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Abstract: Most physiologic processes in the brain and related diseases involve more than one neuro-
transmitter system. Thus, elucidation of the interaction between different neurotransmitter systems
could allow for better therapeutic approaches to the treatments of related diseases. Dopaminergic
(DAergic) and cholinergic neurotransmitter system regulate various brain functions that include
cognition, movement, emotion, etc. This review focuses on the interaction between the brain DAer-
gic and cholinergic systems with respect to the pathogenesis and treatment of schizophrenia and
Parkinson’s disease (PD). We first discussed the selection of motor plans at the level of basal ganglia,
the major DAergic and cholinergic pathways in the brain, and the receptor subtypes involved in
the interaction between the two signaling systems. Next, the roles of each signaling system were
discussed in the context of the negative symptoms of schizophrenia, with a focus on the α7 nicotinic
cholinergic receptor and the dopamine D1 receptor in the prefrontal cortex. In addition, the roles of
the nicotinic and dopamine receptors were discussed in the context of regulation of striatal cholinergic
interneurons, which play crucial roles in the degeneration of nigrostriatal DAergic neurons and
the development of L-DOPA-induced dyskinesia in PD patients. Finally, we discussed the general
mechanisms of nicotine-induced protection of DAergic neurons.
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1. Introduction

Owing to the roles of the brain dopaminergic (DAergic) system in addiction, interac-
tions between the nicotinic cholinergic and DAergic systems have been extensively studied
with respect to nicotine addiction [1,2]. Application of nicotinic drugs or stimulation
of cholinergic projections into the ventral tegmental area (VTA) induces dopamine (DA)
release in the nucleus accumbens (NAc), which contributes to the addictive properties
of cigarette smoking [2]. Among the multiple subtypes of nicotinic cholinergic receptors
(nAChRs), α4β2* and α6β2* are the major subtypes involved in the attention-enhancing
and pathophysiology of nicotine addiction [3,4].

Involvement of specific DA receptor subtypes has also been reported in drug addiction.
For example, early nicotine exposure is accompanied by an increase in DA D3 receptor (D3R)
expression [5], and D3R antagonists have been reported to be effective for the treatment of
nicotine dependence [5,6]. In support of these observations, a recent study has shown the
functional interaction between α4β2 nAChR and D3R [7].

In addition to their roles in nicotine addiction, the brain DAergic and nicotinic cholin-
ergic systems are known to play important roles in the pathogenesis and management
of the symptoms related to schizophrenia and Parkinson’s disease (PD). For example,
dopamine and nicotinic receptors expressed in the prefrontal cortex are involved in the
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regulation of the negative symptoms of schizophrenia. In addition, L-DOPA-induced
dyskinesiasn (LID), which is evoked through persistent stimulation of dopamine receptors,
can be managed through activation of nicotinic receptors. This review focused on the
interaction between the two neurotransmitter systems with respect to the pathogenesis
and treatments of schizophrenia and PD.

1.1. DAergic Regulation of Motor Planning via Basal Ganglia

Control of motor function involves an intricate interplay between various brain re-
gions, including the dorsolateral prefrontal cortex (DL-PFC), secondary motor cortex,
primary motor cortex, and basal ganglia. The basal ganglia determine motor plans based
on glutamatergic commands from the secondary motor cortex and DAergic input from the
substantia nigra (SN).

As shown in Figure 1, the secondary motor cortex sends glutamatergic projections
to basal ganglia. Basal ganglia use direct and indirect pathways that employ GABAergic
medium spiny neurons (GABA-MSNs). GABA-MSNs originate from the putamen and
regulate specific regions of the thalamus that return excitatory feedback to the cortex via
glutamatergic neurons [8,9].
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Figure 1. Direct and indirect pathways in the basal ganglia. Two principal pathways in the basal ganglia are involved in the
selection of the motor plans. Excitatory pathways (glutamatergic) are shown in red, and inhibitory pathways (GABAergic)
are shown in black. (A) The direct pathway employs the disinhibitory (GABA to GABA) pathway that provides signals
from the putamen to the GPi/SNpr, leading to the activation of the thalamus that, in turn, stimulate the cortex. Through
these connections, the direct pathway intensifies the motor plan prepared by the cortex. (B) In contrast, the indirect pathway
employs the circuit composed of “inhibitory-stimulatory-inhibitory” connections to convert stimulatory corticostriatal
glutamatergic input into inhibitory signals to the thalamus. The indirect pathway begins at the putamen, goes through the
GPe, arrives at the STN, and then projects to the GPi/SNpr. The GPi/SNpr are connected to the thalamus, but the thalamic
sites connected to the indirect pathway are different from the sites used by the direct pathway. Through these connections,
the indirect pathway discourages motor plans other than those prepared by the cortex. GPi, globus pallidus internus; GPe,
globus pallidus externus; SNpc, substantia nigra pars compacta; SNpr, substantia nigra pars reticulata; STN, subthalamic
nucleus. Figures created with https://biorender.com/ (accessed on 4 March 2021).
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In the direct pathway (Figure 1A), the putamen gives rise to GABA-MSNs that project
to the globus pallidus internus (GPi) and SN pars reticulata (SNpr). These inhibitory
neurons, in turn, inhibit GABAergic neurons, which project from the GPi/SNpr to the
ventral anterior (VA) and ventrolateral (VL) nucleus of the thalamus. These successive
GABA neuronal connections functionally lead to disinhibition, resulting in the activation of
specific regions in the VA/VL of the thalamus. Regions of the thalamus that are stimulated
through the direct pathway project glutamatergic neurons to the specific regions of the
supplementary motor area (SMA) to give permission for the motor plans prepared by the
DL-PFC and SMA.

