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Background. The impact of hepatic steatosis on outcome following hepatic ischemia-reperfusion injury (IRI) remains controversial
with conflicting clinical results. A number of experimental studies have been published examining the relationship between hepatic
steatosis and IRI. This systematic review evaluates these experimental studies. Methods. An electronic search of the Medline and
Embase databases (January 1946 to June 2012) was performed to identify studies that reported relevant outcomes in animal models
of hepatic steatosis subjected to IRI. Results. A total of 1314 articles were identified, of which 33 met the predefined criteria and
were included in the study. There was large variation in the type of animal model, duration, and type of IRI and reporting of
histological findings. Increased macrovesicular steatosis (>30%) was associated with increased histological damage, liver function
derangement, and reduced survival. Increased duration of warm or cold ischemia had a negative impact on all outcomes measured.
Microvesicular steatosis did not influence outcome. Conclusions. Findings from this systemic review support the hypothesis that
livers with >30% macrovesicular steatosis are less tolerant of IRI. Clinically, it is likely that these findings are applicable to patients
undergoing hepatic resection, but further studies are required to confirm these data.

1. Introduction

Nonalcoholic fatty liver disease (NAFLD) can present in a
range of pathological states from hepatic steatosis to cirrhosis
[1]. Hepatic steatosis, the early stage of NAFLD, is the most
common chronic liver disease in the Western world with an
estimated prevalence of 20–24% [2, 3]. As hepatic steatosis
is considered the hepatic manifestation of the metabolic
syndrome, its prevalence is expected to rise [4] in parallel
with the increasing epidemic of obesity and the metabolic
syndrome [5, 6].Thenumber of patientswith hepatic steatosis
requiring hepatic surgery is therefore likely to increase dra-
matically over the next decade.

Hepatic steatosis has been associated with poor outcome
following hepatic surgery [7, 8]. In orthotopic liver transplan-
tation (OLT), moderate (>30%) and severe (>60%) steatosis
of the donor organ is associated with increased rates of graft
failure [7, 9, 10]. Similarly, complication rates following hep-
atic resection are 2-3-fold higher in patients with moderate-
to-severe hepatic steatosis [8, 11]. It has been postulated that
steatotic livers are less tolerant of ischemia-reperfusion injury
(IRI), leading to worse clinical outcome [12, 13]. The liver
is subjected to various types of IRI during hepatic surgery
[14], including warm IRI in hepatic resection when hepatic
inflow is temporarily occluded or cold-rewarming IRI when
a donor liver is reperfused during OLT. If severe, IRI can
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lead to liver failure and death [15, 16]. The reason for
the increased susceptibility of steatotic livers to IRI is not
known. Several different hypotheses have been proposed to
explain the increased susceptibility, including impaired hep-
atic microcirculation [17, 18] and mitochondrial dysfunction
[19].Macrovesicular steatosis is associatedwith accumulation
of intracellular lipid, increasing hepatocyte volume leading to
obstruction of the adjacent sinusoid space, and increasing the
vascular resistance in the hepatic microcirculation [20, 21].
This may potentially impair oxygen and nutrient delivery
following reperfusion to an already susceptible organ. The
increased lipid levels in steatotic livers may also lead to
mitochondrial dysfunction through the formation of reactive
oxygen species [22, 23]. Mitochondrial energy supply is
fundamental to cellular viability, and the interruption of key
mitochondrial processes disrupts normal cellular bioenerget-
ics, impairs cellular function, and subsequently leads to cell
death by either necrosis or apoptosis [24]. Other potential
mechanisms that have been proposed include Kupffer cell
dysfunction [25] and impaired leukocyte adhesion [18]. It is
therefore likely that the increased vulnerability of steatotic
livers is multifactorial, and further experimental studies are
required to elucidate the underlying mechanism.

Currently there is no cohesive overview of the evidence
relating the degree of hepatic steatosis and outcome following
IRI in experimental studies.Defining this clinical relationship
is imperative if one is going to potentially characterize the
underlying mechanism of increased vulnerability of hepatic
steatosis to IRI. The aim of this study is to systematically
review the literature and describe from the available evidence
the association of hepatic steatosis with outcome following
hepatic IRI in experimental studies.

