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Abstract: The gut microbiota has been shown in recent years to be involved in the development
and severity of type 2 diabetes (T2D). The aim of the present study was to test the effect of a 2-
week functional food intervention on the gut microbiota composition in prediabetic individuals. A
randomized double-blind, cross-over trial was conducted on prediabetic subjects. Fifteen volunteers
were provided products made of: (i) 50% taro flour + 50% wheat flour; (ii) these products and the
probiotic L. plantarum IS-10506; or (iii) these products with beetroot adsorbed for a period of 2 weeks
with 2 weeks wash-out in between. Stool and blood samples were taken at each baseline and after
each of the interventions. The gut microbiota composition was evaluated by sequencing the V3–V4
region of the 16S rRNA gene and anthropometric measures were recorded. The total weight loss
over the entire period ranged from 0.5 to 11 kg. The next-generation sequencing showed a highly
personalized microbiota composition. In the principal coordinate analyses, the samples of each
individual clustered closer together than the samples of each treatment. For six individuals, the
samples clustered closely together, indicating a stable microbiota. For nine individuals, the microbiota
was less resilient and, depending on the intervention, the beta-diversity transiently differed greatly
only to return to the composition close to the baseline during the wash-out. The statistical analyses
showed that 202 of the total 304 taxa were significantly different between the participants. Only
Butyricimonas could be correlated with taro ingestion. The results of the study show that the highly
variable interindividual variation observed in the gut microbiota of the participants clouded any gut
microbiota modulation that might be present due to the functional food interventions.

Keywords: taro; probiotic; L. plantarum IS-10506; beetroot; gut microbiota; prediabetes

1. Introduction

The increase of type 2 diabetes (T2D) worldwide is occurring at a dramatic speed.
By the year 2030, of a projected world population of 8.5 billion [1], 360 million people
are predicted to have T2D [2]. An increase in energy intake and a decrease in energy
expenditure are the leading commonly accepted causes of obesity associated with T2D and
also metabolic syndrome and cardiovascular disease. However, the gut microbiota has
recently also been shown to play an important role [3–6]. Both the composition and/or the
activity of the gut microbiota can be changed using functional food ingredients. The vital
role that food plays in T2D, both for prevention and treatment, needs proper attention. For
instance, of particular importance is the development of dietary components that positively
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influence postprandial glycaemia and because of the lowered blood glucose, may have the
potential to reduce the impact of T2D. In addition, the effects of food ingredients on T2D
through the modulation of the composition and/or activity of the gut microbiota need to
be considered.

Indonesia is particularly rich in plant biodiversity. This includes a variety of local
tubers. Despite widespread use in the past and their anecdotal and potential functional
properties, these tubers are currently underutilized. One of these interesting tubers is
Cocoyam or taro, which belongs to the monocotyledonous family Araceae (the aroids) [7–9].
The taro tuber was an important ethnic root crop throughout Asia and was also related to
the culture of regions. Hence, taro was considered to be very important for community life
in the past [10]. As it adapts well to different agro-climatic conditions, it was used as a staple
crop in various parts of the humid tropics and sub-tropics [7–9]. Kreike et al. [11] reported
that Indonesia has the highest taro diversity in the world. Taro tubers are cultivated in areas
in Borneo, Java, Sumatra, and Sulawesi [12] although nowadays the cultivation is widely
naturalized, being also available in Africa and the Americas. Taro was traditionally used as
an alternative carbohydrate source to reduce the dependence on rice. Recently, we have
shown in several rat models of diabetes that taro, or its purified starch, has an effect on
the gut microbiota composition [13,14]. Moreover, using a sophisticated, dynamic in vitro
model of the upper gastrointestinal tract, we have shown that a large portion of taro starch
is resistant to digestion and can reach the colon—and its associated gut microbiota—as
resistant starch [15,16].

Probiotics are defined as “life microorganisms, which when administered in adequate
amounts, have a beneficial effect on the host” [17]. Probiotic strains, amongst which are
members from the family Lactobacillaceae and the genus Enterococcus, have been isolated
from dadih, a traditional fermented buffalo milk produced in West Sumatra [18]. Previous
research has shown that dadih consumption reduces adiposity, weight gain, and adiposity
inflammation in high fat-induced obese rats [19]. The microbes present in dadih, amongst
which is the probiotic Lactiplantibacillus plantarum (L.; formerly Lactobacillus plantarum)
strain IS-10506 [18,20–22], may contribute to this beneficial effect.

