small subset (approximately 10% in mice) 
is repaired as crossovers (COs), with the reciprocal exchange of 
chromosome arms flanking the break site. However, the majority of 
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from some of these interactions.11,12,22 The SC also has important 
roles in homologous recombination, such as inhibiting excessive DSB 
formation and ensuring efficient recombination completion.23,24

CO PATTERNS AND THE UNDERLYING LOGIC
Besides exchanging genetic information, COs also have a specific role in 
ensuring faithful homolog segregation at anaphase I, through physically 
connecting homologs together in combination with sister chromatid 
cohesion (Figure 2a and 2b). COs are cytologically visualized as 
chiasmata after SC disassembly (Figure 2a and 2b). COs can also be 
observed as late/large (recombination) nodules at pachytene under 
electron microscopy,25 marked by specific recombination protein foci 
including MutL homolog 1/3 (MLH1/3), ZIPper 3 (Zip3), or Homo 
sapiens Enhancer of Invasion 10 (HEI10) in diverse organisms,26–28 and 
defined by genetic or DNA polymorphism analysis from progeny.29,30

CO patterns (the number and distribution of chiasmata/COs) 
are tightly controlled (Figure 2a and 2b).15,31–34 Aberrant CO patterns 
usually result in chromosome segregation errors and thus aneuploidy, 
which is the leading cause of infertility, abortion, and congenital birth 
defects in humans.35,36 The tight control of CO patterns is exhibited 
as three major features: obligatory CO, CO interference, and CO 
homeostasis.31–33

1. In most organisms, each nucleus usually has only a small number 
of COs. If they are randomly distributed among chromosomes, 
a large number of chromosomes would not get any CO. For 
example, each mouse spermatocyte has approximately 23 COs 
on 19 autosomes.37 If COs are randomly distributed among 
chromosomes with CO numbers proportional to axis lengths, at 
least one chromosome in each nucleus will fail to get even one CO 
(from 10 000 simulations). As expected, the longest chromosome, 
chromosome 2, has the lowest probability of absence of COs 
(approximately 16%), and the shortest chromosome, chromosome 
19, has the highest probability of absence of COs (approximately 

50%). However, given its essential role for accurate chromosome 
segregation, each pair of homologs acquires at least one CO, which 
is traditionally referred to as the obligatory CO.31,32 As a result, 
the frequency of CO absence from chromosomes is maintained 
at a very low level (usually <2%, except for human females at 
approximately 10%)9,31,35

2. Not only the numbers but also the positions of COs on 
chromosomes are not random. When two or more COs are 
present on a pair of homologs, these COs tend to be farther away 
from each other rather than, appearing to be randomly placed. 

Figure 1: Meiotic recombination is integrated into the development of 
chromosome structure. (a) Meiotic recombination. Usually, many DSBs occur 
in a nucleus. But, only a few of them are repaired as COs (with interference) 
and the majority are repaired as NCOs. (b) An electron microscopy picture 
to show pachytene chromosomes of the moth Hyalophora columbia.149 The 
copyright license of reproducing this picture was received from the publisher 
Elsevier. (c) Cartoon for meiotic chromosome organization. (d) The tethered 
loop-axis complex brings DNA from loops to axes to generate DSBs and one 
DSB end is released to search for and bring its homolog into proximity. DSB: 
double-strand breaks; CO: crossover; NCO: noncrossover.
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Figure 2: Crossover (chiasmata) and the logic of crossover patterning. (a) A 
spread nucleus of the locust Schistocerca gregaria to show chiasmata.32 The 
copyright license of reproducing this picture was received from the publisher 
John Wiley and Sons. Multiple chiasmata (crossovers) are evenly spaced (long 
arrows). (b) Homologs are linked together by chiasmata combined with global 
sister cohesion. Sisters are locally separated around chiasmata. (c) The logic 
of crossover patterning. Among a large number of crossover precursors (DSB 
mediated inter-homolog interactions), the most sensitive one is first designated 
and crossover interference spreads out to inhibit a second crossover nearby. 
The next crossover if occurs would occur far away from the existed ones to 
fill in the holes. (d) When more (less) precursors exist, there would be more 
(less) precursors suppressed by crossover interference, however, crossover 
number is maintained less altered. (e) Crossover number distribution from two 
artificial datasets generated by simulations. Interference distance L = 0.55 
and 0.3 for chromosomes with less and more crossovers, respectively; other 
parameters are the same, CO designation driving force, Smax = 3.5; clamped 
left and right ends, cL = cR = 1; the average precursor number, N = 14; 
precursor distribution among chromosomes, B = 0.6; the evenness level of 
precursors along chromosomes, E = 0.6. (f) CoC curves from the two simulated 
data set in (e). DSB: double-strand breaks; CO: crossover; NCO: noncrossover; 
CoC: coefficient of coincidence.
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This phenomenon, known as CO interference, was noted more 
than 100 years ago, and reflects the existence of a CO generating 
an interference signal to inhibit the occurrence of other COs 
nearby.38,39 Therefore, CO interference restricts the maximal 
number of COs on each pair of homologs, usually only 1–3 in 
most organisms31,33,40,41