2. Methods

An electronic search was performed of the Ovid Medline
and Embase databases from January 1946 to June 2012 using
the following MeSH headings and keywords: [(Fat$ or
steato$) and (liver or hepatic)].mp, ischemia/OR reperfusion
injury/OR ischemia reperfusion.mp. The search was limited
to articles published in the English language.

The search aimed to identify all studies that reported on
the outcome of animals with hepatic steatosis that were sub-
jected to IRI. Studies were excluded if they (i) included
subjects with nonalcoholic steatohepatitis rather than simple
steatosis, (ii) used genetically modified animals to induce
hepatic steatosis, (iii) were not original researches (systematic
review, narrative review, commentary, or editorial), (iv) did
not report severity and/or type of hepatic steatosis, and (v)
did not report clinically relevant outcomes (graft or recipient
survival, histological findings, or liver functions tests, LFT).
Nonalcoholic steatohepatitis was defined as steatosis with
hepatocellular injury and inflammation without fibrosis [26].
Genetically modified animals were excluded as themutations
used to induce steatosis (leptin deficiency or leptin receptor
dysfunction) are not prevalent in humans, and the patho-
physiology of hepatic steatosis in these animals does not
mimic NAFLD in humans [27, 28].

Potential articleswere identified using the previous search
strategy. Their titles and abstracts were manually screened
by the primary reviewer (M. J. J. Chu). Eligible articles were
retrieved and screened in depth for eligibility and data extrac-
tion using a standardized pro forma. Discrepancies were
adjudicated independently by the senior author (A. S. J. R.
Barlett). Duplicate studies were excluded and publications
with overlapping study populations, the publication with
the largest number of subjects was included. Information
obtained included type of animal model, severity and type
of steatosis, duration and type of hepatic IRI (partial/total,
warm/cold), and outcome (recipient survival, histology, or
LFT).

3. Results

A total of 477 and 837 articles were identified in Medline
and Embase, respectively. After the exclusion of duplicates,
1233 abstracts were screened, and 84 manuscripts were
obtained for further evaluation. Additional 5 manuscripts
were identified from searching the reference lists. A total of
33 manuscripts fulfilled the inclusion criteria as illustrated in
Figure 1 and formed the basis of this study. Among the 33
studies, 18 examined warm IRI, 14 looked at cold IRI, and 1
study investigated both warm and cold IRIs (Tables 1–8).

3.1. Warm IRI (Tables 1–3). Nineteen studies examined the
effect of warm IRI in hepatic steatosis. The majority (16/19)
were performed on rodents, rats (𝑛 = 12) and mice (𝑛 = 4).
Hepatic steatosis was induced using dietary modifications
with choline-deficient diet (CDD, 𝑛 = 8), high-cholesterol
diet (HC, 𝑛 = 3), high-fat diet (HFD, 𝑛 = 3), dextrose
with cholesterol (D-C, 𝑛 = 2), choline-methionine-deficient
diet (CMDD, 𝑛 = 1), protein-free diet (PFD, 𝑛 = 1), and
a combination of high-fat and CMDD (𝑛 = 1) (Tables 1–
3). A control group, receiving a standard diet, was included
in 15 (79%) studies. Moderate (>30%) steatosis was present
in 18 studies. Mild steatosis (<30%) was present in the
remaining study. Macrovesicular steatosis was present in 14
studies, microvesicular steatosis in 2, and mixed macro- and
microvesicular steatosis in 3 studies. Eight studies used partial
vascular occlusion to themedian and left liver lobes to induce
hepatic ischemia to 70% of the liver (Tables 1–3). Six studies
used total vascular occlusion while the remaining 5 studies
performed partial vascular occlusion to 70% of the liver and
resected the nonischemic lobes (30% of the liver) at the onset
of reperfusion (Tables 1–3) [32, 34, 35, 40, 43]. The most
common duration of warm ischemia was 60 minutes (𝑛 =
10; range 15–90 minutes). There was a wide variation in the
duration of reperfusion from 30 minutes (𝑛 = 2), 40 minutes
(𝑛 = 1), 60 minutes (𝑛 = 3), 120 minutes (𝑛 = 4), 180 minutes
(𝑛 = 2), 240 minutes (𝑛 = 3), 360 minutes (𝑛 = 1), and 480
minutes (𝑛 = 1), 720 minutes (𝑛 = 1), 840 minutes (𝑛 = 1)
to 24 hours (𝑛 = 7). Outcome measures included survival
(𝑛 = 9, Table 1), histology (𝑛 = 12, Table 2), and LFT (𝑛 = 17,
Table 3).

