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During development, the decision of stem and progenitor cells to switch from proliferation
to differentiation is of critical importance for the overall size of an organ. Too early a switch
will deplete the stem/progenitor cell pool, and too late a switch will not generate the
required differentiated cell types. With a focus on the developing neocortex, a six-layered
structure constituting the major part of the cerebral cortex in mammals, we discuss here
the cell biological features that are crucial to ensure the appropriate proliferation vs.
differentiation decision in the neural progenitor cells. In the last two decades, the neural
progenitor cells giving rise to the diverse types of neurons that function in the neocortex
have been intensely investigated for their role in cortical expansion and gyrification. In this
review, we will first describe these different progenitor types and their diversity. We will then
review the various cell biological features associated with the cell fate decisions of these
progenitor cells, with emphasis on the role of the radial processes emanating from these
progenitor cells. Wewill also discuss the species-specific differences in these cell biological
features that have allowed for the evolutionary expansion of the neocortex in humans.
Finally, we will discuss the emerging role of cell cycle parameters in neocortical expansion.
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1 INTRODUCTION

The neocortex is a six-layered neuronal structure that is part of the cerebral cortex of the brain. The
neocortex is unique to mammals and is evolutionarily the newest part of the mammalian brain. Its
importance lies in the facts that this part of the brain has expanded the most during human brain
evolution and is associated with complex and higher order brain functions like cognitive abilities and
language. Development of the neocortex is based on spatio-temporally restricted transcriptional
programs that unfold in a sequential manner and are a predominant factor for the neural progenitor
cell proliferation, differentiation, migration and specification of different neuronal subtypes in the
neocortex (Telley et al., 2019; Vaid and Huttner, 2020; Ruan et al., 2021; Bandler et al., 2022). In
addition, specific cell biological processes underlie the proper development of the mammalian
neocortex and influence these transcriptional programs.

In recent years, advancements in microscopy, image analysis, molecular cell biology and other cell
biological techniques have uncovered key aspects of the cell biological processes like cell polarity,
mitotic spindle and cleavage plane orientation, cell cycle length, dynamics of junctional proteins,
delamination etc., that occur at different developmental time points and ultimately lead to an
expansion of the neocortex. Several new players and the molecular details of how their networking
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regulates these processes have also been identified. In this review,
we will first discuss the diversity of the stem and progenitor cells
that are found in the developing neocortex across different
mammalian species. We will then proceed to specifically
illustrate the cell biological features that are associated with
these different stem and progenitor cells, and how these
features influence the proliferation, cell fate, morphology and
migration of these cells (Figure 1).

2 NEOCORTICAL DEVELOPMENT AND
PROGENITOR CELL TYPES IN
DEVELOPING NEOCORTEX
With the onset of neurogenesis, the neuroepithelial cells
(NECs) differentiate into a glial cell population, referred to
as apical radial glial cells (aRGCs, also referred to as
ventricular radial glia), which give rise to other glial and
non-glial progenitor cell types that eventually generate all
the neocortical projection neurons. Specifically, the various
progenitor cells in the developing neocortex reside in two
germinal zones—i) the ventricular zone (VZ), the primary
germinal zone; and ii) the subventricular zone (SVZ), a
secondary germinal zone. In species with an expanded
neocortex, and especially in gyrencephalic species, the SVZ
gets further subdivided into an inner SVZ (ISVZ) and an outer
SVZ (OSVZ) (Smart et al., 2002), with the OSVZ becoming the
most prominent proliferative zone in these species (Smart
et al., 2002; Fietz et al., 2010; Hansen et al., 2010; Borrell
and Reillo, 2012). An OSVZ-like zone has also been reported in
the lissencephalic mouse and rat neocortex at later stages of
embryonic neurogenesis (Martínez-Cerdeño, 2012; Vaid et al.,
2018). Within these germinal zones, based on the location of
the nucleus at mitosis, the progenitor cells can broadly be
divided into two principal classes, i) apical progenitors (APs),
which undergo mitosis at the ventricular surface of the VZ
(Figure 1); and ii) basal progenitors (BPs), which undergo
mitosis in the SVZ (Haubensak et al., 2004; Miyata et al., 2004;
Noctor et al., 2004; Fietz et al., 2010; Hansen et al., 2010;
Shitamukai et al., 2011; Wang et al., 2011; Betizeau et al., 2013).