3. Despite COs originating from DSBs, alterations in DSB numbers 
change CO numbers less proportionally at the cost of NCOs.42–47 
This phenomenon is called CO homeostasis, which maintains the 
number of COs at a relatively constant level and is less affected 
by fluctuations of DSBs.33,42

Studies have shown that CO interference spreads along 
chromosomes with micron of axis as a metric.43,48,49 Consistently, 
various studies suggest that intact chromosome axes are required 
for proper CO interference.43,50–53 However, the mechanism of CO 
interference is unknown.

Among several models proposed to explain CO interference, 
the “fill-in-the-holes” model (also known as beam-film or stress 
model) has been widely accepted to explain the basic logic of CO 
patterning (Figure 2c).33,54–58 In this model, CO precursors, an array 
of DSB-mediated interhomolog interactions, are distributed along 
chromosomes. Among them, the most sensitive precursor is first 
designated to become a CO (i.e., CO designation), and simultaneously, 
the interference signal from this designation site propagates along the 
chromosome axis in both directions to inhibit further CO designations 
in nearby regions. The distance over which the interference signal 
spreads is the “interference distance,” measured as physical axis length 
(micron).33,43 The strength of interference dissipates with increasing 
distance. If a subsequent CO designation occurs, it will tend to occur 
far away from the existing designation sites to “fill in the holes.” Finally, 
multiple CO designation sites and thus COs tend to be evenly spaced 
along a chromosome.

The other two features of CO patterns, the obligatory CO 
and CO homeostasis, can be easily integrated into this logic and 
understood as described below. At least one CO is required for 
faithful chromosome segregation, and this can be ensured by a 
highly efficient CO designation process, which is probably regulated 
evolutionarily. The existence of the CO interference signal creates an 
inhibition zone, where other CO precursors are inhibited regardless 
of the increased or decreased number of precursors in that zone 
(Figure 2d). Therefore, the numbers of CO designations and 
corresponding COs are maintained at a relatively stable level, and 
are less affected by altered precursor numbers. Moreover, stronger 
CO interference results in fewer COs and stronger CO homeostasis 
(Figure 2d and 2e).

It is worth noting that studies based on different criteria suggest that 
there are two types of COs, interference-dependent and -independent 
COs. In most organisms, a majority of COs are sensitive and subject 
to CO interference, and require ZMM (including at least Zip1-3, 
Meiotic recombination 3 (Mer3), and MutS homolog 4/5 (MSH4/5) 
in budding yeast) group proteins. In both mouse and human, this 
type of CO accounts for 90%–95% of total COs and can be marked by 
MLH1 foci at pachytene. For the other 5%–10%, a minority of COs are 
insensitive to CO interference and require MMS and UV Sensitive 81 
(MUS81) and MutS homolog 4 (MMS4)/Essential Meiotic structure-
specific Endonuclease 1 (EME1), which is thought to arise in a different 
manner from the majority of COs.2,33,34 However, Mus81-/- mutant 
mouse shows an upregulated number of MLH1 foci and the normal 
number of chiasmata.59 Using combined fluorescence and electron 
microscopy, a study in tomato revealed interference between the two 

types of COs.25 Therefore, these studies suggest an interaction between 
the two types of COs. Further investigation is necessary to elucidate 
the mechanistic relationship.

