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INTRODUCTION 

Candida species are considered as one of  the most 
important causes of  human infections.[1-3] Candidiasis 

range from mild infection such as onychomycosis or 
perlish to potentially fatal systemic candidiasis. Among the 
causative agents of  bloodstream infections, Candida ranks 
fourth in the United States and seventh in Europe.[4,5] Until 
recently, Candida albicans was, by far, the predominant 
species in most of  the countries, causing up to two-thirds 
of  all cases of  invasive candidiasis. However, other species 
of  Candida including Candida dubliniensis and Candida 
glabrata have gained more attention nowadays due to 
rapid development of  resistance to antifungal drugs.[6] 

Amphotericin B, a polyene fungicidal agent, has been the 
standard treatment for candidal infections for decades, 
but the toxicity of  its conventional form and the costs 
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of  its lipid forms limit its use.[7] More recently, azole 
antifungal compounds, with lower cytotoxicity and perfect 
efficacies, have emerged as the principal drugs used in 
treatment of  candidal infections.[8] However, prolonged 
use of  azoles has led to the development of  drug 
resistance in C. albicans and other species.[6,9-13] Among 
the factors contributing to development of  resistance 
to azoles, the selection of  intrinsically less susceptible 
organisms, such as C. glabrata and Candida krusei, and 
the acquisition of  resistance by previously susceptible 
strains of  C. albicans following long-term azoles exposure 
have been documented.[12,13] To manage the patients with 
candidiasis, antifungal susceptibility testing has become 
an important step in guiding physicians in the selection of  
proper antifungal therapy. Among antifungal susceptibility 
tests, disk diffusion has served as rapid, simple and cost-
effective method for screening the susceptibility pattern 
of  the yeasts. To standardize the disk diffusion test, 
CLSI subcommittee on antifungal susceptibility tests 
has developed recommendations in M44-A document.
[14] In the present study, we determined the susceptibility 
profiles of  clinically isolates of  Candida species against 
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four antifungal drugs, including amphotericin B (AMP), 
ketoconazole (KET), fluconazole (FLU) and itraconazole 
(ITR). 

MATERIALS AND METHODS

Isolation and identification of  the Candida isolates

The study was conducted on a total of  206 clinical isolates 
of  Candida. Samples were collected from two laboratories 
in Shiraz and Esfahan, Iran, between January 2009 and 
November 2010. Isolates were from different sites of  
the body including oral cavity (n=118, 57.6%), blood 
(n=64, 30.7%), genital tract (n=17, 8.3%) and respiratory 
tract (n=7, 3.4%). The predisposing factors were using 
intravenous catheters and antibiotic administration (n=36, 
17.5%), malignancy and organ transplantation (n=11, 
5.3%), pulmonary diseases (n=7, 3.4%), having denture 
(n=120, 59.3%), vaginitis (n=16, 7.8%), surgery (n=9, 4.4%) 
and others (n=9, 4.4%). 

The isolates were identified by physiological methods 
such as chlamydoconidia formation in corn meal agar, 
germ tube production in the serum and also molecular 
methods, PCR-RFLP, as originally described by 
Mirhendi et al.[15,16] Briefly, genomic DNA was extracted 
and purified using glass bead.[17] A set of  universal 
primers (ITS1, 5-TCCGTAGGTGAACCTGCGG and 
ITS4, 5-TCCTCCGCTTATTGATATGC) (Metabion 
International, Martinsried, Germany), were used to 
allow the amplification of  target ITS1-5.8s-ITS2 
ribosomal DNA. PCR amplification was carried out in 
a final volume of  50 µl. Each reaction contained 1 µl 
of  template DNA, 0.5 µM of  each primer, 0.20 mM of  
each deoxynucleoside triphosphate (dNTPs), 5 µl of  
10× PCR buffer, and 1.25 U of  Taq polymerase (Roche 
Molecular Biochemicals, Mannheim, Germany). An initial 
denaturation step at 94°C for 5 min was followed by 30 
cycles of  denaturation at 94°C for 30 s, annealing at 56°C 
for 45 s, and extension at 72°C for 1 min, with a final 
extension step of  72°C for 7 min. 

Amplified PCR products were digested with MspI 
restriction endonuclease, to achieve the best species-
specific pattern. Moreover, C. dubliniensis was differentiated 
from C. albicans by using additional enzyme (B1nI (AvrII)). 
Digestion was performed by incubating a 21.5µl of  aliquot 

of  PCR product with 10U of  the enzyme in a final reaction 
volume of  25 µl at 37°C for 2.5 h. Restriction fragments 
were separated by 2% agarose gel electrophoresis in TBE 
buffer for approximately 1 h at 100V and stained with 
ethidium bromide.