At the cell biological level, APs (i.e., NECs, aRGCs) remain
integrated into the apical adherens junction (AJ) belt
throughout their cell cycle, their nucleus undergoes apical-
to-basal and basal-to-apical migration in concert with the cell
cycle (interkinetic nuclear migration, INM), and their mitosis
at the ventricular surface reflects the presence of an apical
primary cilium throughout interphase. aRGCs retain their
basal process at mitosis. This is similar to mouse E10.5 NECs
(Kosodo et al., 2008) but in contrast to early human NECs,
which have been reported to retract the basal process at
mitosis (Subramanian et al., 2017). Furthermore, a subtype
of APs called short neural precursors (SNPs) or apical
intermediate progenitor cells (aIPCs) have been identified
in developing mouse neocortex that retract their basal
process at mitosis such that it remains as a small truncated
process within the VZ (Gal et al., 2006). Recently, aRGCs have
also been reported, during mid-neurogenesis in the

developing human neocortex, to exist as a subtype with a
truncated basal process; however, unlike mouse SNPs/aIPs,
the basal process of human truncated aRGCs terminates in the
OSVZ (Nowakowski et al., 2016). Perhaps just a coincidence,
but it is interesting to note that in both mouse and human,
SNPs/aIPs and aRGCs with a truncated basal process,
respectively, appear around the time when about 1/3 of
neurogenesis is completed (E12.5 in mouse and GW16.5 in
human) (Gal et al., 2006; Nowakowski et al., 2016).
Furthermore, regarding the truncated aRGCs, these
progenitor cells can provide a scaffold for newborn BPs to
ensure that the latter progenitor cells reach, and seed, the
OSVZ. In addition to these various types of APs, the
developing dorsal telencephalon of gyrencephalic species
has been reported to also harbor yet another cell type
called subapical progenitors, where the cells are integrated
into the AJ belt and maintain a basal process that contacts the
basal lamina (like conventional aRGCs), but undergo mitosis
in the VZ at a position basal to the ventricular surface (Pilz
et al., 2013).

BPs originate in the VZ by divisions of aRGCs. The newly
generated BP retracts its apical process from the ventricular
surface and AJ belt and moves to the SVZ (Figure 1 please
see Delamination below). BPs are further divided into two main
types—basal intermediate progenitor cells (bIPCs) and basal
radial glial cells (bRGCs, also referred to as outer radial glia).
bIPCs are multipolar cells and are the prominent BP type in
mouse (Miyata et al., 2001; Haubensak et al., 2004; Noctor et al.,
2004), where they have limited proliferative capacity (see below
for a definition of this term) and usually undergo only 1-2 rounds
of symmetric divisions for their amplification in the SVZ before
undergoing symmetric consumptive division to generate neurons
(Noctor et al., 2004).

In contrast, bRGCs are the prominent BP type in species with
an expanded neocortex (Lukaszewicz et al., 2005; Fietz et al., 2010;
Hansen et al., 2010; Reillo et al., 2011; Kelava et al., 2012; Betizeau
et al., 2013; Lamonica et al., 2013), but are rare in lissencephalic
species like mouse (Shitamukai et al., 2011; Wang et al., 2011).
Interestingly, a recent study demonstrated an abundance of
bRGC as high as that is found in gyrencephalic species in the
developing mouse medial neocortex towards the end of
neurogenesis (Vaid et al., 2018). At the cell biological level,
bRGCs are characterized by radial processes. They typically
extend a basal process (maintained at mitosis) that may
contact the basal lamina; in addition, they may extend an
apically directed process that, however, lacks contact with the
ventricle (Lukaszewicz et al., 2005; Fietz et al., 2010; Hansen et al.,
2010; Borrell and Reillo, 2012; Betizeau et al., 2013; Kalebic et al.,
2019). bRGCs have high proliferative capacity. We define the
term “proliferative capacity” as the ability of a given neural
progenitor type to undergo multiple rounds of either
symmetric proliferative or asymmetric self-renewing divisions,
which results in an increased number of daughter cells. For
example, about 40% of bRGCs in developing macaque
neocortex have been shown to undergo symmetric
proliferative divisions, generating up to six daughter cells per
bRGC (Betizeau et al., 2013). An increase in the relative

Frontiers in Cell and Developmental Biology | www.frontiersin.org May 2022 | Volume 10 | Article 8929222

Vaid and Huttner Cell Biology of Neocortex Development

https://www.frontiersin.org/journals/cell-and-developmental-biology
www.frontiersin.org
https://www.frontiersin.org/journals/cell-and-developmental-biology#articles


population of bRGCs has been shown to induce/increase cortical
folding (Stahl et al., 2013).

3 CELL BIOLOGICAL ASPECTS OF THE
PROGENITOR CELL TYPES IN
DEVELOPING NEOCORTEX
3.1 Apical Plasma Membrane and Basal
Process
3.1.1 Apical Domain
The apical-most surface of the NECs and aRGCs that directly
faces the ventricles constitutes the apical domain of the plasma
membrane of these cells. This domain can be visualized as a
cadherin–negative, prominin-1–positive segment of the
plasma membrane (Kosodo et al., 2004). Despite being a
small area (Figure 1) (corresponding to only 1–2% of the
total plasma membrane), the apical plasma membrane
provides crucial polarity cues that influence the cell fate of
the dividing cell (Please see below the sections on Primary
cilium and centrosomes, Adherens junctions and
Delamination) and serves as a docking site for several
signaling ligands through their receptors that are expressed
on its surface facing the ventricular lumen (Taverna et al.,
2014). Symmetric proliferative divisions of NECs prior to
neurogenesis and of aRGCs during neurogenesis typically
exhibit a vertical cleavage plane, which results in an equal
distribution of the apical membrane to the two daughter cells.