In the indirect pathway (Figure 1B), the putamen projects GABA-MSNs to the globus
pallidus externus (GPe), and the GPe projects GABAergic neurons to the subthalamic
nucleus (STN), resulting in the disinhibition of the STN. The STN projects glutamatergic
neurons to GPi/SNpr, which, in turn, project GABAergic neurons to the VA/VL of the
thalamus. Thus, the overall outcome of the indirect pathway is inhibitory. These GABAergic
neurons from the GPi/SNpr innervate regions of the VA/VL that are not stimulated by the
direct pathway, resulting in the selective activation of those regions that are responsible
for transmitting the motor plans prepared by the cortex. Finally, the thalamic regions
inhibited by the indirect pathway send attenuated glutamatergic signals to specific regions
of the secondary motor cortex. This enables the so-called ‘double confirmation’, in which
certain areas of the secondary motor cortex are selectively activated while nearby areas are
suppressed. Thus, the medium spiny neurons (MSNs) in the direct pathway are considered
the driving factor for movement facilitation under normal physiological conditions. In
contrast, the MSNs of the indirect pathway are thought to be inhibited during performing
purposeful movement but are more active during lack of normal movement.

GABA-MSNs synapse with striatal interneurons, as well as a number of incoming
neurons, including corticostriatal glutamatergic and nigrostriatal DAergic neurons. The
glutamatergic neurons projecting from the cortex synapse onto the dendritic spines of
GABA-MSNs on which glutamate receptors are expressed. DA receptors are expressed on
the neck of the synaptic buttons on which glutamate receptors are expressed. Nigrostriatal
DA input to MSNs either increases or decreases glutamatergic signaling by acting on the
D1 receptors (D1R) or D2 receptors (D2R) located on the direct and indirect GABA-MSNs,
respectively (Figure 2) [8,10]. Overall, the direct pathway is stimulated but while the
indirect pathway is inhibited, resulting in the facilitation of motor functions.

Cholinergic interneurons, another group of neurons that interact with GABA-MSNs,
inhibit the direct pathway mainly through M4 receptors and stimulate the indirect pathway
through M1 receptors. In PD, DAergic input to the putamen is decreased, and both the
direct and indirect pathways are inhibited. This largely results in inhibition of intended
movement and increased unintended movement at rest through the unopposed effects
of cholinergic neurons [11]. As the balance between the direct and indirect pathways is
required for the fine control of motor functions, degeneration of the DAergic nigrostriatal
pathway results in abnormalities of movement, such as bradykinesia and resting tremors.

1.2. Brain DAergic System and DA Receptors

Four major DAergic pathways are found in the brain [12]. First is the mesolimbic tract
pathway that projects from the VTA of the midbrain to the limbic system, including the
NAc. Hyperactivity of this pathway is related to addiction and the positive symptoms of
schizophrenia [13], and the antagonism of D2R in the mesolimbic pathway has been used
to treat positive psychotic symptoms [14]. Second is the mesocortical tract that connects
the VTA to the prefrontal cortex. Projections to the DL-PFC and ventromedial prefrontal
cortex regulate cognition/executive functioning and emotions/affect, respectively [15]. A
decrease in DAergic activity in the mesocortical projections to the DL-PFC is postulated to
be responsible for the negative symptoms of schizophrenia [16]. In agreement with this,
nicotine, which evokes DA release in the mesocortical pathway, is known to alleviate the
negative symptoms. The third is the nigrostriatal tract, which connects the SN pars com-
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pacta (SNpc) and dorsal striatum, and is part of the extrapyramidal system and important
in motor movement control. This pathway plays central roles in the pathogenesis of PD [17]
and is also responsible for the extrapyramidal symptoms caused by typical antipsychotic
drugs that antagonize D2Rs. Finally, the tuberoinfundibular pathway refers to the DAergic
neurons that project from the hypothalamus to the anterior pituitary (infundibular region).
DA released from the pituitary blocks the secretion of prolactin [18]; thus, blockade of D2Rs
in this pathway can lead to hyperprolactinemia, which clinically manifests as amenorrhea,
galactorrhea, and sexual dysfunction.
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Figure 2. Roles of the nigrostriatal pathway in the regulation of the basal ganglia pathway. Medium spiny neurons (MSNs) in
the putamen receive stimulatory input through the cortico-striatal glutamatergic neurons. They also receive dopaminergic
input through nigrostriatal DAergic neurons. DA stimulates the direct pathway by acting on the D1Rs expressed on the MSNs
that project to the GPi but inhibits the indirect pathway by acting on the D2Rs expressed on the MSNs that project to the GPe.
Thus, degeneration of DAergic neurons originating from the SN results in an under-stimulation of the direct pathway and
under-inhibition of the indirect pathway, resulting in problems with purposeful movement. DR, dopamine receptor; Glu,
glutamine; NMDAR, NMDA receptor. Figures created with https://biorender.com/ (accessed on 13 April 2021).

Based on their pharmacological and functional characteristics, DA receptors are largely
classified into D1- and D2-like receptors [19,20], which positively and negatively regulate
adenylyl cyclase, respectively. When they are classified according to the genes encoding them,
the D1-like receptors are subdivided into the D1Rs and D5 receptors (D5R) [21,22], whereas
the D2, D3, and D4 receptors constitute the D2-like receptors (D2R, D3R, D4R) [23–25].

