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Objective: To investigate the ability of contrast-enhanced ultrasound (CEUS)-based
radiomics combined with machine learning to detect early protein changes after
incomplete thermal ablation.

Methods: HCT-26 colorectal adenoma cells were engrafted into the livers of 80 mice,
which were randomly divided into 4 groups for palliative laser ablation. Changes in heat
shock protein (HSP) and apoptosis-related protein expression in the tumors were
assessed. SCID mice subjected to CEUS and ultrasonography were divided into
training (n=56) and test (n=24) datasets. Then, 102 features from seven feature groups
were extracted. We use the least absolute shrinkage and selection operator (LASSO)
feature selection method to fit the machine learning classifiers. The feature selection
methods and four classifiers were combined to determine the best prediction model.

Results: The areas under the receiver-operating characteristic curves (AUCs) of the
classifiers in the test dataset ranged from 0.450 to 0.932 (median: 0.721). The best score
was obtained from the model in which the omics data of CEUS was analyzed in the arterial
phase by random forest (RF) classification.

Conclusions: Amachine learning model, in which radiomics characteristics are extracted
by multimodal ultrasonography, can accurately, rapidly and noninvasively identify protein
changes after ablation.

Keywords: CEUS (contrast-enhanced ultrasound), radiomics, machine learning, liver metastases, thermal ablation
INTRODUCTION

Whether liver metastases can be inactivated in patients with liver metastases from colorectal cancer
(CRLM) is a key issue influencing the survival and long-term tumor-free survival of patients (1–3).
Thermal ablation has been considered an effective method in the treatment of such patients, but
sometimes the residual tumor cells cannot be completely inactivated by ablation (4, 5). Various imaging
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studies have a good judgment on the necrotic changes at the
histological level after ablation and have formed certain clinical
guidelines, but there are few reports on the changes at the molecular
level, especially at the protein level. The molecular changes before
and after ablation and the combination of molecular targeted
therapy on this basis are the current research focus (6–8). At the
same time, there is an urgent need for noninvasive imagingmethods
to reveal the molecular changes in the tumor before and after
ablation (9).

The development of imaging has enabled the successful
transformation of high-dimensional medical images into
massive amounts of multilevel quantitative data (10, 11). In
theory, imaging has the potential to reveal the tumor phenotype
and molecular changes from the level of macroscopic
characteristics of organ tissues to the level of local cell and
molecular characteristics (12). The accurate, timely and sensitive
display of tumor molecular characteristics by imaging is of great
significance for treatment (13–16). CT, MRI and PET have been
successfully explored in these fields (17–20). There are relatively
few reports on multimodal ultrasound, including contrast-
enhanced ultrasound (CEUS), and there is no standard for
omics exploration methods (21–23). The main difficulty is the
lack of universal ultrasound omics analysis methods, especially
for CEUS data (24, 25).

Multimodal ultrasound in the imaging-based diagnosis of
liver metastases has the advantages of being easy, repeatable,
nonradioactive, and highly sensitive and is the main imaging
means for guiding thermal ablation. In most interventional
treatment centers in China, the rate at which ultrasound can
detect liver metastases is an important factor for decision-
making regarding ablation. We explored whether CEUS-based
multimode ultrasound imaging can detect early molecular
changes in incomplete tumor ablation in animal models.
MATERIALS AND METHODS

Animal Model
All experimental procedures followed Zhejiang University
Laboratory Animal Operating Regulations. (http://www.lac.zju.edu.
cn/cms/12997). This research protocol was approved by the
Research Ethics Committee of the First Affiliated Hospital of
Zhejiang University. The severe combined immunodeficiency
(SCID) mice were housed in a specific pathogen-free (SPF) animal
room and were underwent a 12-h light/dark cycle to obtain free food
and tap water. The temperature of the room is 20-25°C and the
humidity is 50-60%. The 10mm long HCT-26 colorectal adenoma
tumor tissue was cut into 2-mm3 pieces and implanted into the left
lobe liver of SCID mice by surgical incision. According to the
different ablation conditions, a total of 80 mice were divided into 4
groups with 20 mice in each group. The grouping was performed
with a random number method. The first group is a blank control
group, the second group is a sham puncture group, the third group
and the fourth group are incomplete ablation groups. The
incomplete ablation experiments were performed after 2 weeks
when tumors had grown to an average diameter of 0.6-0.7 cm
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(Figure 1A). The SCID mice were killed 18 h after incomplete
ablation, and the largest tumor diameter was 0.8-1.0 cm.