3.2. Cold IRI (Tables 4–8). Fifteen studies examined the effect
of cold IRI in hepatic steatosis. The majority (14/15) were
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Table 1: Survival outcome in experimental models of hepatic warm ischemia-reperfusion injury and hepatic steatosis.

Author Animal Steatosis
model

%
steatosis

Type of
steatosis

Duration of ischemia
(mins, type of ischemia)

Duration of
reperfusion
(hours)

Survival of steatotic
livers

(lean livers)
Ellett et al. [29] Mouse HFD 30–60 MaS 35 (total) 24 hours 31% (85%)1

Yamagami
et al. [30] Rat2 CDD 40–60 MaS 45 (total) 7 days 33.3%

He et al. [31] Mouse HFD 50–60 MaS 45 (total) 24 hours 33% (100%)1

Caraceni et al. [32] Rat CDD 50–60 MaS 60 (total) 7 days 60% (100%)1

Selzner et al. [33] Mouse CDD >60 Mixed 60 (total) 14 days 80% (100%)1

Caraceni et al. [34] Rat CDD >60 MaS 60 (total) 7 days 64% (100%)1

Hakamada
et al. [35] Rat CDD >60 MaS 30, 60, or 90 (total) 7 days 95%, 10%, and 5%

(100%, 90%, and 35%)1

Hui et al. [36] Rat CDD >70 MaS 30, 45, or 60 (total) 7 days 75%, 20%, and 0
(100%, 90%, and 70%)1

Takahashi
et al. [37] Canine HFD 7–99 MaS 60 (total) 24 hours

100% in <30% MaS
0 in >30% MaS

(100%)1

CDD: choline-deficient diet; HFD: high-fat diet; MaS: macrovesicular steatosis; Mixed: presence of bothmacrovesicular andmicrovesicular steatosis; 1P < 0.05
versus lean livers; 2no lean group in study.

Table 2: Histological findings in experimental models of hepatic warm ischemia-reperfusion injury and hepatic steatosis.

Author Animal Steatosis
model

%
steatosis

Type of
steatosis

Duration of
ischemia
(mins, type)

Duration of
reperfusion
(mins)

Outcome measures Results in steatotic livers
(lean livers)

Yamada
et al. [38] Rat D-C 30–60 MiS 30 (partial) 240 HIS 5 (5)1

Yamada
et al. [39] Rat D-C 30–60 MiS 30 (partial) 24 hours HIS 6 (6)1

Ellett et al. [29] Mouse HFD 30–60 MaS 35 (total) 24 hours HIS 1.4 ± 0.1 (0.4 ± 0.1)2

Yamagami
et al. [30] Rat3 CDD 40–60 MaS 45 (total) 40 or 180 Histo Severe congestion and

necrosis
He et al. [31] Mouse HFD 50–60 MaS 45 (total) 24 hours HIS 1.8 ± 0.2 (0.9 ± 0.1)2

Marsman
et al. [40] Rat CMDD >60 MaS 40 (total) 24 hours Histo (% necrosis) 37 ± 10 (5 ± 1%)2

Andraus
et al. [41] Rat PFD >60 MaS 60 (partial) 240 Histo ↑ Intraparenchymal

haemorrhage
Selzner
et al. [33] Mouse CDD >60 Mixed 45 or 60

(partial) 24 hours Histo (% necrosis) 65 ± 24% (25 ± 12%)2

Caraceni
et al. [34] Rat CDD >60 MaS 60 30 to 24 hours Histo ↑ Sinusoidal congestion

and necrosis
Hakamada
et al. [35] Rat CDD >60 MaS 30 or 60 (total) 360 Histo ↑ Sinusoidal congestion

and necrosis

Hui et al. [36] Rat CDD >70 MaS 30, 45, or 60 60 Histo

Severe necrosis and
haemorrhage

(no morphological
change)

Takahashi
et al. [37] Canine HFD 7–99 MaS 60 24 hours Histo ↑ Sinusoidal congestion

and necrosis
CDD: choline-deficient diet; CMDD: choline-methionine-deficient diet; D-C: dextrose with cholesterol; HFD: high-fat diet; HIS: histological injury score;
Histo: histology; MaS: macrovesicular steatosis; MiS: microvesicular steatosis; Mixed: presence of both macrovesicular and microvesicular steatosis; PFD:
protein-free diet.
1No significant difference between steatotic and lean livers; 2P < 0.05 versus lean livers; 3no lean group in study.
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Table 4: Survival outcome in experimental models of orthotopic liver transplantation and hepatic steatosis.