DA receptors have different affinities to DA; D3R has the highest, followed by D5R,
D4R, D2R, and D1R [26]. Thus, it is possible that DA activates different subtypes of DA
receptors depending on its concentration in the biophase [27]. In addition to their affinity
to DA, the DA receptor expression levels within particular brain circuits or regions play
key roles in determining their physiological functions [28].

DA receptors in the prefrontal cortex, striatal GABAergic MSNs and cholinergic
interneurons, and nucleus accumbens are closely related to schizophrenia, drug addiction,
and PD. DAergic neurons in the VTA and SN [29], which provide DAergic inputs to the
striatum and prefrontal cortex, are spontaneously active with firing patterns that range
from tonic to phasic [30,31]. Because of their differences in affinity to DA, tonic and phasic

https://biorender.com/
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patterns of DA release differently influence the activities of certain neuronal pathways in
which more than one DA receptor subtype is expressed. For example, when large amounts
of DA are released during phasic firing, D1Rs can be activated [32], but D2Rs respond to a
broader range of stimuli [33].

The D1R, which is highly expressed on dendritic spines in layer 3 of the DL-PFC [34,35],
has been implicated in the control of working memory [36,37], and working memory
dysfunction is a prominent feature of schizophrenia [38]. Expression of D1R is reduced
in the prefrontal cortex of schizophrenics, and this reduction is related to the severity of
negative symptoms, such as emotional withdrawal [39,40].

1.3. Brain Cholinergic System and Nicotinic Receptors

Brain cholinergic projections belong to one of two systems depending on where the
cell bodies are located: the magnocellular basal forebrain cholinergic system or the brain
stem cholinergic system [41,42].

Cell bodies are located in the medial septal nucleus, diagonal band of Broca, and
nucleus basalis of Meynert in the basal forebrain cholinergic system, and they send cholin-
ergic axons to the neocortex, as well as limbic cortices [41]. The basal forebrain cholinergic
system plays critical roles in several aspects of cognition, including attention, cognition,
working memory, spatial learning, and associative learning [43].

The brainstem cholinergic system sends projections from the pedunculopontine
tegmental nucleus and laterodorsal pontine tegmentum to various brain regions that
include the basal ganglia, midbrain, cerebellum, and thalamus [41,44,45]. Studies show
these cholinergic systems to be involved in controlling the sleep-wake cycle and positive
reinforcement [46,47].

nAChRs are members of the superfamily of Cys-loop ligand-gated ion channels [48].
All nAChRs are composed of pentameric subunits arranged around a central ion pore
through which cations pass. nAChRs are classified into different subfamilies based on
several criteria that include subunit composition, sensitivity to different ligands, and
regulatory properties, such as desensitization. Members of subfamilies I (α9-α10) and
IV (muscle nAChR subunits), and one member of subfamily II, α8, are not expressed in
mammalian brain [49,50]. Thus, in this review, we discussed the roles of brain nicotinic
receptors focusing on subfamily III (α2-α6, β2-β4) and α7 nAChRs.

Different nAChR subtypes show different kinetics of activation and desensitization.
α7* nAChRs, which have a lower affinity to nicotine, are rapidly activated and desensitized
by high doses of nicotine [51,52]. At physiological concentrations, however, only a small
proportion of the α7* nAChR population is occupied by nicotine and desensitized. Owing
to their rapid kinetics, α7* nAChRs rapidly recover from desensitization when nicotine
unbinds. Consequently, only a very small portion of the α7 population is desensitized
under physiological conditions and the majority of the receptors are available for activation.
In contrast, β2* subtypes—the predominant nAChR subtype on midbrain DAergic and
GABAergic neurons—have a higher affinity for nicotine and undergo strong desensitiza-
tion [53]. It has been reported that α4β2 nAChRs containing α5 subunits recover more
rapidly from desensitization [54].

Molecular biological manipulation, such as gene knockout, has helped us to under-
stand the functional roles of specific nAChR subtypes. For example, β2 gene knockout has
revealed the essential roles of 4β2- and α6β2-containing receptors for nicotine reward and
addiction [55–57]. In contrast, α7 nAChRs are known to have opposite roles in tobacco
dependence [58]. Thus, inhibition of α6β2* nAChRs and stimulation of α7 nAChRs, in con-
nection with the supportive roles of PPARα, has been suggested as a strategy for tobacco
cessation [59,60].

1.4. Functional Interaction between the Cholinergic and DAergic Systems

It has been reported that systemic administration of nicotine causes DA release in
the NAc [61] by acting on the specific nAChR subtypes expressed on the cell body and
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terminals of the DA neurons that project from the VTA to the NAc [62,63]. Among a number
of nAChR subtypes, those containing β2 and/or α6 subunits are known to play critical
roles in regulating DA-mediated neurotransmission in the mesolimbic pathway. Many of
the studies on nicotine addiction/dependence have focused on the α4β2 receptor subtype,
which is ubiquitously expressed throughout the brain. More recently, α6β3 receptors—the
more selectively expressed in DAergic neurons [64,65]—have been shown to be the primary
receptors on DAergic neuronal terminals that stimulate DA release [66,67].

In addition to stimulating DA release, nicotine is also known to promote the survival
of nigrostriatal DA neurons, supporting the beneficial effects of smoking on PD devel-
opment [57,68]. In agreement with these results, nicotine is known to be involved in the
morphological remodeling of DAergic neurons and regulates various genes that regulate
neuronal morphogenesis [69,70].