Palliative Ablation Method
Intraperitoneal anesthesia was administered to the SCID mice
with approximately 200 ml 4% chloral hydrate at a dose of 400
mg/kg mouse weight. We applied the conditions established in
the previous study to construct an incomplete ablation model
(26, 27). Mice were fixed on the operating table with local
disinfection. An ultrasound-guided 21-G percutaneous
transhepatic cholangiography (PTC) needle was used to
puncture the tumor. After confirming the position of the
needle by high-frequency ultrasound, the operator removed the
inner core and inserted a laser fiber into the needle (Mylab™

Twice, Esaote SpA) (Figure 1B). After confirming that the fiber
was positioned at 1/3 of the length of the tumor, the power was
set at 1 W, and the foot switch was activated for continuous laser
ablation; the treatment time was 0 seconds, 30 seconds and 60
seconds (total dose of 0 J, 30 J, 60 J). Local hemostasis was
conducted by applying gentle pressure following treatment.

Multimodal Ultrasound Examination
and Image Evaluation
All ultrasound examinations were performed by two experienced
radiologists who had more than 10 years of experience in
ultrasound-guided interventional procedures. Conventional
sonography was conducted with MyLab Twice (Esaote SpA,
Genoa, Italy) with a linear array transducer with a frequency
range of 18-22 MHz. Scans were performed under the abdominal
preset, and the imaging focal zone was positioned posterior to
the level of the lesion. For the target lesion, the largest section in
terms of both longitudinal and transverse views was stored.
Color Doppler of each lesion was performed by using the same
transducer, and the picture was recorded.

The linear array transducer with a frequency range of 1.0 to
4.0 MHz is equipped with a contrast-specific contrast pulse
sequencing imaging mode for CEUS inspection. Contrast-
enhanced sonography was performed using SonoVue (Bracco
SpA, Milan, Italy), a second-generation ultrasound contrast
agent consisting of microbubbles of sulfur hexafluoride gas. A
0.1-mL bolus of SonoVue was hand injected through a 25-G
intravenous catheter in the caudal vein. The target lesion in the
largest plane was continuously observed and documented with a
60-second long clip (Figures 1C, D). All the above mentioned
ultrasound examinations were completed on the experimental
day 8 h after incomplete ablation or sham puncture.

CEUS features (including the enhancement level,
enhancement homogeneity, enhancement boundary, and
feeding artery) were evaluated and recorded. All digital cine
clips of the study population were retrospectively reviewed by
two investigators (C.F. and B.H.W.), each of whom has more
than 10 years of experience in evaluating liver CEUS scans. They
were asked to evaluate and record the imaging features of all the
mice using a standardized approach. In cases of discordance, a
consensus reading was performed, and the classification
judgment was made.
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Sample Collection and Molecular
Biological Examination
The SCID mice were euthanized via intraperitoneal injection of
2% sodium pentobarbital at a dose of 150 mg/kg body weight.
Cervical dislocation was used to confirm the death of 80 mice
18 h post-operation. The 80 tumors were cut along their
diameter, and one-quarter was fixed in 4% paraformaldehyde
for 48 h at room temperature, whereas the remaining three-
quarters of each tumor was kept in a liquid nitrogen jar.
Histopathology was performed with HE and periodic acid-
Schiff (PAS) staining (Figures 1E, F).
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Terminal deoxynucleotidyl transferase dUTP nick end
labeling (TUNEL) was used to determine the apoptosis of the
tumor cells in the liver that underwent incomplete ablation. For
each section, five or more high-magnification fields (200x) with
at least 500 cells were selected to count the number of cells
emitting green fluorescence and to subsequently calculate the
apoptosis index (Ai). The equation was as follows: Ai = (number
of positive cells/number of total cells) 100% ± SD.