MEASUREMENTS OF PHENOMENOLOGICAL AND 
MECHANISTIC CO INTERFERENCE
CO interference is originally described as the occurrence of one CO 
that interferes with the occurrence of another CO nearby on the same 
pair of homologs.38,39 CO interference is traditionally measured using 
the coefficient of coincidence (CoC) method. For any two intervals, 
the frequency of CO occurrence in each interval can be calculated, 
and the expected frequency of CO coincidence in both intervals can 
be obtained by multiplying the frequencies of CO occurrence in the 
two intervals, while the observed frequency of CO coincidence in both 
intervals can be calculated from experimental data. CoC is defined as 
the ratio of the frequency of observed double COs to the frequency of 
expected double COs (observed/expected). A more rigorous way to 
measure CO interference is a CoC curve analysis when multiple CO 
intervals are available. For this purpose, CoC values are calculated 
from all pairs of intervals and plotted as a function of inter-interval 
distance (Figure 2f). Generally, the CoC value is very small at the 
short inter-interval distance, reflecting strong interference, and CoC 
increases to approximately 1 with increasing inter-interval distance, 
reflecting no interference. At a particular inter-interval distance 
(i.e., the average distance between adjacent COs), a hump with CoC 
value much larger than 1 is often seen, especially for genetically short 
chromosomes, reflecting evenly spaced COs (Figure 2f).33,60 Therefore, 
the CoC (curve) method integrates both the distance and the “evenness” 
information.

Because COs tend to be evenly distributed along chromosomes 
due to CO interference, a gamma distribution, which fits the frequency 
distribution of inter-adjacent CO distances, has often been applied 
to measure the strength of CO interference.61,62 A higher value shape 
parameter (γ) indicates more evenly spaced COs, and thus stronger 
CO interference.61,62 However, the gamma shape parameter only reflects 
the “evenness” regardless of the absolute distance.

The term “interference” only describes the phenomenon. Both 
CoC (curve) analysis and gamma distribution methods measure the 
“phenomenon” but do not reveal the essence or the mechanism of 
CO interference, for example, the interference signal. Alterations in 
CoC or gamma shape parameter can result from an altered patterning 
process other than mechanistic interference, especially factors acting 
before interference imposition, such as the number of precursors.33,57 
Additionally, gamma distribution but not CoC can also be affected by 
alterations after interference spreading, for example, CO maturation 
inefficiency.9,13,33,62,63

To distinguish the effects of different factors on observed 
phenomenological interference, a mathematical simulation approach 
based on the “fill-in-the-holes” model was developed. According 
to the CO patterning logic described above, the following four sets 
of parameters are required for this simulation: (1) the array of CO 
precursors; (2) the strength of CO designation and the response of 
precursors to CO designation; (3) the strength of CO interference, that 
is, the distance over which interference spreads; and (4) CO maturation 
efficiency, that is, the probability of a designated CO becoming a real 
CO. This mathematic simulation approach can quantitatively mimic the 
CO patterning process and is very useful to differentiate how different 
factors alter CO interference.13,33,43,56,58 This simulation method has 
very accurately captured observed CO patterns in several investigated 
organisms, including budding yeast, Sordaria, Arabidopsis, maize, 
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human, and mouse.9,12,27,33,43,60,64 Moreover, it helps in identifying the 
first CO interference regulatory pathway, discovering human female-
specific CO maturation inefficiency, clarifying the per-nucleus CO 
co-variation resulting from the co-variation of chromosome axis 
lengths, and explaining CO pattern differences between the two sexes 
and between long and short chromosomes.43,60,63

CO FREQUENCY IS MAINLY REGULATED BY CHROMOSOME 
AXIS LENGTH
Although the positions of COs are stochastic on a given chromosome, 
COs preferentially occur in some chromosome regions (CO hotspots) 
and are rare in other regions, such as the pericentromeric and 
rDNA regions.29,65,66 The existence of DSBs is the prerequisite for the 
occurrence of COs; however, the probability of a DSB becoming a CO 
varies significantly from locus to locus.67–74 This may be regulated at 
the stages of partner choice (interhomolog vs intersister), CO/NCO 
differentiation, or CO maturation. Differences in partner choice of DSB 
repair have been observed in Schizosaccharomyces pombe;75 both DSB 
formation near centromeres and its repair by homologs are inhibited 
in a distance-dependent manner;67,76 there are different CO/NCO 
ratios at different loci in mouse meiosis and a reduced CO/NCO ratio 
near telomeres in budding yeast.67,70–71 Therefore, local chromosome 
structures influence the occurrence of COs, and CO hot spots do not 
always overlap with DSB hot spots.77–80