Some of nAChR subtypes colocalize with D2-like receptors in DAergic nerve terminals
and it has been reported that DA receptors are needed for nicotine to exert its actions
on DAergic neurons [67,71]. For example, α4β2 nAChRs colocalize with D3Rs in the
somatodendritic area of DAergic neurons [72], and nicotine increases D3R expression in the
shell of the nucleus accumbens [73]. In addition, nicotine increases dendritic arborization of
cultured DAergic neurons, and this effect is either blocked by D3R antagonists or disappears
in D3R knockout mice [70].

2. Roles of the DAergic and Nicotinic Cholinergic Systems in the Pathogenesis
of Schizophrenia

Approximately 1% of the general population is schizophrenic, showing an approxi-
mately 50% concordance rate. Symptoms of schizophrenia can be categorized into three
groups: positive, negative, and cognitive [74]. Positive symptoms are characterized by
hallucinations and delusion. Patients lose their sense of reality and often create their
own reality. Negative/deficit symptoms accompany motional flattening, anhedonia, with-
drawal from social interaction, loss of motivation, poverty in speech and thought, and
patients lose their normal emotional and behavioral capacities. Cognitive/disorganization
symptoms are believed to occur when the patient’s memory and sometimes movement are
hampered. Symptoms include working memory and execution problems, disorganized
speech, loosening of associations, neologisms, blocking, and clanging [75].

2.1. Roles of the DAergic System in Schizophrenia

The pathogenesis of schizophrenia has previously been most commonly explained
by the ‘DA hypothesis’. This hypothesis was reverse postulated based on the observation
that DA-increasing drugs, such as amphetamines and cocaine, can cause psychotic symp-
toms, while antipsychotic drugs that antagonize D2Rs reduce psychotic symptoms [76,77].
However, subsequent studies have shown that multiple neurotransmitter systems other
than the DAergic system are also involved in the pathogenesis of schizophrenia. Decreased
rather than increased DAergic activity in the prefrontal cortex is responsible for some of
the cognitive and negative symptoms of schizophrenia (Figure 3), and the newer class of
‘atypical antipsychotics’ are less potent antagonists of D2Rs compared to the first generation
of typical antipsychotics, in that they act on other targets, such as the 5-HT2A receptor [78].

The relationship between the hyperactive mesolimbic DAergic pathway and the
positive symptoms of schizophrenia is relatively well established. In contrast, the negative
symptoms are more difficult to understand and might be explained in part by the so-called
‘hypoactive mesocortical’ pathway. For example, many of these cognitive deficits are
explained by dysfunction of the DL-PFC [34]. Accordingly, the brains of schizophrenic
patients show evidence of dendritic atrophy of pyramidal cells in the DL-PFC, reductions
in cortical DA content, and possible rebound increases in D1Rs [40].
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2.2. Functional Interaction between the DAergic and Nicotinic Cholinergic Systems in the
Pathogenesis and Treatment of Schizophrenia

As discussed above, the positive and negative symptoms of schizophrenia have been
explained by hyperactive mesolimbic and hypoactive mesocortical DAergic pathways,
respectively, and the blockade of mesolimbic D2Rs and enhancement of mesocortical D1Rs
have beneficiary effects on positive and negative symptoms [79,80]. This so-called, ‘DA
hypothesis’ of schizophrenia can be further refined when the roles of brain nAChRs, NMDA
receptors (NMDAR), and GABA receptors are also considered [81].

Nicotine is known to activate DAergic neurons to release DA both in the VTA and
cortex [53,82], suggesting that nicotine could affect both positive and negative symp-
toms [83,84]. Post-mortem studies from schizophrenic patients have revealed a disturbance
in nAChR expression, in particular, α7 and α4β2 subunits [85,86]. It is believed that the
positive symptoms of schizophrenia are related to D2R and β* (α4β2 and α6β2) nAChRs,
but D1R and α7 nAChR are related to the negative symptoms [87–89].

In addition to the roles of the DAergic and nicotinic cholinergic systems in the patho-
genesis of schizophrenia, a glutamate hypothesis has been also proposed [90] based on the
observations that NMDAR antagonists induce symptoms similar to those of schizophre-
nia [91,92]. According to this hypothesis, the hypofunctioning of NMDARs on parvalbumin-
positive GABA interneurons within the prefrontal cortex is important in the pathogenesis
of schizophrenia, resulting in impairment of lateral inhibitions of pyramidal cells in the DL-
PFC [93,94]. Further, post-mortem studies of schizophrenic patients have shown reduction
or alterations in the expression levels and trafficking of NMDARs [95,96].

https://biorender.com/
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Indeed, the DA hypothesis of schizophrenia can better explain both the positive and
negative symptoms when the roles of NMDARs are considered in the neuronal circuitry
involved in schizophrenia [81,97]. For instance, the positive and negative symptoms of
schizophrenia can be explained by the Glu-GABA-Glu-DA and Glu-GABA-Glu-GABA-
DA neuronal circuitry that leads to DAergic projection to the NAc and prefrontal cortex,
respectively [81] (Figure 4).

In the cortex-VTA-NAc circuit that is related to the positive symptoms of schizophre-
nia, glutamatergic neurons project axons to the GABAergic interneurons in the cortex,
which, in turn, synapse on the secondary cortical pyramidal glutamatergic neurons that
project to DAergic neurons in the VTA. DAergic neurons, therefore, project to the nucleus
accumbens, completing the ‘Glu-GABA-Glu-DA’ circuitry. When this circuit is disturbed
by the hypofunctioning of NMDARs on the GABAergic neurons, secondary glutamatergic
neurons will be overly stimulated, leading to the hyperactivation of DAergic neurons that
project to the NAc [98].