Author Animal Steatosis
model

%
steatosis

Type of
steatosis

Duration of
ischemia
(mins)

Perfusate Duration of
reperfusion

Survival of recipients of
steatotic livers (lean livers)

Astarcioglu
et al. [48] Rat CDD 30–60 MaS 60 or 540 ns 7 days 87.5 and 0 (100 and 100%)1

Hayashi et al. [49] Rat CDD 30–60 MaS 60 to 540 UW Up to 7 days 0 (75%)1

Cheng et al. [50] Rat2 CMDD <30 to
>30 Mixed 33–39 UW ns 33.3% (100%)1,3

He et al. [31] Mouse HFD 50–60 MaS 180 Saline 7 days 0 (40%)1

Schmeding
et al. [51] Rat2 CDD >50 MaS 720 UW Up to 7 days 68%

Berthiaume
et al. [52] Rat CMDD >60 MaS 720 UW Up to 7 days 0 (85%)1

Morioka et al. [53] Rat HFD 40–50 Mixed 120 HTK 7 days ↓ Survival4

CDD: choline-deficient diet; CMDD: choline-methionine-deficient diet; HFD: high-fat diet; HTK: histidine-tryptophan-ketoglutarate solution; MaS: ma-
crovesicular steatosis; Mixed: presence of both macrovesicular and microvesicular steatosis; ns: not stated; Saline: normal saline solution; UW: University of
Wisconsin solution.
1P < 0.05 versus lean livers; 2no lean group in study; 3decreased survival in >60% macrovesicular steatosis compared to <60% macrovesicular, >60% micro-
vesicular steatosis or >60% mixed steatosis; 4decreased survival in recipients of 30 and 70% steatotic liver volume compared to recipients of volume matched
lean livers.

Table 5: Histological finding in experimental models of orthotopic liver transplantation and hepatic steatosis.

Author Animal Steatosis
model

%
steatosis

Type of
steatosis

Duration of
ischemia
(mins)

Perfusate
Duration of
reperfusion
(mins)

Outcome
measures

Results in recipients of
steatotic livers (lean livers)

Astarcioglu
et al. [48] Rat CDD 30–60 MaS 60 or 540 ns 120 Histo ↑ Parenchymal injury

Hayashi et al. [49] Rat CDD 30–60 MaS 60 to 540 UW Up to 7 days Histo ↑ Sinusoidal congestion
and necrosis

He et al. [31] Mouse HFD 50–60 MaS 180 Saline 24 hours HIS 2.4 ± 0.05 (1.8 ± 0.05)1

Schmeding
et al. [51] Rat2 CDD >50 MaS 720 UW Up to 7 days Histo Severe necrosis

Morioka et al. [53] Rat HFD 40–50 Mixed 120 HTK 48 hours Histo ↑ Sinusoidal congestion
and necrosis

CDD: choline-deficient diet; HFD: high-fat diet; Histo: histology; HIS: histological injury score; HTK: histidine-tryptophan-ketoglutarate solution; MaS:
macrovesicular steatosis; Mixed: presence of both macrovesicular and microvesicular steatosis; ns: not stated; Saline: normal saline solution; UW: University
of Wisconsin solution.
1P < 0.05 versus lean livers; 2no lean group in study.

Table 6: Liver function tests in experimental models of orthotopic liver transplantation and hepatic steatosis.