Regardless of the local regulation of CO formation, it has long been 
known that there is a strong positive correlation between chromosome 
axis length and CO number under diverse conditions:
1. In one nucleus, usually a chromosome with more DNA content 

tends to have a longer axis and more COs. However, when two 
chromosomes have very similar DNA content, one chromosome 
axis can be longer than the other one. In this case, the chromosome 
with the longer axis also has more COs. Therefore, it is the 
axis length but not DNA content correlates with CO number. 
Consistent with this, the number of COs correlates with axis 
length better than with DNA content. For example, in mouse 
spermatocyte, r = 0.96 between CO number and axis length; 
however, r = 0.86 between CO number and DNA content 
(Figure 3a and 3b)

2. Among different nuclei, both chromosome axis lengths and the 
numbers of COs can vary significantly, and nuclei with longer 
chromosome axis tend to have more COs.40,81–84 Moreover, our 
recent studies have found that the numbers of COs co-vary 
among chromosomes at a per-nucleus basis, which results from 
co-variation of chromosome axis lengths (Figure 3c and 3d)13,85

3. In many organisms, CO frequencies are different between 
males and females, and the sex with longer chromosome axis 
also has more COs.9 For example, human females have 2-fold 
longer chromosome axes compared to human males, and 
have approximately 1.6-fold more COs as revealed by various 
measurements.9,29,30,86–88 Similarly, in mouse and zebrafish meiosis, 
females have approximately 20% longer chromosome axes and also 
approximately 20% more COs than males.49,89 However, in some 
other organisms including Arabidopsis and maize, males have 
longer meiotic chromosome axes and thus more COs48,60,64,91–93

4. For the same species, different genetic backgrounds may show 
different CO frequencies. Among CAST/EiJ, C3H/HeJ, and 
C57BL/6J mice, C57BL/6J spermatocytes have the longest 
chromosome axes and also the highest number of COs. However, 
CAST/EiJ spermatocytes have the shortest chromosome axes and 
also the lowest number of COs94

5. Several mutants are found to have altered chromosome axis 
lengths in diverse organisms, and these mutants also have 
correspondingly altered CO numbers. For example, studies 
from diverse organisms show that mutants of cohesin and 
related factors have decreased meiotic chromosome axis 
lengths and reduced COs.53,95–102 However, mutants, such as 
Hr6b-/- mouse spermatocytes, have longer axes and more 
COs.103

The above evidence suggests that CO number and meiotic 
chromosome axis length are tightly linked. Moreover, alterations 
in chromosome axis length and corresponding alterations in DSBs 
or DSB-mediated interhomolog interactions are also observed, 
between males and females in both human and mouse, and 
among mice in different genetic backgrounds.86,87,94 These results 
suggest that it is axis length that determines the number of COs 
but not the other way around, which is also supported by the 
following evidence. (1) Absence of or alterations in DSBs and/or 
DSB-mediated interhomolog interactions do not have an obvious 
effect on chromosome axis length in various organisms including 
mouse.12,33,43,44,104,105 In some organisms, chromosome axes are formed 
before DSB formation and thus before the recombination process.23 

Figure 3: The co-variation of chromosome axis lengths results in the co-variation 
of crossover numbers. (a) Correlation between crossover number and chromosome 
DNA content in male mice. (b) Correlation between crossover number and 
chromosome axis length in male mice (data provided by Lorida Anderson). (c) 
Representative human male pachytene nuclei to show co-variation of axis lengths 
and covariation of crossover numbers among chromosomes within individual 
nuclei. Left nucleus: 37 COs; 170 micron (axis length). Right nucleus: 61 COs; 
230 micron (axis length). Scales bars=5 μm. (d) Cartoon to show co-variation 
of axis lengths leads to co-variation of crossover numbers. CO: crossover; NCO: 
noncrossover; Chr: chromosome; MLH1: MutL homolog 1; SYCP1: Synaptonemal 
complex protein 1; CREST: Calcium-responsive transactivator.
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(2) CO formation has little effect on overall chromosome axis 
length alteration. For example, studies on Caenorhabditis elegans 
and Sordaria show that the occurrence of a CO (designation) only 
locally alters chromosome axis length/structure; however, this change 
is subtle in terms of the overall axis length.52,104