In the cortical-VTA-cortical circuit that is related to the negative symptoms of schizophre-
nia, secondary GABAergic midbrain interneurons are additionally inserted into the middle
of the circuit. In this circuit, the secondary glutamatergic neurons synapse on the GABAer-
gic interneurons in the midbrain, which, in turn, synapse on the VTA-DAergic neurons
that project back to the frontal cortex (Glu-GABA-Glu-GABA-DA). The hypofunctioning of
the NMDARs on the primary GABAergic neurons results in hypoactivity of the mesocorti-
cal DAergic pathway and inadequate supply of DAergic inputs to the prefrontal cortex,
causing negative symptoms.

Unlike positive symptoms wherein the mesolimbic DAergic pathway plays a key role,
various brain regions and multiple receptors are likely to be involved in the development
of negative symptoms. For example, the prefrontal cortex, thalamus D1Rs, NMDARs, and
α7 nAChRs are known to be involved in the development of negative symptoms. This
supports the previous notion that cognitive deficits in schizophrenia might be associated
with reduced DAergic input to the PFC [99,100].

The thalamic mediodorsal (MD) nucleus plays a key role in the communication
between distinct associative cortical areas [101]. Axons derived from the thalamic MD
nucleus synapse onto the dendrites of the DL-PFC pyramidal neurons that are responsible
for executive control and working memory. In schizophrenia, neurons of the thalamic
MD are known to degenerate, reducing the size of this area [102]. The use of dendrites
located in the DL-PFC reduces with the decreasing number of nerves entering from the
MD nucleus, leading to selective atrophy of the pyramidal cell microcircuits in deep layer
III of the DL-PFC, as well as compensatory weakening of related GABAergic interneurons.

Glutamatergic pyramidal cells form synapses between axon terminals and dendritic
spines in layer III of the DL-PFC. NMDARs and α7 nAChRs are co-expressed in the
postsynaptic membrane of the layer III spines where D1Rs are concentrated. Moderate
levels of D1R stimulation in the DL-PFC are known to be essential for optimal working
memory function [103]. D1Rs are often co-localized with hyperpolarization-activated
cyclic nucleotide gated 1 (HCN1) channels on spines [40], and D1R-mediated increases
in cAMP are expected to open HCN channels. Because HCN channels mediate rhythmic
depolarization of the membrane potential when cells are hyperpolarized [104], activation
of D1Rs is expected to raise the membrane potential near to threshold, evoking more
frequent action potentials. Therefore, it is believed that HCN channels are responsible
for filtering out low-frequency inputs, thereby improving the selectivity for synchronous
synaptic inputs [105,106]. Synchronization between inputs from glutamate axons and the
activation of HCN channels though D1Rs could, thus, be an important functional device
for optimal synaptic transmission between pyramidal cells on the DL-PFC. To this end,
DA that elevates intracellular cAMP by acting on D1Rs has an inverted U influence on the
firing of the delay cells and cognitive performance, where moderate levels are essential for
functioning, but excessive stimulation suppresses neuronal firing and impairs cognitive
abilities [107].
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Figure 4. Differential involvement of multiple signaling systems in the manifestation of positive and
negative symptoms of schizophrenia. According to recent studies on the mechanistic hypothesis
of schizophrenia, signaling systems other than the DAergic system also play important roles. For
example, abnormalities in the glutamatergic or GABAergic system could be involved in the dysregu-
lation of the DAergic system, which is believed to be the final common pathway in schizophrenia.
(A) Glutamate hypofunctioning hypothesis for the positive symptoms of schizophrenia. (Upper)
Normal Glu-GABA-Glu neuronal circuitry with respect to mesolimbic DAergic projection. A pyra-
midal Glutamate neuron (the first neuron) synapses on a GABA interneuron (the second neuron),
which next inhibits a secondary cortico-tegmental pyramidal glutamatergic neuron (the third neuron).
These series of connections lead to the firing of mesolimbic dopaminergic neurons at the normal rate.
(Lower) Abnormal Glu-GABA-Glu-DA neuronal circuitry. The NMDAR on the GABAergic neuron is
suboptimal, and the second glutamatergic neuron is not inhibited properly, resulting in overactiva-
tion of the mesolimbic DAergic system that projects to limbic area. (B) Glutamate hypofunctioning
hypothesis for the negative symptoms of schizophrenia. (Upper) Normal Glu-GABA-Glu-GABA
neuronal circuitry with respect to the mesocortical DAergic pathway. In this pathway, another
GABAergic connection is inserted between the cortico-tegmental glutamatergic and mesocortical
DAergic neurons at the level of the brainstem. (Lower) In schizophrenia, a loss of NMDA activity on
the first GABAergic neuron leads to consecutive activation of subsequent Glu-GABA neurons, which
results in the inhibition of DAergic neurons located in the VTA. The decrease in DA input to the
frontal cortex correlates with the negative symptoms of schizophrenia. Adapted from Reference [81].
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Overall, NMDARs, α7 nAChRs, and D1Rs play critical roles in synaptic transmission
between glutamatergic axonal terminals and dendritic spines on layer III pyramidal cells.
This synaptic transmission allows the mutual excitation of glutamatergic neurons (Figure 5).
Unlike conventional glutamate synapses, where AMPA receptors trigger NMDAR channel
opening, the glutamate synapses between pyramidal cells use cholinergic stimulation of α7
nAChRs to provide the depolarization required to open NMDARs [108]. Indeed, defects in
both NMDARs and α7 nAChRs are known to be linked to schizophrenia.
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Figure 5. Schematic illustration of the synaptic connection between glutamatergic pyramidal cells in layer III of the dorsolat-
eral prefrontal cortex. Glutamatergic pyramidal cells form synapses between axon terminals and dendritic spines. NMDARs
expressed on the postsynaptic membrane are triggered by the stimulation of α7 nAChRs that are co-expressed in postsynap-
tic cells. D1Rs are also expressed on postsynaptic dendritic spines, where they often co-localize with hyperpolarization-
activated cyclic nucleotide (HCN) channels. HCN channels are activated by cAMP-PKA signaling, leading to rhythmic
depolarization of the cells. There is optimism that synaptic transmission might be possible when signaling NMDAR is
harmonized with stimulatory effects via D1R. Adapted from Reference [97]. AC, adenylyl cyclase; AP, action potential.
Figures created with https://biorender.com/ (accessed on 15 April 2021).