Beet juice has been shown to have a high total antioxidant capacity and total polyphe-
nol content. This is believed to be caused because beet juice is rich in bioactive compounds
such as phenolic acids, flavonoids, and betalains [23,24]. Polyphenols are a class of com-
pounds including flavonoids, phenolic acids, proanthocyanidins, and tannins amongst
others. These bioactives have been suggested to be able to modify postprandial (hy-
per)glycaemia [25,26] by several mechanisms. These include inhibiting carbohydrate
digestion, reducing glucose absorption in the intestines, the stimulation of insulin release
from pancreatic β-cells, the modulation of hepatic glucose output, the activation of in-
sulin receptors, and/or the modulation of glucose uptake in insulin-sensitive cells [27,28].
As polyphenols are not well-absorbed in the small intestine, partly because they can be
glycosylated, they can reach the colon where they have the potential to modulate the
composition and/or activity of the gut microbiota. Therefore, beet juice, with its reported
content of polyphenols, is an interesting food model to investigate any influence on the
glycemic response either by direct mechanisms such as the inhibition of glucose uptake or
by indirect action affecting insulin sensitivity, whether or not through the modulation of
the composition and/or activity of the gut microbiota.

The aim of the current study was to study the effect of taro starch alone or in combina-
tion with the probiotic L. plantarum IS-10506 or beetroot on the gut microbiota of prediabetic
Indonesian individuals during weight loss.

2. Materials and Methods
2.1. Study Design and Population

This study was a community-based, double-blind, randomized controlled cross-over
clinical trial involving 15 subjects with a diagnosis of prediabetes or early stage type 2
diabetes with an age range of 33–62 years comprising 6 men and 9 women (Table 1).
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In the early stages of the research, 136 volunteers were recruited and selected based on
the inclusion criteria as follows: fasting blood glucose of 100–125 mg/dL; random blood
glucose of 140–199 mg/dL; BMI 25–27 kg/m2; and subjects who did not consume antibiotics
and probiotics two weeks before the start of the intervention. The subjects were willing to
undergo a weight loss program and communicate intensively with the intervention staff.
They consumed fruit, vegetables, snacks, and drinks 3 times a day, which was provided
for 14 days in each of the 4 treatment arms. People with hyperlipidemia, who consumed
metformin, expecting and lactating mothers and women with hormonal constipation,
as well as individuals with an established history of cardiovascular or other metabolic,
hormonal, liver, and kidney diseases were excluded.

Sample size calculations on the basis of changes in the gut microbiota composition are
difficult because there are conflicting data reported with respect to the different measures.
The sample size calculation in this study was based on the Bacteroidetes to Firmicutes ratio,
which in several prior studies (e.g., [29]) has been shown to correlate with obesity but not
in others. G*Power 3.9.1.7 [30] was used to calculate the sample size based on an effect
size dz of 0.1, an α error probability of 0.05, a power of 0.95, and a mean difference of 0.1
with an SD of 0.01. That led to a sample size of 10. We decided to include 18 volunteers,
expecting a few drop-outs.

Out of 136 subjects, 18 subjects were selected, of which 15 completed the study. The
protocol was approved by the Research Ethics Committee of the University of Indonesia
(dossier No.KET-329/UN2.F1/ETIK/PPM.00.02/2019) and written informed consent was
obtained from the subjects. The work described was carried out in accordance with The
Code of Ethics of the World Medical Association (Declaration of Helsinki) for experiments
involving humans. Informed consent was obtained from the individuals prior to the start
of the run-in period.

Stool and blood samples were collected before and after two-week interventions for
each type of treatment (control (run-in), taro, taro and probiotic, taro and beet juice in
that order). Treatments were provided for a two-week period with a two-week wash-out
period in between each treatment. The total study duration was 14 weeks. Apart from
fruit and vegetables, the (starch-containing) foods provided were in the form of noodles,
bread, flakes, biscuits, cookies, and chocolate drinks with the main ingredient being 50%
taro flour and 50% wheat flour for the three treatment periods and 100% wheat flour for the
control period. During the taro + probiotic period, the volunteers also received 108 CFU of
the probiotic L. plantarum IS-10506 twice daily in the form of microencapsulated cells [18].
During the taro + beetroot period, 6 g of beetroot powder was mixed with the chocolate
drinks. During the wash-out period, the subjects reverted to their habitual diet but with
the recommendations by the dieticians in the weight loss program on calorie restriction.
The subjects recorded the foods they consumed in a food diary.