UNIQUE CO PATTERNS ON SHORT CHROMOSOMES
During meiosis, short chromosomes behave differently from long 
chromosomes in several aspects. In budding yeast, short chromosomes 
complete homolog pairing late.106 However, in other organisms, short 
chromosomes seem to complete homolog pairing earlier than long 
chromosomes.107 Structurally, short chromosomes are organized 
with a longer axis and smaller loops than the genomic average as 
observed in budding yeast.33,108 In both budding yeast and mouse, short 
chromosomes tend to have higher DSB density, which is attributed 
to multiple effects including early DNA replication, centromere and 
telomere effects, and an “intrinsic boost.”21,80,109,110

A special case is mammal XY chromosomes with a pretty short 
homologous region (pseudoautosomal region [PAR]), where DSB 
formation mediated by Spo11α and homolog pairing are late relative 
to autosomes. Although PAR is very short (<1 Mb in mouse), it is 
organized with an extremely long axis and small loops (approximately 
1 μm of axis per Mb compared with approximately 0.1 μm of axis per 
Mb for autosomes), and obtains 10- to 20-fold higher DSB density than 
the genomic average.111–114

Studies on meiotic recombination have revealed that short 
chromosomes have different CO configurations in various organisms 
including human and mouse (Figure 4).9,37,83,115 (1) A high frequency 
of short chromosomes does not have the obligatory CO. (2) Short 
chromosomes tend to have higher CO density (CO number per micron 
of chromosome axis), which is usually interpreted as the obligatory 
CO effect. The higher DSB density on short chromosomes may also 
make a small, but not a large, contribution given the existence of CO 
homeostasis.33,79 (3) COs tend to be located more distally and the 
average inter-adjacent-CO distance takes up a larger proportion of the 
chromosome axis. However, the absolute distance between adjacent 
COs is shorter.9,37,83,115 (4) The distribution of inter-CO distances tends 
to be more even as indicated by a bigger gamma shape parameter. 
Sometimes, this is interpreted as short chromosomes having higher 
CO interference; however, this is not true.115,116 At least some of these 
features (e.g., chromosomes without COs) contribute to the observed 
high frequency of chromosome mis-segregation.9,12,33 However, it is 
unclear whether these special CO configurations are just because 
short chromosomes have short axes or because they have other special 
features.

Analysis of CO interference in diverse organisms based on 
gamma distribution and related methods raises the question of 
whether short chromosomes have stronger CO interference.63,115–120 
Gamma distribution is used for the analysis of distances between 
events along an infinite axis. However, a chromosome axis is finite 
and only chromosomes with two or more COs are included in this 
analysis, which introduces bias and results in inappropriately fitted 
gamma distributions, especially for short chromosomes.62,63 This is 
illustrated by a set of “artificial” data generated by the beam-film 
application using the same set of parameters except for different 
chromosome axis lengths (Figure 4a–4f). To resolve the above 
problem, a modified gamma distribution analysis has also been 
applied. In this analysis, all chromosomes, including chromosomes 
with only one or zero CO, and also the distances from chromosome 
ends to the nearest CO, are included. However, this modified gamma 

distribution analysis only partially improves the fitting (Figure 4e, solid 
bars from gamma distribution vs dashed bars from modified gamma 
distribution). The CoC analyses show that all these chromosomes have 
the same CO interference, and CoC curves of shorter chromosomes 
increase rapidly (Figure 4f). The CoC analysis of male mouse 
MLH1 data also shows that all chromosomes have the same CO 
interference, which is further confirmed by beam-film simulations 
(Figure 4g and 4h, dashed vs solid lines). Therefore, it seems like short 
chromosomes have the same CO interference as long chromosomes. 
Similarly, CoC analyses in human and mouse also show that both males 
and females have the same/similar CO interference, although females 
have longer axis and thus more COs than males (Figure 4h).9,49,119,121 The 
same CO interference in both sexes is also confirmed in Arabidopsis, 
in which male meiosis has longer axes and more COs.48,60

CO PATTERNS AND THE HIGH FREQUENCY OF HUMAN 
ANEUPLOIDIES
The frequency of human embryo aneuploidy increases with increasing 
maternal age, and for women close to their end of the reproductive 
lifespan, the frequency of embryo aneuploidy can even reach 50% or 
more, which is known as the “maternal age effect.”35,122–125 Compared 
with other organisms, even in young women, the frequency of embryo 
aneuploidy is still very high (approximately 10%).35,123–124 A recent 
study reveals that human female-specific CO maturation inefficiency 
underlies the high aneuploidy frequency.9 In addition, several other 
age-related CO alterations in humans are noted.