Susceptibility testing

The Neo-Sensitabs tablet assay was performed according 
to the manufacturer’s instructions (Neo-Sensitabs user’s 
guide; Rosco Diagnostica, Taastrup, Denmark) and M44-A 
guidelines.[14] Briefly, the isolated Candida spp. were cultured 
on Sabouraud Dextrose Agar at 35°C for 24h. Then, the 
yeasts were suspended in 5 mL of  sterile physiological 
serum and thoroughly vortexed to achieve a smooth 
suspension. The optical density (OD) of  the suspensions 
was adjusted to 0.08 to 0.1 at a wavelength of  625 nm to 
yield turbidity equal to 0.5 McFarland standards. A sterile 
cotton swab moistened with the inoculums suspension was 
used and applied to a 90-mm diameter plate, containing 
Mueller-Hinton agar supplemented with 2% glucose 
(to  support the growth) and 0.5 μg/ml methylene blue (to 
improve the zone edge definition). The plates were allowed 
to dry for 3-10 minutes. To determine the antifungal 
susceptibility patterns of  the isolates, a Neo-Sensitabs disk 
of  each antifungal drugs (Rosco Diagnostica), including 
FLU (25 μg/disk), amphotericin B (10 μg/disk), ITR 
(8  μg/disk) and ketoconazole (15 μg/disk) was dispensed 
onto the inoculated plates. Zones of  inhibition around the 
disk were measured following incubation of  the plates for 
18-24 hours at 35-37°C. When insufficient growth was 
encountered at the 24-hour reading, the plates were re-
evaluated after a further 24 hours. The susceptibility of  
Candida spp. was evaluated based on the zone interpretive 
criteria of  the manufacturer (Rosco Diagnostica). Quality 
control was censured by testing the Neo-Sensitabs 
user’s guide and CLSI recommended control strains C. 
parapsilosis ATCC 22019 (AMP:24-28mm, KET: 30-33mm, 
ITR:23-26mm, FLU: 27-30mm) and C. krusei ATCC 6258 
(AMP:19-22mm, KET: 22-24mm, ITR:17-20mm, FLU: 
9-12mm).[14] All control strains were included in each series 
of  tests. In the case of  the presence of  resistance colonies 
within the inhibition zone around the azoles disk, they were 
isolated and sub-cultured in new plates and rechecked by 
disk diffusion method. These yeasts were considered as 
a resistant mutant so called petite isolate when they were 
grown completely around the disks.

RESULTS

The study was conducted on a total of  206 yeast isolates 
including 93 (45.1%) C. albicans, 42 (20.4%) C. glabrata, 26 
(12.6%) C. parapsilosis, 25 (12.1%) C. tropicalis, 13 (6.3%) C. 
dubliniensis, 3 (1.5%) C. krusei, 2 (1%) C. keyfer, and a species 
of  each of  C. lypolitica (0.5%) and C. guilliermondii (0.5%).

Table 1 summarizes the interruptive data of  the 206 Candida 
isolates based on their in vitro susceptibility to the studied 
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antifungal drugs. Of  the whole isolates, 158 (76.7%) were 
susceptible to KET, 36 (17.5%) were dose-dependent 
susceptible, and the remaining isolates were found to be 
resistant to the aforementioned drugs. The highest rate of  
resistance to KET were seen in C. glabrata (16.6%) and C. 
albicans (3.2%). The two ITR-resistant species (1%) were 
C. glabrata which consist 4% of  this species. Fluconazole 
susceptible and intermediate were seen in 96.6% and 3.4% 
of  the Candida isolates, respectively. All the evaluated 
Candida species were susceptible to AMP. A total of  19 
(9.2%) yeast isolates showed petite phenomenon including 
11 C. glabrata, 3 C. albicans, 2 C. dubliniensis and one isolate 
of  each of  C. krusei and C. parapsilosis. 

DISCUSSION

The petite mutants produce small colonies around the 
inhibition zone of  azole disks. These petite positive 
phenomenon have been frequently reported in C.glabrata[18-20] 
and sometimes in other yeasts species such as C. albicans[21] 

and Saccharomyces cervisiae.[22] These petite mutants resulted 
from the loss of  mitochondrial DNA or mutations in 
genomic DNA[18,23] which impair respiratory activity, and 
exhibited decreased susceptibility to antifungal drugs.[1,19,24] 

Despite in vitro induction of  petite mutation by azole 
drugs, ethidium bromide or glycerol, these mutants have 
rarely been reported in clinical samples of  patients who 
are undergoing antifungal therapies or prophylaxes.[24] In 
the present study, we documented the petite phenomenon 
in almost one tenth of  clinically isolated Candida species. 
This might be resulted from excessive and uncontrolled 
use of  azole derivatives drugs in the past decade. Brun 
et al.,[24] demonstrated that all of  the mutant colonies 
are resistant to the tested azoles. In our study, C. glabrata 
showed the highest rate of  intermediate susceptibility to 
the examined azoles and this is consistent with previous 
studies.[25,26] Furthermore, this species includes more than 
half  of  the isolated petite mutants. We also reported two 
petite phenomenons in two C. dubliniensis for the first time. 