Based on these promising experimental results, the α7 nAChR has been proposed
as a potential target for managing schizophrenia [85,109], and α7-selective agonists and
allosteric modulators have been tested in small-scale trials for the treatment of schizophre-
nia [110,111]. 3-(2,4-dimethoxybenzylidene)-anabaseine (DMXB-A) is one example of
these [112], and several more compounds have shown promising results in early clinical
studies [109].

3. Roles of the Interaction between the DAergic and Nicotinic Cholinergic Systems in
the Pathogenesis and Treatment of PD

PD is characterized by movement disabilities, including tremors, rigidity, bradyki-
nesia/hypokinesia, and postural instability, as well as numerous other deficits affecting
cognition, sleep, and autonomic nervous system function [113,114]. PD is associated with a
generalized loss of neurons throughout the brain, with the most prominent feature being
the degeneration of nigrostriatal DAergic neurons.

PD is the second most common neurodegenerative disease after Alzheimer’s disease,
affecting approximately 1–2% of the population in the USA. Although most cases of PD
occur sporadically, approximately 5–10% are inherited (familial PD). Recent genomic
analyses using samples obtained from patients with familial PD have mapped many PD-
related (PARK) loci and identified several putative genes, including leucine-rich repeat
kinase 2 (LRRK-2), PARK2 (parkin), DJ-1, and PTEN-induced kinase 1 (PINK1).

https://biorender.com/
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Mutations in LRRK2 have various effects, including disruption of the endosome and
lysosome degradation pathways, leading to increased concentrations of α-synuclein that
facilitate its aggregation, resulting in the formation of Lewy bodies (LB). Mutations in
LRRK2 also alter specific signaling pathways, such as the Ras and MAPK pathways that
support vesicular transport along axons and DA release, and increase the tau protein
phosphorylation and accumulation [115] to cause an abundance of neurofibrillary tan-
gles. These three effects together result in DAergic neuronal death [116,117]. Mutations in
PARK2, which encodes an E3 ubiquitin ligase [118], inhibit proteasomal degradation of
α-synuclein, resulting in LB formation and DAergic neuronal cell death [119,120]. Further,
DJ-1, a redox-sensitive chaperone and sensor for oxidative stress, inhibits the aggregation of
α-synuclein, and DJ-1 mutations lead to the inhibition of proteins related to anti-oxidation
and mitochondrial functions, resulting in an increase in reactive oxygen species (ROS)
and mitochondrial dysfunction, and destruction of DAergic neurons [121,122]. PINK1, a
mitochondrial serine/threonine-protein kinase, is closely associated with mitochondrial
quality control by identifying damaged mitochondria and targeting them for degrada-
tion [123,124]. Mutations in PINK1 exert similar effects as those reported in DJ-1 mutations,
and tau protein phosphorylation is increased.

Various genetic and environmental factors converge into four fundamental mecha-
nisms; oxidative stress, mitochondrial complex I dysfunction, impairment of the ubiquitin-
protease pathway, and accumulation and aggregation of misfolded or unfolded proteins.

3.1. PD and the DAergic System

A number of studies have shown the involvement of DA receptor subtypes in PD.
Studies in D1R knockout mice have shown that D1R and D2R are segregated on striatal
projection neurons, with D1R regulating the direct striatal output pathway. D1R knock-
out mice mostly show increased locomotor hyperactivity or a decrease in spontaneous
exploratory activities, as determined by a decrease in rearing behavior [125,126]. Overall,
these studies suggest that D1Rs regulate the neurochemical architecture of the striatum
and are critical for the expression of normal motor activity [125].

Studies using knockout mice have shown that the D2-like receptor family (mainly D2R)
plays a more direct role in PD. A long isoform of an alternatively spliced variant of D2R,
D2LR, acts mainly at postsynaptic sites and is suggested to be related to the extrapyramidal
side effects of typical antipsychotics [127,128]. In addition, it has been suggested that
the SNpc of D2R knockout mice contain more LB-like cytoplasmic inclusions containing
α-synuclein, compared to wild-type mice [129].

The severity of PD is reportedly related to a decrease in D3Rs in the brain [130] and
these receptors could be potential biomarkers for PD [131]. In addition, D3R agonists
can decrease cellular accumulation of α-synuclein, enhance BDNF secretion, decrease
neuroinflammation, and improve motivational deficits [132,133].

D4R knockout mice show significantly less exploratory behavior and rearing activity
than wild-type mice [134,135], and increased avoidance behavior to unconditioned stim-
uli [136]. These results indicate that D4R could also play a vital role in impulse control
disorder, which is one of the major symptoms in PD [137].