In contrast, an oblique or even horizontal cleavage plane during
neurogenesis that bypasses the AJ belt, which would result in the
distribution of the apicalmembrane to only one of the daughter cells,
predicts an asymmetric, self-renewing plus BP-genic aRGC division
(Kosodo et al., 2004; Noctor et al., 2008; Kawaue et al., 2019). Fate-
wise asymmetric aRGC division can also occur when the cleavage
plane does not bypass, but bisects—albeit not necessarily
equally—the apical domain (Figure 1). In such asymmetric
divisions of aRGCs, the two daughter cells may inherit size-wise
nearly equal portions of the apical domain, that however are unequal
with regard to the fate determination of the two daughter cells .
Specifically, it has been proposed that the asymmetric inheritance of
a small sub-domain of the apical plasmamembranemay be linked to
a proliferative vs. neurogenic fate of the daughter cells. To address
this issue, Shitamukai et al. (2011) visualized the inheritance of the
apical domain using ZO-1-EGFP and PAR3-EGFP, both of which in
epithelial cells are known to be localized also to the AJs (Itoh et al.,
1993; Takekuni et al., 2003). Therefore, the readout of apical domain
inheritance in the Shitamukai et al. (2011) study included a
significantly larger area than just the apical plasma membrane. In
contrast, Kosodo et al. (2004) used the cadherin-negative segment of
the apical domain as a readout and showed that the inheritance of
this very small portion of the apical domain correlated with the
asymmetric divisions of aRGCs.

In extreme, rare cases, however, when the cleavage plane is
parallel to the ventricular surface, the apical daughter cell
inheriting the complete apical domain, and no basal domain,
becomes postmitotic (Shitamukai et al., 2011). These latter results
indicate that the inheritance the apical domain alone is not

sufficient for the daughter cell to retain aRGC fate (please see
below for the role of basal process in cell fate and proliferation
capacity).

3.1.2 Basal Domain
The basolateral membrane accounts for the major fraction of the
plasma membrane of NECs, aRGCs and bRGCs. On its basal-
most end, a structure called the basal endfoot makes direct
contact with the basal lamina in the case of NECs and
canonical aRGCs, and may do so in the case of bRGCs
(Haubst et al., 2006; Taverna et al., 2014). The basal lamina is
a sheet of extracellular matrix (ECM) composedmainly of type IV
collagen, nidogen, members of the laminin family and heparan
sulphate proteoglycans, such as perlecan and agrin (Erickson and
Couchman, 2000), and is enriched with a variety of growth factors
(Kazanis and Ffrench-Constant, 2011; Wade et al., 2014). The
basal endfoot contacting the basal lamina is a highly dynamic
structure (Yokota et al., 2010) that can transduce signals from the
ECM-rich basal lamina (Jeong et al., 2013; Singer et al., 2013). The
basal endfoot has also been shown to spatially restrict several
mRNAs and RNA binding proteins, which may be involved in
transducing pro-proliferative signals (Tsunekawa et al., 2012;
Pilaz et al., 2016).

3.1.3 Basal Process
Concomitant with the transition of NECs to aRGCs, the initally
cuboidal NECs become more elongated and, keeping pace with
the increasing cortical wall thickness, their basal-most segment,
referred to as the basal process, becomes very thin and grows in
length, spanning the neuronal layers to reach the basal lamina
(Taverna et al., 2014). Most RGCs (both aRGCs and bRGCs)
retain their basal process during mitosis (Miyata et al., 2001;
Noctor et al., 2001; Fish et al., 2006; Fietz et al., 2010; Betizeau
et al., 2013), and only a subset retracts it at mitosis (Gertz et al.,
2014). These data suggest that from the onset of neurogenesis
onwards, basal process retention through mitosis serves some
important function. Originally being thought to serve primarily
as a scaffold for neurons and other cells to migrate on (Rakic,
1972; Noctor et al., 2001; Noctor et al., 2004; Silva et al., 2019), the
basal process has now emerged, in addition, as an active
subcellular compartment involved in signaling and cell fate
specification and especially as a key cell biological feature
conferring high proliferative capacity to the bRGCs leading to
the evolutionary expansion, and likely the gyrification, of the
neocortex (Uzquiano et al., 2018; Kalebic and Huttner, 2020),
discussed below in more detail).