In Iran the rate of  resistance to FLU among Candida 
species have been reported to be from null to 15%.[27-29] In 
our study no FLU-resistant Candida spp. was found within 
the examined isolates and this is in keeping with findings 
of  Khosravi et al. study.[30] Although among the Candida 
spp., C. glabrata exhibited the highest rate of  resistance to 
FLU,[25] only 4 (9.5%) of  the isolated C. glabrata showed 
intermediate susceptibility to this azole and the rest were 
all susceptible. In spite of  high rate of  resistance to FLU 
among C. krusei,[12] all of  the tested strains of  this species 
were susceptible to FLU and this has been previously 
shown by Munoz et al. as well.[31] 

Amphotericin B, one of  the most potent and rapidly 
acting antifungal agents, is considered as the first line of  
treatment for many systemic mycoses. Although it has 
been reported that Candida lusitaniae tends to be absolutely 
resistant to AMP, as happen in about 7% of  clinical isolates 
of  C. albicans[32] no AMP resistant was seen among the 
evaluated isolates in our study. This again is consistent with 
findings of  Khosravi et  al. study.[30] In the present study a 
mutant colony was found within the inhibition zone of  
AMP of  a C. albicans isolate that showed completely to be 
resistant to AMP following isolation and testing against 
AMP. A study conducted by Badiee et al. revealed that 12 
out of  142 isolates of  C. albicans were resistant to ITR.[28] 

As has been shown in previous studies,[26] in the current 
study 1% of  Candida species (2  isolates of  C. glabrata) 
were resistant to ITR and 19.9% were dose-dependent 
susceptible although in one study all of  the Candida have 
been susceptible to ITR.[30]
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Table 1: In vitro antifungal activities of 
ketoconazole, itraconazole, fluconazole and 
amphotericin B against Candida species by 
using CLSI disk diffusion assay
Species (%) Antifungal Drugs

Ketoconazole Itraconazole Fluconazole Amphotericin B

S
I
R

S
I
R

S
I
R

S
I
R

C. albicans (93) 74 (79.6)
16 (17.2)

3 (3.2)

80 (86)
13 (14.0)

0 (0)

92 (46.5)
0 (0)
0 (0)

93 (100)
0 (0)
0 (0)

C. dubliniensis (13) 13 (100)
0 (0)
0 (0)

12 (92.3)
1 (7.7)
0 (0)

13 (6.6)
0 (0)
0 (0)

13 (100)
0 (0)
0 (0)

C. glabrata (42) 21 (50)
14 (33.3)
7 (16.7)

25 (59.5)
15 (35.7)
2 (4.8)

38 (90.5)
4 (9.5)
0 (0)

42 (100)
0 (0)
0 (0)

C. tropicalis (25) 20 (80)
4 (16)
1 (4.0)

16 (64)
9 (36.0)

0 (0)

24 (96.0)
1 (4.0)
0 (0)

25 (100)
0 (0)
0 (0)

C. parapsilosis (26) 23 (88.5)
2 (7.7)
1 (3.8)

24 (92.3)
2 (7.7)
0 (0)

25 (96.2)
1 (3.8)
0 (0)

26 (100)
0 (0)
0 (0)

C. krusei (3) 3 (100)
0 (0)
0 (0)

3 (100)
0 (0)
0 (0)

3 (100)
0 (0)
0 (0)

3 (100)
0 (0)
0 (0)

C.guilliermondii (1) 1 (100)
0 (0)
0 (0)

0 (100)
1 (100)

0 (0)

1 (100)
0 (0)
0 (0)

1 (100)
0 (0)
0 (0)

C. keyfer (2) 2 (100)
0 (0)
0 (0)

2 (100)
0 (0)
0 (0)

2 (100)
0 (0)
0 (0)

2 (100)
0 (0)
0 (0)

C. lipolytica (1) 1 (100)
0 (0)
0 (0)

1 (100)
0 (0)
0 (0)

0 (0)
1 (100)

0 (0)

1 (100)
0 (0)
0 (0)

Total (206) 158 (76.7)
36 (17.5)
12 (5.8)

163 (79.1)
41 (19.9)

2 (1)

198 (96.6)
7 (3.4)
0 (0)

205 (100)
0 (0)
0 (0)

S: susceptible; I: intermediate; R: resistant; Figures in parenthesis are in percentage
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CONCLUSIONS

In our study all of  the tested yeasts were susceptible to FLU 
and AMP. Among the examined azoles, a high resistance 
rate in the isolated yeasts was found with KET. In this 
paper we also reported the petite phenomenons in two 
isolates of  C. dubliniensis for the first time. Taken together, 
the high number of  petite mutations (9%) in the isolated 
yeasts should be seriously considered as this might be one 
of  the reasons of  antifungal therapy failure. 
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