Overall, D2-like receptors appear to play major roles in PD, although D1-like receptors
probably have indirect roles.

3.2. Roles of the Cholinergic System in PD

The balance between the DAergic and cholinergic systems in the striatum is critical
for the proper regulation of motor functions. The striatum contains several neuronal types
that include projecting GABA-MSNs (~95%), medium-size striatal GABAergic interneu-
rons, and large aspiny cholinergic interneurons (CINs) [138,139]. Most striatal cholinergic
innervations are provided by CINs [140], which comprise less than 3% of the cells in the
striatum. Morphologically, CINs can be easily distinguished from other striatal neurons as
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they are significantly larger than other neurons (approximately 20–50 µm in diameter) and
possess extensive axonal and dendritic arborizations [141,142].

Owing to their morphological features, CINs make widespread synaptic connections
with other neurons, including nigrostriatal DAergic and corticostriatal glutamatergic afferents,
serotonergic afferents from the dorsal raphe, and GABAergic efferent and interneurons [143]
(Figure 6). ACh release from CINs is controlled by various neurotransmitters that act on
a multitude of receptors expressed on CINs, for example, GABAA receptors, metabotropic
glutamate receptors, ionotropic glutamate receptors, and DA receptors [144–148].
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CINs are tonically active and continuously release ACh in a pulsatile manner. The
ACh released from CINs subsequently acts on ACh receptors located on neuronal terminals
and/or cell bodies in the striatum to modulate neurotransmitter release from DAergic and
cortical glutamatergic neurons [138,149].

The neuronal terminals of nigrostriatal DAergic projections heavily overlap with CINs
in the striatum [139,150] and mutually regulate the release of DA and ACh from each
neurons. For example, DA released from nigrostriatal neurons exerts stimulatory and
inhibitory influences on ACh release by acting on D1Rs and D2Rs, respectively [147,148],
allowing for the fine-tuning of DA receptor-mediated regulation of locomotor activity [151].

ACh released from striatal CINs also regulates DA release from the striatum by
acting on the nAChR subtypes expressed on different neuronal terminals. ACh stimulates
DA release by directly acting on α4β2* and α6β2* (α4β2, α4α5β2, α6β2β3, α4α6β2β3)
subtypes expressed on DAergic neurons [152,153]. The majority of nAChR subtypes
on DAergic neurons (β2*) are activated by nicotine and then desensitized, allowing the
excitation of DAergic neurons for a short period of time before they are desensitized.
Striatal α7 nAChRs located on corticostriatal glutamatergic efferents indirectly regulate

https://biorender.com/
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DA release by modulating striatal glutamate release [154]. In contrast to most of the β2*
nAChR subtypes, α7 nAChRs are not significantly desensitized by the concentrations of
nicotine obtained from smoking.

3.3. Functional Interaction between DAergic and Nicotinic Cholinergic Systems in the
Pathogenesis and Treatment of PD

Nicotine is known to reduce nigrostriatal-damaging processes [155,156], and a number
of epidemiological studies have shown that the incidence of PD is reduced by approxi-
mately 50% in smokers [157,158]. Nicotine is also known to reduce LID [155], one of the
most serious side effects caused by the chronic use of L-DOPA. As suggested in a recent
review [159], the connection between the reduced incidence of PD and tobacco use is
probable because the protective effects occur in a dose- and time-dependent manner, and
has also been confirmed in twin studies [160].

The nicotinic and DAergic systems are closely associated in normal physiology and
the pathogenesis of PD, which could be due to the extensive overlap between the two
systems. For example, both striatal nAChR and DA receptor subtypes decrease with striatal
DAergic degeneration [161], which is the most prominent feature of PD. Loss of nAChR
subtypes occurs in the order of α6α4β2β3 > α6β2β3 > α4β2 [69,152]. α7 nAChRs are
not affected by nigrostriatal damage probably because they are not expressed on DAergic
terminals [72,162]. DA release and the stimulation of D1Rs and D2Rs on GABA-MSNs
are also reduced, leading to an overall decline in movement facilitation mediated by the
direct pathway. This results in the bradykinesia, rigidity, freezing, and other motor deficits
observed in PD.

L-DOPA is one of the most effective therapies for PD; however, chronic use of L-DOPA
results in various adverse effects, such as neuropsychiatric problems and the develop-
ment of abnormal involuntary hyperkinetic movements (dyskinesias). Currently, amanta-
dine [163], levetiracetam, an antiepileptic [164], and nicotine [155,165] have been shown to
improve LID.

The nigrostriatal DAergic system has been shown to be a key player in the devel-
opment of LID [166,167]. Administration of L-DOPA is thought to lead to unregulated
DA release and excessive activation of the striatal GABA-MSNs expressing D1Rs (direct
pathway). The GABA-MSNs expressing D2Rs (indirect pathway) also become overactive
via D2R-mediated inhibition of the inherent inhibitory nature of the indirect pathway,
which leads to the overall enhanced motor activity, a characteristic of dyskinesias [168,169].

As expected from their roles in the regulation of the nigrostriatal DAergic system,
striatal CINs and nAChRs have also been indicated in the pathogenesis of LID. For example,
studies in nAChR null mutant mice showed that the β2* and α7 subtypes are related to
LID [170–172]. In addition, ablation or long-term stimulation of CINs, which results in
nAChR desensitization and a consequent functional receptor blockade [173,174], effectively
prevent LID without affecting the therapeutic efficacy of L-DOPA [175,176].