Small tumor samples were lysed on ice using RIPA lysis buffer
(P0013B, Beyotime, China) containing a protease inhibitor cocktail;
cellular debris was pelleted by centrifugation at 12,000 rpm for 5min
A B

C D

E F

FIGURE 1 | Ultrasonic image and histopathology of the implanted tumor. (A) Gray ultrasound showed hypoechoic metastases in the liver parenchyma with clear
boundaries. (B) Ultrasound showed laser fiber into the center of the tumor. (C) The 5-second image of contrast-enhanced ultrasound in liver metastases. (D) The 25-
second image of contrast-enhanced ultrasound in liver metastases. (E) The morphology of intestinal adenocarcinoma cells was uniform with large and deep stained nuclei
(HE staining). (F) Compared to intratumoral tissue, there was increased staining in liver tissue with clear edges (periodic acid-Schiff staining).
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at 4°C, and the supernatants were harvested. Protein concentrations
were measured by a bicinchoninic acid (BCA) protein assay kit
(P0010 Beyotime, China). The protein lysates (30 µg per lane) were
separated via SDS-PAGE. Following separation on an 8%~15%
acrylamide gel, the proteins were transferred onto PVDF
membranes. The membrane containing the proteins was
successively incubated with blocking buffer (overnight at 4°C),
with a primary antibody (37°C for 1 h) and with a secondary
antibody (37°C for 1 h). The following primary antibodies were used:
anti-Bax (1:3000; ab32503), anti-caspase-3 (1:1000; ab184787), anti-
Hsp70 (1:1000; Ab2787), anti-Hsp90 (1:1000; Ab13492), and anti-
GAPDH (1:1000; ab181602), all from Abcam Biotechnology. HRP-
conjugated goat anti-mouse IgG H&L (1:3000; SE131, Solarbio,
USA) was used as the secondary antibody. Chemiluminescence
detection was achieved by exposure to film in a darkroom.
Following development and fixation with washing buffer at
20−25°C for 10 min (P0019, Beyotime Institute of Biotechnology),
the film was visualized with an enhanced chemiluminescence system
(ECL, Beyotime, China). The densities of the protein bands were
determined using ImageJ software (v1.46; National Institutes of
Health), normalized to actin expression and quantified using
Microsoft Excel software (version 2016, Microsoft Corporation).

Feature Extraction and Selection
Dynamic CEUS was used to obtain a series of static images at a
frequency of one per second. All stored images were transformed
Frontiers in Oncology | www.frontiersin.org 4
into an 8-bit bitmap. For each lesion, a region of interest (ROI)
around the tumor border was delineated on the largest cross
section with the ABsnake plugin using ImageJ software
semiautomatically. Two doctors porformed three times
combined with their own judgment. Then, a total of 102
features were extracted from the ROI using PyRadiomics
(version 1.3.0; Computational Imaging and Bioinformatics Lab,
Harvard Medical School). The CEUS images of each mouse were
extracted at 5, 25, and 45 seconds (Figure 2A). To reduce the
differences in semi-automatic manual segmentation between
sonographers, we calculated the intraclass correlation
coefficient (ICC) of each feature between two doctors. We
extracted the following three types of data for machine
learning analysis: the grayscale data, contrast-enhanced arterial
phase data (15 seconds), and the whole course of CEUS data. The
absolute values of the differences in the 5- and 25- second and the
25-second and 45-second CEUS radiomics data per mouse were
added as the data representing the whole course of CEUS for
subsequent analysis. To construct nonredundant and robust
combined radiomic signatures, the least absolute shrinkage and
selection operator (LASSO) regression method was used
(Figure 2B). The complexity of the LASSO regression is
controlled by a tuning parameter lambda (l) with the rule that
as the value of l increases, the penalty for each variable
coefficient also increases. Only nonzero coefficient variables
were selected in this method.
FIGURE 2 | The CEUS-based radiomics analysis schematic. (A) The CEUS images of mouse was extracted at 5,25 and 45 seconds. (B) Lasso regression was used
as feature selection method. (C) Four supervised machine learning algorithms were applied.
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Machine Learning and Model
Performance Evaluation
Data analysis and training of binary classifiers was performed
using the Python programming language (Python Software
Foundation, version 3.7.4, 2019, available at http://www.
python.org), including the packages “numpy,” “pandas,”
“sklearn,” and the other package and the Anaconda integrated
development environment (version 1.9.12, Anaconda Inc., USA).

We applied 4 supervised machine learning algorithms; these
classifiers were k nearest neighbors (KNN),decision tree (DT),
random forest(RF) and logistic regression (LR) (Figure 2C).

There were six kinds of radiomics data as the inputs of each
machine learning model(1. Grayscale ultrasound 2. Contrast-
enhanced arterial phase data 3. The whole course of CEUS 4.
Grayscale data with LASSO regression 5. Contrast-enhanced arterial
phase data with LASSO regression 6. The whole course of CEUS
with LASSO regression).These 4 classification methods combined
with six kinds radiomics data to establish 24 (6× 4 = 24) models.