The study describing the changes in the blood parameters is in preparation. In this
paper, we have focused on the microbiota composition. Microbiota analyses were carried
out to determine the gut microbiota profiles associated with the 14-day intervention after
each treatment by taking stool samples prior to the start of each intervention (4 baseline
samples) and at the end of the 4 intervention periods, providing 8 samples in total.

2.2. DNA Isolation and Sequencing of the V3–V4 Region of the 16S rRNA Gene

DNA isolation and sequencing of the barcoded amplicons of the V3–V4 region of
the 16S rRNA gene were performed according to the established protocols provided by
Illumina (Illumina, Eindhoven, The Netherlands) as previously described by us [13,14].
The sequencing was performed using the Illumina MiSeq system (San Diego, CA, USA).
QIIME 2 software was used for the analyses of the raw sequences. The sequences were
classified using Greengenes (version 13.8) as a reference 16S rRNA gene database [13,14].
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Table 1. Subject characteristics and weight loss in each individual period as well as the complete intervention study.

Code Sex Age Weight Control
Period

Weight
Difference

Control
Taro Period

Weight
Difference

Taro
Taro + Probiotic Period

Weight
Difference

Taro +
Probiotic

Taro + Beetroot Period

Weight
Difference

Taro +
Beetroot

Total
Weight

Loss

Da F 60 66 63.5 −2.5 65 63 −2 64 61 −3 64 62 −2 −4

Be F 47 80 75 −5 76 72 −4 72.5 69 −3.5 71 69 −2 −11

Er F 53 77 72 −5 73 67 −6 69 68 −1 69.5 66 −3.5 −11

Pa M 41 86 82 −4 85 83 −2 82.5 82 −0.5 83 82 −1 −4

We F 48 61 57 −4 59 57 −2 58 57 −1 59 57.5 −1.5 −3.5

Sa F 45 80 76 −4 76 73 −3 76 72 −4 76 75 −1 −5

Ju M 44 101 94 −7 101 100 −1 103.5 97.5 −6 101 98 −3 −3

Ro F 43 60 55 −5 56.5 55.5 −1 55.5 55 −0.5 55 55.5 0.5 −4.5

An F 44 65 63 −2 65 62 −3 63.5 63 −0.5 63 60 −3 −5

De F 48 58 53 −5 55 53 −2 54 52 −2 54 51 −3 −7

Fr F 36 78 76 −2 78 76 −2 79 77 −2 79 74 −5 −4

Pr M 62 67 67 0 67 66.5 −0.5 65 64 −1 65 64 −1 −3

Yu M 41 72.5 72.5 0 72.5 71.5 −1 73 70.5 −2.5 72 72 0 −0.5

Ro M 33 68 66 −2 67 65.5 −1.5 66 65 −1 66 64 −2 −4

Lu M 61 76.5 76.5 0 76.5 75.5 −1 76.5 76 −0.5 76 75.5 −0.5 −1
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2.3. Statistical Analyses

Correlations between the amplified sequence variants (ASVs) and the different cat-
egorical variables such as sex, sampling site, or intervention were investigated using the
non-parametric Kruskal–Wallis test corrected with the Benjamini–Hochberg false discovery
rate (FDR) for multiple comparisons by using the software package R (3.5.3) (R Core Team,
http://www.R-project.org/; accessed on 11 November 2021) in RStudio. Non-parametric
Spearman’s rank-order correlations were obtained between the ASVs and continuous
variables such as age and weight. The q-values (adjusted p-values after the FDR) were
considered significantly different at a strict cut-off of q < 0.05.

3. Results

After screening, 18 participants were included, of which 15 individuals completed
the 4 interventions and were included in the gut microbiota analysis (Table 1). Based
on their plasma IL-6 concentrations, they showed a mild inflammation (manuscript in
preparation) as can be expected in overweight people. The HOMA-IR at the start of the
study was on average 6 with all individuals > 3.84 except one (manuscript in preparation).
Although different cut-offs have been defined for metabolic syndrome, in all cases a value
of ≥ 3.8 is considered to be indicative of metabolic syndrome [31]. Alongside their weight
loss program, the participants followed interventions with a 50:50 mix of taro/wheat flour
alone, or taro/wheat flour with the probiotic L. plantarum IS-10506, or taro/wheat flour with
beetroot adsorbed compared with wheat flour alone. The samples for the gut microbiota
analysis were taken at the start of each intervention (including the run-in period) and after
two weeks of each intervention and analyzed for the composition using the sequencing of
the amplicons of the 16S rRNA V3–V4 region.