Maternal age effect
Maternal age effect is proposed to be mainly caused by age-dependent 
loss of sister chromatid cohesion.35,126–131 Sister cohesion is mainly 
mediated by the cohesin complex, which is loaded before or during 
DNA replication and not replenished.132,133 Therefore, gradual 
deterioration of cohesin over time results in loss of sister cohesion. 
First, decreased peri-centromeric cohesion impairs the function of 
centromeres and directly results in chromosome segregation errors. 
Second, decreased arm cohesion between two adjacent COs and/or 
between the distal CO and chromosome end weakens the function of 
the chiasma in connecting homologs.85

Besides sister cohesion, many other factors including the states 
of kinetochore, spindle, checkpoint, environment, and recurrence 
of DNA damage also have important contributions to chromosome 
mis-segregation and thus maternal age effect.134–140

CO maturation inefficiency in human oocytes
The maternal age effect is an important factor for human embryo 
aneuploidy. However, even in young women, the frequency 
of aneuploidy is still approximately 10%.35,122 Most aneuploidy 
(approximately 90%) results from oocyte meiosis errors, especially 
homologous chromosome mis-segregation during meiosis I.35 A recent 
study comparing meiotic recombination between human males and 
females, reveals that human females have CO maturation inefficiency, 
which leads to a fraction of CO designations failing to become mature 
COs (Figure 5).9,13

CO maturation inefficiency significantly alters CO patterns 
to give rise to a high frequency of chromosomes with error-prone 
CO configurations (Figure 5).13,85 First, CO maturation inefficiency 
decreases the number of COs on all chromosomes, probably in 
proportion to the chromosome axis length (Figure 5a and 5b). 
Second, CO maturation inefficiency has more severe effects on short 
chromosomes than on long chromosomes, by generating high levels 
of chromosomes with error-prone CO configurations, for example, 
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without the obligatory CO, or with distal-only or proximal-only COs 
(Figure 5). Aberrant COs cause improper tensions at metaphase I, 
which leads to homolog segregation errors and thus aneuploidy. Third, 
different from human males, the completion of meiotic recombination 
and CO maturation inefficiency occur in the human female fetal stage 
and before the maternal age effect occurs. Therefore, CO maturation 
inefficiency is a major basis for human female aneuploidy. With 
increasing age, the maternal age effect interacts with aberrant COs 
caused by CO maturation inefficiency, to significantly elevate the 
frequency of chromosome mis-segregation and thus aneuploidy.

Other age-related alterations in CO and aneuploidy frequency
Several other age-related alterations in COs and human aneuploidy 
have also been recognized but less studied.
1. Younger parents tend to produce a higher frequency of aneuploid 

embryos.35,123,124,141,142 However, the reason is not known. Cole 
and colleagues have found that compared to adult males, 
juvenile males tend to have longer meiotic chromosome axes, 
less proportionally elevated CO number, and thus decreased 
CO density (CO number per micron of axis).142 This similarity 
between juvenile males and adult females (compared with adult 

Figure 4: Chromosome axis length regulates crossover patterns. (a–f) Simulated data from four artificial chromosomes with different axis lengths (20 μm, 10 μm, 
8 μm, and 6 μm) to illustrate the effects of chromosome lengths on crossover patterns. The same set of parameters used for all chromosomes: CO 
designation driving force, Smax = 4.1; clamped left and right ends, cL = cR = 1; the evenness level of precursors along chromosomes, E = 0.6; precursor 
distribution among chromosomes, B = 0.6; interference distance, L = 5 μm; precursor number N is adjusted according to axis length (N = 20, 10, 8, and 
6, separately). (a and b) Illustration of how short chromosomes alter crossover number and distribution. Chromosome axis lengths are (a) shown as microns 
or (b) normalized to “1.” (c–e) Short chromosomes have (c) fewer crossovers, (d) higher crossover density, and (e) higher gamma values estimated from 
gamma distribution (solid bars) or modified gamma distribution (hatched bars). (f) CoC curves show that all chromosomes have the same CO interference. 
(g) Crossover numbers and (h) CoC curves of male mice (data provided by Lorida Anderson). Mouse autosomes are divided into three groups according to axis 
lengths (long chromosomes: chromosomes 1, 2, 4, 5, 7, and 11; medium chromosomes: chromosomes 3, 6, 8, 9, 10, 12, 13, and 14; short chromosomes: 
chromosomes 15–19). CoC analyses show that all chromosomes have the same crossover interference (curves with solid lines) as confirmed by simulations 
(curves with dot lines). Smax = 3.5, L = 6 μm, cL = 0.6, cR = 1, E = 0.6, B = 0.6, N is adjusted according to axis length (14, 10, and 8 for long, medium, 
and short chromosomes, respectively). CO: crossover; CoC: coefficient of coincidence.
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males) raises the possibility that CO maturation inefficiency 
may work in juvenile males. Studies in mouse show a similar 
recombination process in juvenile and adult spermatocytes, 
however, in juveniles, a fraction of recombination intermediates 
is processed to be NCOs by structure-selective nucleases and 
alternative complexes.142 As a result, decreased CO frequency 
and CO density is observed in juvenile spermatocytes.142,143 
Intriguingly, younger women also tend to have a high frequency 
of aneuploid pregnancies than adults.35,122 Further investigation is 
required to know why younger mothers have increased incidence 
of aneuploid pregnancies and whether the mechanism found in 
juvenile mouse spermatocytes also works in younger men and 
women. Detailed analysis of alterations in CO patterns will help 
to illustrate whether they have CO maturation inefficiency