Each of the 24 models was trained and 10-fold cross validated in
the training set with scikit-learn. The receiver operating
characteristic (ROC) curve and area under the ROC curve (AUC)
were employed to evaluate the predictive accuracy of the radiomics
signatures developed. The model that had the highest AUC value in
the test dataset was selected as the final model.

A two-sided p value of < 0.05 was used as the criterion to
indicate a statistically significant difference. Statistical analysis
was conducted with SPSS 22.0 for Windows (Chicago, IL).

The above is the main process of this study (Figure 3).
RESULTS

Molecular Changes After Tumor Ablation
The Expression of HSPs Is Increased After Ablation
Compared with those in groups 1 and 2, the expression levels of
two HSPs (HSP70 and HSP90a) were increased in groups 3 and
Frontiers in Oncology | www.frontiersin.org 5
4. The western blotting results confirmed that the HSP70 and
HSP90a expression levels were significantly higher in
experimental groups 3 and 4 than in control groups 1 and 2;
the relative HSP70 and HSP90a expression levels in group 4 were
higher than those in group 3 (p < 0.01) (Figures 4A, B).

Apoptosis in the Incomplete Ablation Group and the
Control Group
The apoptosis rate was higher in groups 3 and 4 than in groups 1
and 2. The TUNEL assay showed more green fluorescence
accumulation in groups 3 and 4 than in groups 1 and 2. Ai
was higher for the tumors in groups 3 and 4 than for the tumors
in groups 1 and 2, and Ai was higher in group 4 than in group 3
(Figures 4C, D).

The expression of the apoptosis protein Bcl-2 was lower in
groups 3 and 4 than in groups 1 and 2. The expression of the
apoptosis protein BAX was higher in groups 3 and 4 than in
groups 1 and 2. The relative expression levels of cleaved caspase-
3 protein detected by western blot analysis showed were
significantly different between groups 1 and 2 vs. groups 3 and
4 (Figures 4E, F).

Interobserver Agreement
The interobserver reproducibility of feature extraction by the two
ultrasonographers was good, with ICCs ranging from 0.789 to
0.932. Therefore, all the outcomes were based on the
measurements made by the first sonographer.

Feature Selection
The training dataset includes 102 radiomics features. The
features were grouped into first-order statistics (18 features)
and shape-based (9 features), gray level dependence matrix
(GLDM, 14 features), gray level cooccurrence matrix (GLCM,
24 features), gray level run length matrix (GLRLM, 16 features),
gray level size zone matrix (GLSZM, 16 features), and
neighboring gray tone difference matrix (NGTDM, 5 features)
FIGURE 3 | The flow chart shows the three main steps process in our study.
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features. A radiomics signature was further constructed based on
the 102 features with respective nonzero coefficients selected
through the LASSO regression method.

Model Performance Evaluation
LR is one of the most commonly used generalized linear mixed
models (GLMMs) for two classifications of data. The number of
key features selected for building a radiomics signature was
determined by the concordance index (C-index) value using
10-fold cross-validation. LR with L1 regularization had an AUC
of 0.450-0.829 in the test dataset; LR with LASSO feature
se lec t ion had an AUC of 0 .493-0 .850 in the tes t
dataset (Figure 5A).
Frontiers in Oncology | www.frontiersin.org 6
In the tune grid, we varied the max_depth between 1 and 10;
min_impurity_decrease between 0-1; the best score was 0.792.
The final model had a max_depth of 4 per decision tree. The final
AUC of the DT classifier in the test dataset was 0.542-0.875. The
final AUC of the DT classifier with LASSO feature selection in
the test dataset was 0.546-0.622 (Figure 5A).

The selected RF classifiers consisted of 28 decision trees. In
the tune grid, we varied the number of features randomly selected
for each tree between 1 and 10. At a max-depth of 4, a plateau
was observed at an AUC of 0.79, and the accuracy cannot be
improved by increasing the tree depth. Consequently, the depth
of each decision tree of the final model is 4 randomly selected
predictors. The final AUC of the RF classifier was 0.613-0.932.
A B

C D

E F

FIGURE 4 | Molecular changes in the control groups and the experimental groups. (A) HSP70 and HSP90a expression. (B) HSP70 and HSP90a expression
levels in four groups. Significant differences were calculated in groups 1 and 2 vs. groups 3 and 4, groups 3 vs. 4. (C) TUNEL expression (magnification).
(D) Apoptosis index of the four groups. Significant differences were calculated in groups 1 and 2 vs. groups 3 and 4, groups 3 vs. 4. (E) Protein expression.
(F) Bcl-2, BAX, and c-capase3 protein expression level in four groups. Significant differences were calculated between groups 1 and 2 vs. groups 3 and 4.
*p < 0.05, **p < 0.01.
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The final AUC of the RF classifier with LASSO was 0.588-
0.757 (Figure 5A).