Regarding the basal process of aRGC, live-imaging
experiments in mouse have shown that the basal process is
asymmetrically inherited during mitosis (Miyata et al., 2001)
and that the daughter cell inheriting the basal process usually
maintains an aRGC cell fate (Konno et al., 2008; Lamonica et al.,
2013). In addition, for both aRGC and the bRGC divisions, the
daughter cell that does not inherit the basal process can regrow it
after division (Miyata et al., 2001; Betizeau et al., 2013), and active
Notch signaling has been shown to induce this regrowth
(Shitamukai et al., 2011). These results support the notion that
the inheritance of the basal process is not necessary to remain an
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aRGC or bRGC. For future research, it will be important to
investigate if additional mechanisms exist that underlie the
regrowth of a basal process.

3.1.4 Basal Process Branching
The basal process may show several small branches along its
length (Kalebic et al., 2019). In addition to serving as a scaffold
for migrating projection neurons, the long primary basal
process and its branches allow the interaction with the
surrounding ECM and various other cell types, e.g., with
interneurons and blood vessels. This adds to the diversity of
signals that the progenitor cells bearing such long basal
processes can experience, and likely to their increased
proliferative capacity. An inter-species comparison of BP
morphology has shown that the branching index of the
processes in BPs (the total number of all processes divided
by the number of primary processes) increases from mouse to
ferret to human (Kalebic et al., 2019). Furthermore, it was
shown that the paralemmin family member PALMDELPHIN
(PALMD), via integrin signaling, promotes the process growth
of BPs, and this increase in process number and branching
index is directly related to their proliferative capacity (Kalebic
et al., 2019). These findings establish a strong role of increased
surface area in the proliferative capacity of BPs.

Among the bRGCs, in addition to an increase in the overall
branching index of the basal process, the basal process has
been shown to display diversity in its morphology.
Specifically, in addition to the previously described
morphotypes (Betizeau et al., 2013), new morphotypes
with 2 basal processes were identified specifically in
gyrencephalic species (Kalebic et al., 2019). These
bifurcated basal processes have been shown split either
nearby the cell body or away from the cell body. These
new morphotypes are particularly interesting in light of
the notion that the basal process is a key feature of highly
proliferative bRGCs and therefore a crucial element in
cortical evolution (Smart et al., 2002; Fietz et al., 2010;
Hansen et al., 2010; Reillo et al., 2011; Betizeau et al.,
2013; Lamonica et al., 2013; Kalebic et al., 2019). Kalebic
et al. (2019) also showed that PALMD can increase the basal
process number of bRGCs in gyrencephalic species but not in
lissencephalic species. This is an interesting finding because it
suggests an evolutionary difference in the basal process-
generating molecular machinery between gyrencephalic
and lissencephalic species. An interesting line of future
research will be to compare the proliferative capacity of
these different bRGC morphotypes and link it to the
corresponding morphology. Along this line, bRGCs with
both basal and apically directed processes have been shown
to have a higher proliferative capacity than bRGCs with either
an apically directed or a basal process only (Betizeau et al.,
2013).

3.1.5 Basal Process Splitting
During cell division the basal process of mouse E10.5 NECs has
been shown to get split before anaphase onset and to then be
inherited either symmetrically or asymmetrically between the two

daughter cells (Kosodo et al., 2008). As this basal process splitting
during NEC division involves anillin and the cytokinesis
machinery, it is unlikely to be mechanistically related to the
basal process branching of bRGCs discussed above.

3.1.6 Mitotic Somal Translocation
The basal process also plays role in another cell biological event
associated specifically with bRGCs—mitotic somal translocation
(MST), an actin-myosin–driven fast translocation of the nucleus
along the radial fiber before cytokinesis (Hansen et al., 2010;
Betizeau et al., 2013; Gertz et al., 2014; Ostrem et al., 2014). MST
has been proposed to play a role in the evolutionary expansion of
the neocortex because the frequency of bRGCs undergoing MST
and the frequency a pial-directed trajectory (which can likely
expand the OSVZ) has been shown to increase from ferret to
macaque to human (Betizeau et al., 2013; Gertz et al., 2014;
Ostrem et al., 2014).

3.1.7 Fanning of Basal Processes
In its role as the scaffold for the migrating neurons, the basal
process of the bRGCs has further gained an evolutionary
importance as it has been shown that during the generation of
the supragranular layers in primates, the aRGC basal process no
longer contacts the pial surface (referred to as truncated aRGC).
Rather the aRGC basal process instead terminates in the OSVZ
[(Nowakowski et al., 2016) and the references therein], and the
neurons destined for the supragranular layers therefore migrate
along the bRGC basal process (Nowakowski et al., 2016). An
additional evolutionary feature related to the bRGC basal
processes that can directly influence the gyrification in the
developing neocortex is the observation that these basal
processes have been shown to fan out during development,
and this fanning has been shown to be necessary to promote
the tangential dispersion of the migrating neurons, which allows a
significant growth in the surface area of the developing neocortex
(Reillo et al., 2011; Lewitus et al., 2013).