2. Compared with the dramatic effect of maternal age, a mild 
paternal age effect is also observed in some studies.144,145 Although 
analysis of parent-child pairs does not detect increased CO 
frequency in old fathers,68,146 studies in old mice detect a small 
increase in CO frequency and SC/axis length.143 Increased meiotic 
errors with increasing paternal age are also observed in old mice, 
but these aberrant nuclei are probably eliminated and thus do 
not give rise to sperm.143 It is unknown whether this also exists 
in men, and examination of CO frequency in spermatocytes of 
old men will provide valuable information

3. Several studies have shown that older women tend to have 
children with higher CO frequency than young women.29,68,146–148 
This is sometimes explained as old mothers tend to have more 
interference-insensitive COs based on two-pathway gamma 
model analysis.148 However, CO recombination is completed at 
the meiotic pachytene stage during the human female fetal stage 
and it is less likely that additional COs occur during the long 
arrest period (dictyate). Moreover, CO frequency is maintained 

constantly in oocytes at different ages of mothers.94 A more 
reasonable explanation is that oocytes with more COs have a 
higher probability to keep at least one chiasma (the loss of sister 
cohesion results in chiasma loss), and thus a higher probability 
to have euploid eggs and children.85 These nuclei have more COs 
likely because they have either relatively longer axes or more 
sensitive precursors.13,33,85

CONCLUSION
Crossover recombination is essential for meiosis, which not only 
ensures faithful chromosome segregation but also promotes the 
genetic diversity of progenies for evolutionary adaption. The process 
of crossover recombination is tightly integrated into the meiotic 
chromosome structure, which is essential in regulating crossover 
patterns. Chromosomes with aberrant crossover configuration are 
subject to mis-segregation, which is the primary cause of aneuploidy 
and thus infertility, abortion, stillbirth, and congenital birth defects 
in humans. Therefore, crossover recombination remains at the 
forefront of biological and reproductive medicine research and 
attracts the interest of different research fields. Although significant 
advances have been made in recent years, many outstanding 
questions need to be further investigated. For example, identifying 
the CO interference signal and how it is regulated; how and when 
CO/NCO differentiation is determined, and what factors are 
involved; how meiotic chromosome loop/axis forms; and how CO 
maturation inefficiency is regulated and identifying its evolutionary 
advantages.
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Figure 5: Crossover maturation inefficiency generates aberrant crossover configurations, especially on short chromosomes. (a) Cartoon to show the effects of 
crossover maturation inefficiency. (b) Crossover maturation inefficiency decreases crossover number. (c and d) Crossover maturation inefficiency does not 
affect crossover interference as revealed by (c) CoC and (d) gamma distribution analysis. Maturation efficiency, M = 0.4 (green), 0.75 (red), or 1 (black). 
Crossover maturation inefficiency does not alter (e) relative crossover density distribution for chromosome with only one crossover designation, or (f) overall 
crossover density distribution. (g) Crossover density distribution of chromosomes with one crossover altered by crossover maturation inefficiency. Data used 
from simulations: CO designation driving force, Smax = 3.8; clamped left and right ends, cL = cR = 1.1; the evenness level of precursors along chromosomes, 
E = 0.6; precursor distribution among chromosomes, B = 0.6; precursor number, N = 7; interference distance, L = 0.43; M = 0.4, 0.75 or 1 as indicated.
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