Figure 1 shows the unweighted (Figure 1a) and weighted (Figure 1b) UniFrac β-
diversity. Figure 1a shows a strong individual microbiota composition for the different
participants. This large interindividual variation clouded any differences provided by
the intervention and only the genus Butyricimonas was significantly different (q = 0.046)
between the conditions with and without taro (alone, combined with the probiotic, or
beetroot; Figure 2; see Supplementary Figure S1 for the individual interventions). The
relative abundance of Butyricimonas was on average 0.26% in the full dataset with an
average of 0.19% in the baseline samples and an average of 0.39% in the taro samples.
Supplementary Figure S2 shows the relative abundance of the major taxa in the population.
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The strong interindividual variation was reflected in the fact that 202 of the total
304 operational taxonomic units (OTUs) were significantly different (q < 0.05) between the
individuals when tested with the Kruskal–Wallis analysis and Benjamini–Hochberg FDR
correction. Figure 3 shows the top hits (with the highly significant q-values in the legend).

The samples were from two different sampling sites (two universities). A total of 89
taxa were significantly different between the two sampling sites (not shown), mostly due
to the high interindividual differences (Figure 3). No correlations were found for sex, age,
or weight loss.

It is well-known and has recently been confirmed that the gut microbiota is highly
individual-specific [32]. This interindividual difference may also be the reason why a
dietary intervention may show an effect or not [33]. We studied the differences in β-
diversity between individuals (Figure 4a) in more detail and, when studying the first two
principal coordinate axes, we observed that the differences in β-diversity between the
samples were either large (usually the consequence of a single intervention; Figure 4b) or
very small (Figure 4c). The latter indicated a resilient gut microbiota that was not easily
prone to changes [34].

For the three individuals with the largest changes, the trajectory of the samples along
the first two axes of the unweighted UniFrac PCoA are provided in Figure 5. In one
individual (Be), the largest change was observed during the wash-out (W) period after
the run-in period (C). In this individual, every treatment led to relatively large changes
(in comparison with the other individuals). For the other two individuals (Da and Sa),
the large change in β-diversity was caused by the addition of the probiotic to the diet
whereas after the wash-out period, the microbiota composition was again similar to the
other samples. The other samples of these individuals clustered more closely together,
as seen for all samples for all individuals in Figure 4c. However, as can be observed in
Figure 5b,c, the direction of the change in these two individuals was the complete opposite.
No consistent changes between the two individuals were observed (not shown). In both
individuals, Lactobacillus (to which Lactiplantibacillus in the Greengenes database belongs)
increased by a factor of 1.5 (from 1.6% to 2.4% relative abundance (RA)) in individual Da
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and a factor of ~10 (from 1% to 9.6% RA) in individual Sa; this clearly was not reflected in
the change in β-diversity as these were in an opposite direction. Moreover, the increase in
Lactobacillus upon probiotic feeding was not consistent for other individuals, e.g., individual
An showed a large decrease from 12.1% to 0.3% after the taro + probiotic treatment. In
other individuals, there was no change in this taxa (e.g., 0% and 0% for individual Be (with
another trajectory during the probiotic treatment compared with Da and Sa; Figure 5a), 1%
and 1% for individual Er, and 22.1% and 20.7% for individual Ju, respectively).
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Figure 5. Trajectories of three individuals from Figure 4b with the largest changes. Individual Be
(a) with large changes during the wash-out (W) period after the run-in period (C); (b,c) individuals
Da and Sa, respectively, with large changes during the probiotic treatment. Samples are color-coded
as follows: black: run-in period and corresponding wash-out (all baseline datapoints are colored black
as well assuming that the microbiota went back to baseline after the wash-out); orange: taro treatment
and corresponding wash-out; green: taro + probiotic treatment and corresponding wash-out; red: taro
+ beetroot treatment. Arrows indicate the sequence of treatments and the trajectory of the β-diversity
changes. Axis 1 explains 18.9% and axis 2 8.5% of the variability between samples, respectively.