3.2 Mitotic Spindle and Cleavage Plane
Orientation
As mentioned earlier, aRGCs, like NECs, are polarized cells, and
their apical-basal polarity is critical to the cell fate of their daughter
cells. The cleavage plane orientation upon cell division determines
how the cellular components, especially the polarity-related ones,
will be distributed between the two daughter cells. The cleavage plane
orientation is determined by the orientation of the mitotic spindle. It
is therefore not surprising that a premature neuronal differentiation
and cortical disorders such as lissencephaly or microcephaly are
associated withmutations in genes that have a role inmitotic spindle
orientation or mitotic spindle organization (Feng and Walsh, 2004;
Fish et al., 2006; Gauthier-Fisher et al., 2009; Garcez et al., 2015).

In developing mouse neocortex, symmetric proliferative
divisions of NEC have been shown to exhibit a vertical
cleavage plane, that is, parallel to their apical-basal axis,
distributing the cellular components equally between the two
daughter cells (Kosodo et al., 2004). With the onset of cortical
neurogenesis and its progression, the cleavage plane orientation

Frontiers in Cell and Developmental Biology | www.frontiersin.org May 2022 | Volume 10 | Article 8929224

Vaid and Huttner Cell Biology of Neocortex Development

https://www.frontiersin.org/journals/cell-and-developmental-biology
www.frontiersin.org
https://www.frontiersin.org/journals/cell-and-developmental-biology#articles


of aRGCs may be either vertical or oblique, with the frequency of
oblique cleavage plane orientation increasing with the
progression of neurogenesis (Figure 1) (Haydar et al., 2003;
Konno et al., 2008; Wang et al., 2009; Asami et al., 2011;
Shitamukai et al., 2011). In the developing mouse neocortex,
such oblique aRGC divisions have been shown to generate BPs,
both bIPs and bRGCs (Wang et al., 2009; Asami et al., 2011;
Shitamukai et al., 2011; Wong et al., 2015). Interestingly, oblique
or even horizontal orientations of the aRGC cleavage plane can be
associated with the generation of bRGCs also in gyrencephalic
species (Shitamukai et al., 2011; Lamonica et al., 2013; Pilz et al.,
2013; Gertz et al., 2014). In line with the much higher proportion,
among the BPs, of bRGCs in human thanmouse, the frequency of
such oblique and horizontal aRGC cleavage plane orientations is
significantly higher in humans than in rodents (Lamonica et al.,
2013; Pilz et al., 2013). Additionally, loss of function mutations
causing spindle randomization have been shown to cause an
increase in the generation of bRGCs in embryonic mouse
neocortex (Shitamukai et al., 2011). These results raise the
possibility that a downregulation of the machinery ensuring a
horizontal mitotic spindle, and hence a vertical cleavage plane
orientation may have contributed to neocortex expansion during
evolution.

In this context, it has previously been demonstrated that an
LGN-dependent decrease specifically in the astral microtubules
reaching the basal or the apical region of the cell cortex (especially
the basal region) triggers a change from vertical to oblique spindle
orientation, leading to the shift from symmetric to asymmetric
aRGC divisions in embryonic mouse neocortex (Figure 1)
(Mora-Bermudez et al., 2014).

Another interesting feature associated with the mitotic spindle
is its highly dynamic nature during metaphase. The mitotic
spindle of APs has been shown to rotate, even making several
turns, before it comes to rest just prior to the onset of anaphase
(Adams, 1996; Haydar et al., 2003). This implies that the tethering
of the astral spindle microtubules to the actin cytoskeleton at the
cell cortex is not very strong during most of metaphase. One
possible explanation for this spindle rotation could therefore be
the active and ongoing rearrangement of the actin configuration
at the cell cortex with which the astral microtubules eventually
have to establish a strong contact. Another speculative
explanation is that the duration of this spindle rotation
provides a short plastic period to the dividing cell to allow it
to sense its environment for the last time before the division and
re-orient the cleavage plane appropriate for the environment at
the time of cleavage.

3.3 Primary Cilium and Centrosomes
Primary cilia are non-motile cilia. They consist of a microtubule-
based cytoskeletal structure surrounded by ciliary membrane,
which in epithelial cells like NECs and aRGCs is an extension of
the apical plasma membrane. The primary cilium of aRGCs
protrudes into the lumen of the ventricle to receive, and
transduce, the signals from signaling molecules, such as Wnt
and Shh, that are present in the ventricular fluid (Corbit et al.,
2005; Eggenschwiler and Anderson, 2007; Rohatgi and Scott,
2007; Gerdes and Katsanis, 2008; Goetz et al., 2009; Lehtinen and

Walsh, 2011; Louvi and Grove, 2011; Oberst et al., 2019). In
addition to serving as an antenna for such signals, the
components of the primary cilium of NECs and aRGCs play
essential role in various other cell biological processes like INM,
mitotic spindle formation, the mode of cell division, and the
stability of the apical AJ belt, which will be discussed below.