Receptor desensitization may subsequently lead to further molecular changes that
mediate overall functional changes. Nicotine is known to modulate neurotoxicity by
enhancing phosphatidylinositol 3-kinase and altering levels of phosphorylated Akt, as well
as Src, B-cell lymphoma (Bcl) 2, and Bcl-x [177,178]. The MAPK/ERK and JAK2/STAT3
pathways have also been implicated in nAChR-mediated neuroprotection [179,180]. In
addition, other downstream mechanisms, including alterations in phospholipase C [181],
nerve growth factor [182], proinflammatory cytokines [183], caspases, and reactive oxygen
species [184], could be involved.

Overall, these results demonstrate that striatal CINs play a critical role in LID by
modulating the nigrostriatal DAergic pathway. Nicotine and nAChR drugs targeting β2*
and α7 nAChRs could be useful strategies to counteract LID.
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4. General Mechanism of Nicotine-Induced Neuronal Protection
4.1. Nicotine-Induced Changes in the Microenvironment of DAergic Neurons

Macrophages, represented by microglial cells in the brain, are innate immune cells
that serve as the first line of defense against invading pathogens. Under normal condi-
tions, they maintain the M0 phenotype, which can be activated and converted into two
different phenotypes: M1, a pro-inflammatory macrophage, and M2, an anti-inflammatory
macrophage [185,186].

In the case of neurodegenerative diseases, such as PD, macrophages are usually
converted into the M1 phenotype and cause local inflammation (Figure 7A), as well as
neuronal death [187,188]. In contrast, nicotine is known to convert the M0 phenotype
into the M2 phenotype, which prevents neuronal inflammation, as well as cell death
(Figure 7B) [189,190].
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Figure 7. General mechanism of nicotine-induced neuronal protection. (A) Under degenerative inflammatory conditions,
resident M0 macrophages polarize into M1 macrophages or pro-inflammatory macrophages, which release inflammatory
cytokines. Cellular debris also deteriorates the cellular conditions of DAergic neurons. (B) Nicotine provides protection
to injured DAergic neurons. Cellular protection can occur either via improvement of the neuronal microenvironment
or by direct effects on DAergic neurons. Nicotine either converts resident M0 macrophages into M2 anti-inflammatory
macrophages or it upregulates anti-apoptotic genes by acting on nAChRs. Figures created with biorender.com/ (accessed
on 21 February 2021).

Cytokine storm is one of the leading causes of neuronal cell death. Pro-inflammatory
cytokines are usually released by M1 macrophages that predominate in neurodegenerative
conditions (Figure 7A) [191,192]. Nicotine, by converting macrophages into the M2 phenotype
that release anti-inflammatory cytokines, prevents inflammatory tissue injury and DAergic
neuronal death [191,193]. In addition, the M2 phenotype is known to prevent DAergic
neuronal death by cleaning up the accumulated toxic cellular debris (Figure 7B) [194].
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4.2. Direct Effect of Nicotine on DAergic Neuronal Cell Survival

In addition to improving microenvironments, nicotine is known to have a benefi-
cial effect on the survival of DAergic neurons, for example, by upregulating proteins
responsible for neuronal survival, decreasing endogenous DA metabolism, and protecting
mitochondria.

First, stimulation of the nAChRs expressed on DAergic neurons is known to up-
regulate the expression of several anti-apoptotic proteins, such as BCL-2, BCL-X, CREB,
BDNF, NFκB, and NGF. These proteins play important roles both in neuronal survival and
proliferation (Figure 7B) [195–197].

Second, 2, 3, 6-trimethyl-1, 4-napthoquinone (TMN), one of the components of
cigarettes, is renowned for monoamine oxidase inhibitor. Thus, as a result of cigarette
consumption, cellular levels of DA are increased along with a decrease in oxidative stress,
which are beneficial for PD patients [198,199]. In addition, nicotine, the major component of
cigarettes, improves the symptoms of PD patients by increasing DA release from DAergic
neurons (Figure 7B) [66,151].

Third, damage to mitochondria is one of the major causes of DAergic neuronal
death [200,201]. Unlike ACh, which is too hydrophilic to cross the cell membrane, nicotine
can easily cross the cell membrane. Thus, it is possible that nicotine activates the nAChRs
attached to internal organoid membranes, such as those of mitochondria [202,203]. By
acting on mitochondrial nAChRs, nicotine produces antioxidant effects by modulating
generation of ROS. In addition, nicotine prevents mitochondrial swelling and cytochrome
c release independent of nAChRs, and reduces leakage of electrons during transport
(Figure 7B) [198,204–206].

5. Conclusions

The DAergic and nicotinic systems of the brain play critical roles in nicotine addiction,
schizophrenia, and PD. In considering the two systems together, it is possible to hypothesize
mechanisms for these diseases that have not been previously considered. In particular,
the interaction between these two systems allows for novel therapeutic approaches to
treatments for related diseases, with fewer side effects. For example, understanding
the regulatory roles of α7 nAChRs on pyramidal cells in the DL-PFC could support a
mechanistic approach to treating the negative symptoms of schizophrenia and provide new
therapeutic directions. Furthermore, elucidation of the critical role that α7 nAChRs play
in the treatment of LID is enabling the introduction of novel therapeutic agents. Finally,
in order to have more fundamental understanding behind various roles of nAChRs, it
may be necessary to reconsider the nature and characteristics of nAChRs. For example, a
recent study [207] has shown that α4β2 nAChR employs a metabotropic signaling pathway
similar to those of GPCRs.
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