We kept a KNN classifier as a reference because it is
frequently applied, easy to implement, and robust, although its
performance is worse than other classifiers. The number of
neighbors used for classification varied from 1 to 11, and
gradually increased by 1 during training. The best performance
was achieved by the classifier using k = 1 neighbors. The final
AUC of the KNN classifier was 0.656-0.867. The final AUC of the
KNN classifier with LASSO was 0.481-0.759 (Figure 5A).

In Figure 2A, the mean AUCs of the 8 models are presented
in the heatmap. AUCs ranged from 0.450 to 0.932; the median
value was 0.721, and the best score was 0.932 (the RF model in
the artery dataset; RF_artery) (Figure 5B). The AUCs of
grayscale data combined with all the four classifiers ranged
from 0.450-0.656 and the AUCs of graylasso data combined
with all four classifiers ranged from 0.481-0.588. This shows that
the classification value of grayscale ultrasonic image data is
not high.

The AUC for the image identification ability of sonographers
using conventional analytical methods is 0.705. The best
machine learning score was significantly better than the
ultrasonographer score (P<0.01).
DISCUSSION

In this preclinical radioproteomics study, we hypothesized that
there was a causal relationship between image features and
protein expression. To prove our hypothesis, we first employed
a model of metastatic cancer implantation in SCID mice and
performed incomplete ablation intervention. Our previous study
showed that 30J and 60J laser ablation caused incomplete
ablation, which induced increased apoptosis of the tumor
tissue without causing significant necrosis (26, 27). Heat shock
protein(HSP) family is sensitive to heat injury. Increased
reactivity of HSP90 and HSP70 after incomplete thermal
ablation has been reported in the literature (28, 29). The
increase in HSP70 and HSP 90 indicates that the tumor tissue
Frontiers in Oncology | www.frontiersin.org 7
has suffered the corresponding thermal damage. Apoptosis
related examinations including the increased expression of
TUNEL, BAX protein, cleaved caspase-3 protein and the
decrease of Bcl-2 protein, all proved the changes in apoptosis
related proteins in tumor tissue (30).The related indicators—
HSPs and apoptosis -related proteins—were assessed to confirm
the ability of the model to detect protein level changes in a short
time after incomplete ablation. The results show that the binary
classification machine learning model trained by quantitative
radiomics ultrasound data can distinguish changes in protein
levels after incomplete ablation.

Radiomics has facilitated some meaningful advances in the
field of liver tumor ablation (31). A total of 647 radiologic
features of three-phase contrast-enhanced CT within 2 weeks
before ablation were extracted from 184 HCC patients. LASSO
Cox regression model was used to select valuable indexes. A
recurrence prediction model was established based on
clinicopathological factors and radiological features The results
indicated that among the four radiomic models, the portal
venous-phase model performed best in the validation subgroup
(C-index = 0.736 (95% confidence interval [CI]: 0.726-0.856)).
The predictive ability of the combined clinicopathological and
radiological features model was significantly better than that of
the simple clinical model (ANOVA, P < 0.05). 0001).

At present, there are several kinds of ultrasound contrast
agents for monitoring microcirculation perfusion. Only
SonoVue(Bracco Italy) has obtained the approval and license
for abdominal imaging procedures in China. SonoVue is a stable
sulfur hexafluoride microbubble surrounded by a phospholipid
shell with a mean diameter of 2.5–6 mm (32). Guidelines and
clinical practice recommendations for CEUS have been
developed. CEUS is helpful to improve the detection of liver
lesions. It has been suggested in planning and monitoring of liver
metastatic tumor ablation.