In NECs and aRGCs at interphase, the mother centriole of the
centrosome (the older one of the two centrioles inherited upon
the birth of the cell) constitutes the basal body of the apical
primary cilium (Kumar and Reiter, 2021; Wilsch-Bräuninger and
Huttner, 2021) and is therefore tethered to the apical plasma
membrane (Figure 1). During the cell cycle of NECs and aRGCs,
the apical primary cilium is not disassembled, and the mother
centriole hence not detached from the apical cell cortex, until
early prophase. In other words, the mother centriole remains
tethered to the apical plasma membrane until mitosis onset.
Moreover, the nucleus of a NEC or aRGC is located at a non-
apical position within the VZ during interphase due to apical-to-
basal INM. Hence, the mother centriole can only function, as part
of a centrosome, as mitotic spindle pole in cell division if the
nucleus migrates towards this centrosome for mitosis via basal-
to-apical INM. SUN-domain and KASH-domain proteins link
the microtubule appendages of the centrosome to the nucleus and
transduce the contracting forces from the microtubules to the
nucleus during the basal-to-apical migration of the nucleus
(Zhang et al., 2009).

What about the second centrosome required to form a proper
mitotic spindle? The two centrioles (one of which is the basal
body of the apical primary cilium) separate and duplicate during
the G1/S phase. The two new pairs of centrioles—the mother
centriole with its duplicate and the daughter centriole with its
duplicate—then form the two centrosomes required to build a
proper mitotic spindle. During late G2/early prophase, the
primary cilium gets resorbed by the cell, and the mother
centriole switches its role from being the basal body to serve,
along with its duplicate, as one of the mitotic spindle poles. From
the resorbed components of the primary cilium, the mother
centriole retains a large part of its distal and subdistal
appendages (Breslow and Holland, 2019; Tischer et al., 2021)
and remains associated with a remanent of the ciliary membrane;
these three components—mother centriole, associated ciliary
membrane remnant, and duplicated centriole—undergo
endocytosis prior to this centrosome becoming a mitotic
spindle pole (Figure 1) (Paridaen et al., 2013). Following
cytokinesis, these additional components associated with the
mother centriole accelerate the re-establishment of
the—typically apical—primary cilium in the daughter cell
inheriting the mother centriole, which allows for a faster
responsiveness to stem cell fate-promoting factors in the
environment, notably the ventricular fluid (Anderson and
Stearns, 2009; Wang et al., 2009; Piotrowska-Nitsche and
Caspary, 2012; Paridaen et al., 2013).

In the non-aRGC daughter of an asymmetric aRGC division,
which typically is a BP, from the very beginning of neurogenesis,
the re-establishment of the primary cilium shows a key cell
biological difference when compared to the re-establishment of
the apical primary cilium in the aRGC daughter. In these
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newborn BPs, instead of generating an apical primary cilium, the
inherited centrosome generates a basolateral primary cilium, very
close (but basal to) to the apical AJ belt (Figure 1) (Wilsch-
Bräuninger et al., 2012). This basolateral positioning of the
primary cilium is the first observed cell biological indicator of
BP delamination, and is likely to prevent this cilium from
receiving macromolecular signals from the ventricular lumen,
which do not cross the AJ belt. The genetic programs that
specifically regulate the basolateral positioning of the primary
cilium have not yet been elucidated and therefore remain an open
field for future research.

Recent studies have shown an emerging role of centrosome-
associated proteins in the delamination of BPs (see below) by
regulating the interaction between the cytoskeleton and AJs,
which eventually affects the stability of the AJs. For example,
in BP-genic APs and newborn BPs, the AT-hook protein AKNA
localizes to subdistal appendages on the mother centriole. By
influencing the actin re-modeling and AJ stabilization, AKNA
regulates the apical constriction and the delamination of the
newborn BP (Camargo Ortega et al., 2019). Similar to AKNA,
another centriolar protein, Talpid3, which localizes to the distal
end of the mother centriole (Yin et al., 2009; Kobayashi et al.,
2014;Wang et al., 2020), has been shown to maintain the integrity
of the AJ by modulating microtubule stability (Wang et al., 2020).

3.4 Adherens Junctions
As mentioned above, aRGCs, the cells that directly or indirectly
give rise to all the projection neurons of the neocortex, maintain
an apicobasal polarity throughout cortical development. This
apicobasal polarity of aRGCs is crucial for proper cortical
development, as it has a direct influence on aRGC
morphology, architecture of the ventricular surface, aRGC size,
mode of aRGC division, and radial BP migration (Chenn and
Walsh, 2002; Machon et al., 2003; Woodhead et al., 2006; Stocker
and Chenn, 2015; Veeraval et al., 2020). The apical belt of AJs, the
cadherin-based cell–cell adhesion complexes, demarcates the
border between the lateral and apical plasma membrane and is
a key player in maintaining the apicobasal polarity of the aRGCs.
This is so because aRGCs lose functional tight junctions during
neural tube closure (Aaku-Saraste et al., 1996) and therefore rely
solely on the AJ belt to maintain their polarity and tissue
architecture. Mutations in key junctional proteins, leading to a
failure of AJ assembly, have pleotropic effects, leading to loss of
aRGC polarity (Lien et al., 2006; Kadowaki et al., 2007; Kim et al.,
2010; Katayama et al., 2011; Cappello et al., 2012; Yamamoto
et al., 2013; Gil-Sanz et al., 2014; Taverna et al., 2014; Schmid
et al., 2014; O’leary et al., 2017; Rakotomamonjy et al., 2017).