Author Animal Steatosis
model

%
steatosis

Type of
steatosis

Duration
of

ischemia
(mins)

Perfusate

Duration
of

reperfusion
(mins)

Outcome
measures

Results in recipients of steatotic
livers (lean livers)

Astarcioglu
et al. [48] Rat CDD 30–60 MaS 60 or 540 ns 120

ALT
AST

Bile production

1640 ± 482 (396 ± 54 IU/L)1
2270 ± 684 (580 ± 70 IU/L)1

6.2 ± 0.5 (23.8 ± 1.8 cm/10min)1

He et al. [31] Mouse HFD 50–60 MaS 180 Saline 24 hours ALT 10000 ± 1500 (5000 ± 200 IU/L)1

Schmeding
et al. [51] Rat2 CDD >50 MaS 720 UW Up to 7

days
ALT
AST

1200 ± 900 IU/L
1500 ± 1200 IU/L

Morioka
et al. [53] Rat HFD 40–50 Mixed 120 HTK 48 hours ALT 700 (200 IU/L)1

ALT: alanine aminotransferase; AST: aspartate aminotransferase; CDD: choline-deficient diet; HFD: high-fat diet; HTK: histidine-tryptophan-ketoglutarate
solution; MaS: macrovesicular steatosis; Mixed: presence of both macrovesicular and microvesicular steatosis; ns: not stated; Saline: normal saline solution;
UW: University of Wisconsin solution.
1P < 0.05 versus lean livers; 2no lean group in study.
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Table 7: Histological finding in experimental models of isolated perfused model and hepatic steatosis.

Author Animal Steatosis
model

%
steatosis

Type of
steatosis

Duration of
ischemia (mins) Perfusate

Duration of
reperfusion
(mins)

Outcome
measures

Effect of hepatic
steatosis

von Heesen et al.
[54] Rat FFD-C 40–50 MaS 24 hours HTK 60 Histo ↑ Necrosis

Baskin-Bey et al.
[55] Mouse CMDD >40 MaS 24 hours UW 60 Histo ↑ Liver injury

Arnault et al. [56] Rat HFD 80–100 MiS 12, 18, or 24 hours UW 180 Histo ↑Haemorrhage1

CMDD: choline-methionine-deficient diet; HFD: high-fat diet; FFD-C: fat-free diet enriched with carbohydrate; Histo: histology; HTK: histidine-tryptophan-
ketoglutarate solution; MaS: macrovesicular steatosis; MiS: microvesicular steatosis; UW: University of Wisconsin solution.
1Only in livers preserved for 24 hours.

performed on rodents, rats (𝑛 = 12) and mice (𝑛 = 2).
Hepatic steatosis was induced using dietary modifications
with CDD (𝑛 = 5), HFD (𝑛 = 4), CMDD (𝑛 = 3),
and a period of fasting followed by a period of fat-free diet
enriched with carbohydrate (FFD-C, 𝑛 = 3) (Tables 4–8).
A control group of animals fed a standard diet was included
in 11 (73%) studies. Moderate (>30%) steatosis was present
in 13 studies, and 2 studies presented with mild (<30%)
steatosis. Macrovesicular steatosis was present in 9 studies,
and microvesicular steatosis in 1 study with the remainder
having a mixed picture. Following cold ischemia, 7/15 was
reperfused in vivo using an OLT model (Tables 4–6). The
remaining 8 studies reperfused ex vivo using a normothermic
liver perfusion circuit—isolated perfused liver model (IPM,
Tables 7 and 8). The duration of cold ischemia varied from
33 minutes to 24 hours, with 24 hours being used in 4 (27%)
studies. The majority of organs were flushed with University
of Wisconsin (UW, University of Wisconsin, Madison, WI,
USA) solution (𝑛 = 8), and all organs were stored for the
duration of cold ischemia at 4∘C on ice. Outcome measures
included survival (𝑛 = 7, Table 4), histology (𝑛 = 8, Tables 5
and 7), and LFT (𝑛 = 12, Tables 6 and 8).

4. Analysis

4.1. Warm IRI. All studies that reported survival following
IRI (𝑛 = 9) demonstrated decreased survival in animals with
>30% steatosis compared to lean controls [29–37]. Increased
duration of ischemia [35, 36] as well as increased severity
of steatosis [37] was shown to correlate with a decrease in
survival. Histologically >30% macrovesicular steatosis was
associated with increased intraparenchymal haemorrhage,
sinusoidal congestion, and necrosis compared to lean livers
[29–31, 34–41, 62]. Liver enzymes (alanine aminotransferase
(ALT), aspartate aminotransferase (AST)) [29, 31, 32, 34, 35,
37–40, 42, 47, 62], prothrombin time [35], and bilirubin
[35, 40] were increased in subjects with >30%macrovesicular
ormixed hepatic steatosis compared to lean livers.Therewere
2 studies reporting on microvesicular steatosis and its impact
on histological outcome and liver function [38, 39]. Both
studies reported similar degree of histological injury and
levels of transaminases in microvesicular steatotic animals
compared to lean controls. The findings in the 5 studies that
did not include a lean control were consistent with the studies