4. Discussion

As it has been shown that the microbiota is involved in health and disease, including
T2D [3–6], the modulation of the gut microbiota has gained enormous interest. The human
gut is believed to be colonized by 250 to more than 1000 bacterial species [35–37] but the
exact number of species in the digestive system or shared among individuals has not been
determined. Several studies have shown that the microbiota is individual-specific [36,38],
which may be a confounding factor in discovering the effects of (functional) food (in-
gredients) on the gut microbiota modulation. Researchers have been trying to define a
core microbiota [36,39,40], defined as a species present in most people; however, upon
increasing the population, the number of species carried by everybody reaches zero: in
one study, it was observed that 57 species were present in 90% of 124 individuals but only
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18 species were present in all 124 participants [36]. However, no species are shared when
several cohorts are combined (our own unpublished observations). Changes in the gut
microbiota occur quickly upon large changes in dietary intake such as changing from a
primarily animal-based diet to a primarily plant-based diet; Prevotella has been stimulated
with plant-based and Bacteroides with animal-based diets [41,42]. In a validated in vitro
model of the colon, we have previously shown that changes can be observed within a
period of 3 days [43] and even within 24 h [44].

The changes observed in the studies referred to above were induced by major changes
in the diet or by adding a non-digestible dietary component at a relatively high dose. In
the current study, 50% of wheat starch was replaced by taro starch and a probiotic or beet
juice were added. Although in rodent trials we have shown the effects of taro starch on
the rat microbiota [13,14,45], replacing 50% of the wheat starch with 50% of taro starch
in our human volunteers did not lead to large changes in the gut microbiota with only
Butyricimonas being affected. This was largely due to the high interindividual variation
of the microbiota in the current study whereas in our rat studies, all animals had a very
similar microbiota composition at the start of the trial. Several species of Butyricimonas
have been isolated from the human gut [46,47] and they have been shown to produce
butyrate. It has been frequently observed that butyrate is produced when starch is fed
to the gut microbiota [48,49]. Whether or not Butyricimonas is capable of fermenting taro
starch remains to be determined.

The effects of probiotics on the microbiota composition are also usually limited, as
reviewed by Sanders [50]. Nevertheless, despite this, probiotics may affect the gut mi-
crobiota activity [51,52]. Recently, a study feeding a Bacillus probiotic with a dipeptide
showed very few changes in the microbiota composition but increased the production of
butyrate [53]. It would be interesting to study the latter using a metabolite analysis and
meta-transcriptomics in future experiments.

Although the microbiota is considered to be generally stable during adulthood [54,55],
here we showed that for a few individuals the microbiota was more resilient to the imposed
interventions than for other individuals. Therefore, to study the usually small effects of
dietary components, it may be wise to stratify the volunteers with respect to the microbiota
composition. Alternatively, the composition of the microbiota at the baseline could lead to
a more personalized intervention strategy rather than attempting a compound that would
be ‘fit-for-all’.

A strong point of this study is that it was a cross-over study, which allowed for
a comparison of the microbiota within individuals. Despite this, the study has several
limitations. Apart from the functional food interventions, the volunteers were part of a
weight loss program and received advice from registered dieticians. However, because the
study was cross-over, any effects that may have been induced by the weight loss program
would be present in all the research arms. Given that we saw very few changes, it seems
logical to conclude that the weight loss program did not lead to major changes in the
composition of the gut microbiota. Apart from fasting blood glucose, the participants were
characterized on a number of other metabolic syndrome-related parameters. These will
be reported elsewhere. We have included IL-6 and HOMA-IR here to indicate that the
metabolism of the participants was indeed disturbed. Our study population contained a
greater number of female (n = 9) than male (n = 6) participants; it is believed that insulin-
resistant-related cardiometabolic disorders tend to be more common in males than females,
but in Indonesia, obesity and metabolic syndrome is more frequent in females [56,57].
Several studies have found a different microbiota based on sex [58] or age [59]. In our study
population, the sample size may have been too small to observe these differences.

5. Conclusions

The highly interindividual variability in the response of the gut microbiota of the
participating individuals in the study towards the effect of functional foods clouded the
gut microbiota modulation effects of these functional foods. Only Butyricimonas was shown
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to be different between the control and taro ingestion (alone, or with the probiotic, or
beetroot). The individuals could be divided into those with a more resilient microbiota and
those with a microbiota that was more prone to changes. This interindividual difference
in the microbiota compositional changes is a confounding factor in nutritional research
and perhaps we should endeavor to stratify individuals based on their baseline microbiota
composition in future research.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/nu14040781/s1, Figure S1: Difference in Butyricimonas between
4 baseline samples and the different intervention samples; Figure S2: Relative abundance of the top
25 taxa in the population. The remaining taxa are clustered under ‘Other’. A. Individual samples. B.
Average of all samples of each individual.
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