Interactions between polarity proteins and AJ components
facilitates AJ assembly. Thus, Lgl1 directly binds to and promotes
the internalization of N-cadherin (Jossin et al., 2017). The Par3
protein, which recruits Par6, aPKC and Cdc42 to form the Par3/
Par6/aPKC/Cdc42 polarity complex is localized to the apical cell
cortex (Manabe et al., 2002; Kosodo et al., 2004; Cappello et al.,
2006; Costa et al., 2008). aPKC phosphorylates and deactivates
Lgl1 and excludes the Lgl/Dlg/Scribble polarity complex from the
apical cell cortex, and therefore this complex gets restricted to the
apical-most region of the lateral membrane, promoting

internalization of N-cadherin at this lateral membrane
domain. aPKC-mediated phosphorylation of Lgl1 also inhibits
the N-cadherin-Lgl1 interaction (Jossin et al., 2017), and
therefore N-cadherin accumulation and AJ formation gets
restricted to the basolateral-apical boundary.

AJs influence well-known cell fate determination signals and
vice versa. Thus, Notch, a key stem cell determinant, associates
with the cadherin complex and is localized to AJs. Conversely, AJ
assembly has been shown to be required for Notch activation (Del
Bene et al., 2008; Bultje et al., 2009; Ohata et al., 2011;
Hatakeyama et al., 2014). Numb, a known inhibitor of Notch
signaling (Frise et al., 1996; Spana and Doe, 1996; Rasin et al.,
2007), also directly interacts with cadherins, is localized to
cadherin-positive recycling endocytic vesicles at AJs, and is
required for the maintenance of AJs (Rasin et al., 2007).

Recently, the AJ component Afadin has been shown to have a
role in mitotic spindle orientation. Afadin deletion was shown to
increase oblique aRGC divisions, which subsequently increased
the level of BPs (Rakotomamonjy et al., 2017). Further support
for Afadin’s role in mitotic spindle orientation was reported in
other epithelial systems (HeLa cells and human colorectal
adenocarcinoma cell line Caco-2), where binding of Afadin to
F-actin and LGN has been shown to promote symmetric
proliferative divisions (Carminati et al., 2016).

3.5 Cell Delamination
Delamination is the process by which a cell, typically a newborn
BP, loses its apical plasma membrane and its contact with the AJ
belt and retracts its apical endfoot. BP delamination is therefore
the first step in, and a requirement for, the migration of BPs to the
SVZ. Since the generation of BPs has an immense influence on
cortical expansion, BP delamination is an extremely important,
and—mechanistically and temporally—tightly regulated, cell
biological event in the developing neocortex.

Dynamic changes in the microtubule–actin–AJ configuration
at the apical endfoot, (constriction of the AJ belt, downregulation
of cadherin expression, etc.) are key events associated with
delamination, which are mediated by transcriptional
suppression of AJ-related components and by other
posttranscriptional cascades to regulate cell adhesion and
cytoskeletal architecture.

Upon asymmetric aRGC division, depending on the mitotic
spindle and hence cleavage plane orientation (please see
mitotic spindle), the daughter cell destined to delaminate,
typically a newborn BP, may be born with or without
inherited AJs and with or without apical domain. If a
newborn, not yet delaminated BP has inherited AJs, the AJ
components are actively suppressed to disassemble the AJs
prior to delamination. Loss of cadherin, a crucial component
of AJs, has been shown enhance cell delamination, increasing
the production of both bIPs and bRGCs (Itoh et al., 2013;
Martinez-Martinez et al., 2016). Moreover, the daughter cell
inheriting less of the apical membrane and less of the AJ
components experiences a downregulation of the Notch
signaling, which leads to the stable expression of proneural
genes like Ngn2 (Vaid and Huttner, 2020). Ngn2 promotes the
expression of insulinoma-associated 1 (Insm1), Scratch 1 and
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Scratch 2, all members of the SNAG family (Vaid and Huttner,
2020). Insm1 has recently been shown to promote the
expression of Robo2, a transmembrane receptor of the
ROBO family, and to down-regulate the expression of
Plekha7, an AJ belt-specific protein, causing the AJs to
disassemble (Farkas et al., 2008; Tavano et al., 2018; Vaid
and Huttner, 2020).