of macrovesicular steatosis [30, 43–46]. Animals with lean
livers (Tables 1–3) had greater survival, less histological dam-
age, or lower liver enzymes following warm IRI compared to
steatotic livers [29, 31–42, 47].

4.2. Cold IRI. Recipients of steatotic grafts following cold
ischemia had poorer survival than those transplanted with
lean livers [31, 48, 49, 52, 53]. An increased duration of
cold ischemia was associated with worse recipient outcome
[48, 49]. Histologically, >30% macrovesicular steatosis of the
donor liver was associated with increased rate of hepatic
necrosis, sinusoidal congestion, and intraparenchymal hem-
orrhage [31, 48, 49, 53–55]. In keepingwith this, liver enzymes
(ALT and AST) [31, 48, 53–55, 58, 59] and hepatic synthetic
function [48, 54] were impaired compared to recipients of
lean livers. However, mild (<30%) and mixed steatosis had
similar levels of liver enzymes compared to lean livers fol-
lowing 90 minutes of cold ischemia in an IPM [57]. Similarly,
severe (>60%) microvesicular steatosis of the liver was only
associated with increased histological damage and deranged
LFT after 24 hours of cold ischemia [56]. The findings in the
4 studies that did not include a lean control were in keeping
with the results from studies of macrovesicular steatosis [50,
51, 60, 61]. Consistent with findings in warm IRI, recipients of
lean livers [31, 48, 49, 52, 53] or lean livers subjected to IPM
[54–61] had better outcome (survival, histological damage,
and liver enzymes) following cold IRI compared to steatotic
livers (Tables 4–8).

5. Discussion

The influence of hepatic steatosis in liver surgery is poorly
described. It has been postulated that the accumulation of
fat within the liver is associated with poorer patient outcome
due to increased susceptibility of steatotic livers to IRI. IRI
initiates a cascade of inflammation and oxidative damage
that results in cellular damage [15, 16]. Inflow occlusion of
the portal triad (Pringle’s maneuver) [63] can be applied to
decrease blood loss during liver resection, but this process of
occlusion and subsequent reperfusion to the ischemic liver
induces IRI that may impair liver regeneration following
hepatectomy [64]. Liver transplantation is the only curative
treatment for end-stage liver disease. The number of patients
added to the waiting list in the United States of America
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Potentially relevant abstracts identified

steatotic livers
- Not original research articles
- Duplicates
- Genetically modified animals
- Clinical studies

Manuscripts retrieved for detailed evaluation

Manuscripts identified from searching 
reference lists    

Potentially appropriate manuscripts      

Manuscripts meeting the inclusion criteria

Manuscripts excluded in systematic review 

- No description of severity/type
of hepatic steatosis

n = 1314

n = 84

n = 5

n = 56

n = 89

n = 33

Abstracts excluded (n = 1230)

- Investigated NASH2

= 717

= 26

= 19
= 3
= 3
= 3
= 1
= 1

= 344
= 81
= 68
= 17
= 3

- Genetically modified animals

- Investigated NASH2

- No clinically relevant outcome3

- Duplicate population
- Ex vivo storage for warm ischemia4

- Ethanol-derived fatty liver disease

1IRI, ischemia-reperfusion injury
2NASH, non alcoholic steatohepatitis
3Clinically relevant outcome (graft/recipient survival, histology, or liver function test)
4Ex vivo storage excluded as the liver was stored ex vivo at 37

∘C and
does not mimic clinical warm ischemia

- Did not report hepatic IRI1 in

Figure 1: Quorum diagram.

from 2007 to 2009 was 10500. Over the same time period,
approximately 6000 liver transplants were performed each
year. This has resulted in a high mortality rate on the waiting
list and forced transplant units to use marginal or extended-
criteria liver grafts, which include steatotic livers [65]. In
liver transplantation, the process of cold preservation and
warm reperfusion leads to IRI. Although it is plausible
that steatotic livers are more susceptible to IRI, it remains
speculative.The prevalence of hepatic steatosis is predicted to
substantially increase over the next decade in parallel with the
rising prevalence of the metabolic syndrome [66]. A better
understanding of the effect of hepatic steatosis in patients

undergoing hepatic resection or transplantation is required, if
we are going to improve the outcome of this group of patients.