If a BP is born with apical plasma membrane, its delamination
not only involves getting out of the AJ belt, but also getting rid of
apical plasma membrane. This can be achieved either by an
abscission of the apical endfoot, where the apical process is
constricted in an actomyosin-dependent manner and gets
pinched off, or by endocytosis of apical plasma membrane
followed by its degradation (Das and Storey, 2014).

As discussed above, centrosome-associated proteins, by
modulating microtubule and actin stability, also influence AJ
stabilization and therefore regulate delamination (Camargo
Ortega et al., 2019; Wang et al., 2020). Recently, the
microtubule-associated protein Lzts1 has been shown to
inhibit microtubule assembly and to activate the actomyosin
system at the apical endfoot of newborn BPs, and hence
functions in BP delamination by altering the organization of
the apical AJ belt (Kawaue et al., 2019).

3.6 Cell Cycle Parameters
BPs generated during neurogenesis in the embryonic mouse
neocortex have been shown to have a specific increase in the
length of the G1 phase as compared to the aRGCs they are
derived from (Calegari et al., 2005; Lange et al., 2009; Arai

et al., 2011). In fact, increasing the length of the cell cycle of
NECs is sufficient to increase the appearance of neuronally
committed progenitors and to induce premature neurogenesis
(Calegari and Huttner, 2003). Comparison of the cell cycle
parameters of aRGCs undergoing symmetric proliferative
divisions vs. aRGCs undergoing asymmetric BP-genic
divisions revealed a substantially longer S-phase in the
former aRGC subpopulation (Arai et al., 2011). This
suggests that aRGCs undergoing divisions to expand their
pool size invest more time into the quality control of the
replicated DNA.

Not only cell cycle parameters of APs in interphase, but also of
APs in mitosis have been observed to differ between proliferating
and BP-genic APs. Specifically, it was found that prometaphase
plus metaphase is longer in proliferating than BP-genic APs in
embryonic mouse neocortex, with the other phases of mitosis
(prophase, anaphase and telophase) showing no significant
difference between these two AP subpopulations (Mora-
Bermudez et al., 2016).

A comparison of M-phase length of APs in embryonic mouse
neocortex, chimpanzee cerebral organoids and fetal human
neocortex revealed that the length of AP M-phase increases
from mouse to chimpanzee to human (Mora-Bermudez et al.,
2016). Intriguingly, among the primates, the M-phase length
difference reflected the specific lengthening by ≈50% of
metaphase in human APs when compared to chimpanzee or
orangutan; interestingly, this metaphase lengthening was only
observed at an early stage of cortical development (Mora-
Bermudez et al., 2016).

FIGURE 1 | Cell biological features of apical progenitors and their various modes of division.
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Taken together, these cell cycle parameter analyses show that
although the BP-genic APs in embryonic mouse neocortex
increase their cell cycle length, specifically the length of G1,
compared to proliferating APs, they spend significantly less
time in S-phase and in prometaphase-metaphase, the phases
where quality control of DNA replication and the preparation
for accurate chromosome segregation, respectively, take place.
These findings imply that with regard to neurogenesis in the
developing neocortex, the accuracy/fidelity of these processes is
ensured at an early step, when aRGCs expand their pool size via
symmetric proliferative divisions. Among the hominids, the
specific increase in the metaphase length of mitotic APs in
human compared to non-human great apes raises the
intriguing possibility that the fidelity of chromosome
segregation during the expansion phase of APs in the
developing neocortex improved during human evolution.

4 CONCLUDING REMARKS AND FUTURE
DIRECTIONS

In this review, we have addressed cell biological features of the
neural stem and progenitor cells in the developing neocortex. One
focus has been how specific cell biological events regulate
progenitor cell divisions and daughter cell fate. The canonical
view of mitotic spindle and cleavage plane orientation being key
determinants of aRGC daughter cell fate has evolved in light of
studies showing that the relationship between mitotic spindle and

cleavage orientation on the one hand and symmetric vs.
asymmetric inheritance of apical and basal structures and
daughter cell fate on the other hand is more complex than
previously thought.

It is now well established that bRGCs, like the other type of BP,
the bIPs, originate from aRGCs. However, in contrast to aRGCs,
bRGCs show a high diversity in their morphotypes, which
impacts their proliferative capacity (Kalebic et al., 2019). Since
bRGCs have a key role in the evolutionary expansion of the
neocortex, an understanding of the mechanism(s) underlying the
generation of this high morphological diversity is very important.
Understanding how these bRGC morphotypes evolved requires a
more refined investigation of the dynamics of the radial processes
in bRGCs and compare them to those in aRGCs.

Lastly, among the features that impact the expansion phase of
aRGCs, changes in cell cycle parameters, specifically in the length
of S-phase and of metaphase, are emerging as important
determinants. This suggests that the underlying genomic
changes allowing a tighter control over the quality of DNA
replication and the fidelity of chromosome segregation
provided advantages for neocortex expansion in the course of
primate evolution.
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