A number of experimental models of hepatic steatosis
have been developed; however, a single model that encom-
passes the full characteristic of human NAFLD remains elu-
sive [67]. The ideal animal model would include both the
metabolic syndrome and liver pathology.Most rodentmodels
to date have used genetically modified animals, which pro-
duce hepatic steatosis, but these mutations are not prevalent
in human NAFLD pathophysiology. For this reason we did
not include genetically modified models in this review. High
fat and carbohydrate fed animals are probably the closest
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model to the clinical situation. There have only been a few
reports using such models, and in this review no studies
used a high fat-carbohydrate fed rodent model. The CDD
or CMDD model is a compromise that has been extensively
used, and was included in this review. CDD or CMDD
induces hepatic steatosis through abnormal lipid metabolism
but is not associated with insulin resistance, and the animals
have significant weight loss. The diet used in the studies in
the review that most closely resemble the clinical situation
is the HFD or HC diet, and 10 studies in this review used
these diets. Future studies will need to encompass the clinical
dietary scenario into the experimental diet, but an ideal
model remains elusive.

Hepatic steatosis is traditionally described as either
macro- ormicrovesicular.Macrovesicular steatosis is thought
to be associated with the metabolic syndrome or alco-
hol abuse, and microvesicular steatosis is usually related to
toxins or metabolic disorders [12]. In the 33 studies identi-
fied, 23 studies reported macrovesicular steatosis of >30%.
The difference in histological descriptions among the studies
makes data interpretation and comparison difficult. Debate
also surrounds the utility of individual staining methods
or whether histological diagnosis is still the gold standard
[68]. Despite this, reporting of tissue histology lacks the
consistency required to define the severity of the hepatic
steatosis studied as evident by the number of studies excluded
due to incomplete reporting of histological description in
their studies (𝑛 = 19). This leads to difficulty in making
detailed comparisons among studies. Future studies will need
to have precise identification of the type of steatosis and the
percentage of steatosis involved in the experiment. This will
help define a threshold for the severity of hepatic steatosis that
can be correlated with adverse outcome.

In the studies included in this review, the method and
duration of inducing warm IRI varied greatly. The major-
ity of studies used partial vascular occlusion, and in a
proportion of these, they resected the nonischemic lobe
prior to reperfusion. This was done to force the animal to
survive on the liver lobes subjected to IRI. It is unlikely that
this would have influenced the outcome in these studies. In
the clinical setting, total vascular occlusion is the method
most commonly used in liver surgery. However, only a small
number of studies (6/19) performed total vascular occlusion
as this is poorly tolerated in rodents due to splanchnic
congestion, with potential confounding effects from bowel
ischemia and related hemodynamic disturbances.Therewas a
large variation in the duration of ischemia and/or reperfusion
between each of the studies. The most common duration
of ischemia was 60 minutes, but it varied from 15 to 90
minutes, and the duration of reperfusion varied from 30
minutes to 24 hours.The duration of IRI appeared to be based
on previous experience within each laboratory rather than
specific evidence.

Survival after hepatectomy relies on the ability of the
liver remnant to regenerate. It is postulated that steatotic
livers have decreased capacity to regenerate when subjected
to IRI [69]. In this review, animals with >30%macrovesicular
steatosis subjected to warm IRI had a decreased rate of
survival compared to nonsteatotic animals [29–37] with a

clear correlation between duration of ischemia and survival.
The threshold for a survivable duration of total hepatic
ischemia in animals with >30% macrovesicular steatosis was
30 minutes [29, 35, 36]. All the studies utilized total hepatic
ischemia to investigate survival. Apart from the duration of
ischemia, the severity of steatosis also had a negative impact
on survival [37]. This is consistent with the clinical suspicion
that steatotic livers have a decreased ability to regenerate
after hepatectomy, and the combined effect of the duration
of ischemia and underlying liver disease, in this case severity
of macrovesicular steatosis, should be carefully considered in
the clinical setting of liver resection.

In this review, histology and liver enzymes were used to
assess severity of hepatic injury following warm IRI in 12
and 17 studies, respectively. This is similar to clinical practice
where blood tests, and less commonly percutaneous biop-
sies, are used to monitor hepatic function. The histological
findings and liver enzymes in these studies correlate with
the reports of decreased survival in animals with steatotic
livers.There was evidence of increased histological damage in
steatotic livers compared to lean controls with corresponding
greater derangements of liver function in these animals. Of
note, animals with microvesicular steatosis showed similar
histological findings and enzyme profile compared to lean
controls [38, 39]. This is consistent with clinical studies [70,
71] where the presence of microvesicular steatosis does not
influence outcome following liver transplantation. However,
Llacuna et al. [72] recently reported increased histological
damage and greater derangement of ALT in microvesicular
steatotic animals compared to macrovesicular steatotic ani-
mals or lean controls. This raised the issue of whether the
severity and type of steatosis is more important than the lipid
composition of the liver in influencing the susceptibility of
steatotic livers to IRI [68]. However, assessing lipid compo-
sition in a clinical setting is difficult and more invasive, but
this warrants further research in humans to correlate with the
experimental data.

In the studies examining the effect of cold ischemia, the
duration of cold ischemia and/or reperfusion varied greatly.
The duration of cold ischemia was chosen to mimic the
clinical scenario of prolonged cold preservation of the donor
organ. However, the duration of reperfusion is harder to
standardize and varied depending on the biological factors
being investigated. Another factor that is likely to affect the
outcome is the model used—OLT versus IPM. The rationale
for utilizing IPM is to evaluate hepatic function but in an
isolated manner, removed from the influence of other phys-
iological systems. IPM provides a controlled setting with
easily reproducible experiments and absence of an immune
response [73]. However, it does lack the interaction with
blood components and other organ systems that the OLT
model provides. Ideally, OLT should be used in experimental
studies as it is an in vivo model with true physiological
interaction, but for more targeted investigation, the IPM
still provides a technically easier and cost-effective option.
All of the OLT models in the included studies utilized
isografts, rather than allografts. This was probably done to
remove the immunological effect of alloantigens on graft
outcome, focusing on the effect of steatosis. An allograft
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transplant model with hepatic steatosis may need to be
considered for future studies to investigate whether the
alloimmune response further affects the outcome of steatotic
livers.

Outcome of a liver graft following transplantation is
affected by the duration of cold ischemia [74], size [75], and
quality [7] of the liver graft. It has been proposed that steatotic
livers have decreased tolerance to prolonged cold ischemia
[76] and decreased effective liver mass for transplantation
[77]. The studies in this review demonstrated that >30%
steatosis was associated with a lower survival rate which was
further affected by the duration of cold ischemia [48, 49] and
graft size [53].Three to six hours of cold preservation ofmod-
erate macrovesicular steatotic grafts resulted in decreased
survival rate andwas similar to lean livers subjected to 9 hours
of preservation [49]. Additionally, small lean livers (30%
of standard liver volume) had good postoperative outcome
whereas the same-sized steatotic liver hadworse survival [53].
Furthermore, recipients of steatotic livers that were 70% of
the standard liver volume had decreased survival compared
to same-sized lean livers. This reaffirms the clinical suspicion
that >30% macrovesicular steatosis is an independent risk
factor for graft survival after transplantation, and liver grafts
with >30% macrovesicular steatosis should only be trans-
planted if other risk factors are minimized [76].

6. Conclusions

The evidence from this systematic review suggests that livers
with moderate-to-severe macrovesicular steatosis are more
prone to the deleterious effects of IRI, resulting in poorer
graft and recipient survival, increased histological injury,
and deranged hepatic function. Due to a paucity of clinical
studies looking at the influence of hepatic steatosis on patient
outcome, it is unlikely that we will find the answer from a
retrospective review of clinical studies, and we will need to
undertake large prospective trials. Until then, clinical practice
should reflect on the scientific evidence, and on the basis
of the experimental evidence presented, hepatic surgeons
should proceed cautiously in patients with greater than
moderate macrovesicular hepatic steatosis.
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