CEUS with SonoVue is close to the gold standard of contrast-
enhanced imaging in evaluating the short-term ablation rate (1-3
months) after ablation. It has the advantage of real-time and
quick evaluation after ablation (immediate and 30 min), which
can immediately guide re-ablation and improve the complete
A B

FIGURE 5 | Heatmaps illustrating the predictive performance (AUC) of different combinations of feature selection methods (rows) and classification algorithms
(columns). (A) Cross-validated AUC values of 24 models on the training and validation datasets. (B) ROC curve of RF_artery.
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ablation rate of single ablation. In China and other countries,
more than 50% of patients choose multimodal ultrasound
guidance (33, 34). Early multimodality ultrasound has the
advantage that incomplete ablation is detected sooner but
brings about the challenge of interpreting dynamic processes
such as transient edema. Therefore, it is valuable to explore the
imaging omics evaluation of ablation based on ultrasound and
CEUS immediately after surgery. Based on our limited
knowledge, we have not yet seen a study assessing the protein
level before and after tumor ablation by ultrasound imaging
omics based on CEUS data. Only one study applied a radiomics
technique with CEUS to assess tumor heterogeneity (35). In
three tumor models of xenografted mice, the morphological and
functional characteristics of tumor vessels were extracted by
CEUS, and the tumor phenotype was classified by a trained
linear support vector machine (SVM) incorporating features
including the image intensity median, gray level cooccurrence
matrix energy, vascular network length, and run length
nonuniformity of the gray run matrix. The fourfold cross
validation scheme was used to train the model, and a correct
classification rate of 82.1% (95% CI: 0.640-0.92) was obtained.
However, the author used an uncommon and hard-to-obtain
vessel segmentation algorithm to extract CEUS radiomics data.

In this study, we successfully extracted the static radiomics
data of grayscale ultrasound and CEUS at a certain time point by
using the general open-source radiomics software PyRadiomics.
The numerical differences between three static time CEUS scans
were calculated to represent the whole process of CEUS. The data
in this study are two-category small sample data, which are not
suitable for deep learning methods that require large amounts of
data, such as neural networks. We have selected the following
four as exploration methods in machine learning classification
algorithms. First, LR is one of the most commonly used methods
for the two types of data classification, and traditional statistical
methods can also be implemented. The KNN classifier is selected
as a reference because it is a frequently used and easy to
implement. The DT classifier and RF classifier are the most
effective classification methods in machine learning. The results
also prove that in this study, the effect of RF classification is the
best, which has exceeded that of experienced doctors. The four
most commonly used machine learning methods were applied to
analyze six kinds of radiomics data. The RF_artery model proved
to have the highest AUC value of 0.932. The value of CEUS in the
arterial phase at 5 seconds was the highest, which is consistent
with our clinical experience. The arterial phase of CEUS is often
the most representative feature of microcirculation perfusion in
tumors. In the LI-RADS classification standard of the liver
contrast-enhanced ultrasound guide, the performance of the
arterial phase of contrast-enhanced ultrasound occupies a high
weight (36). The combination of anatomical and functional
information might enable the development of better models for
radiomics analysis.

In this study, relatively few animals were assessed, and a
standardized acquisition protocol was used to image all mice.
Thus, there is a risk that the data were overfitted and that the best
image for analysis was not randomly selected for the test dataset.
Frontiers in Oncology | www.frontiersin.org 8
In addition, the small sample size makes the results more
susceptible to data variability. Radiomics analysis can be
influenced and challenged by the different types of scanners
from different manufacturers in the clinical setting. This study
provides good confidence that CEUS data can be used to perform
radiomic analysis. Future studies should address the above
mentioned issues.
CONCLUSIONS

We have shown in in vivo preclinical models that radiomics is
able to quantify early protein changes in tumors after incomplete
ablation and identify differences that are not visible to the human
eye. After incomplete ablation, the radiomics profile of CRLM
appears to be different from that before surgery. These
differences may be identified by binary classification
algorithms, especially by RF trained with radiomics features
extracted from the arterial-phase CEUS immediately after
ablation, which showed the best AUC of 0.932, allowing for an
early assessment of protein level changes after ablation. Further
studies are needed to further validate its classification ability.
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Ultrasound Contrast Agents: Properties, Principles of Action, Tolerance,
and Artifacts. Eur Radiol (2001) 11(8):1316–28. doi: 10.1007/s0033
00100940

33. Dill-Macky MJ, Asch M, Burns P, Wilson S. Radiofrequency Ablation of
Hepatocellular Carcinoma: Predicting Success Using Contrast-Enhanced
Sonography. AJR Am J Roentgenol (2006) 186(5 Suppl):S287–95. doi:
10.2214/AJR.04.1916

34. Choi D, Lim HK, Kim SH, Lee WJ, Jang HJ, Lee YJ, et al. Hepatocellular
Carcinoma Treated With Percutaneous Radio-Frequency Ablation:
Usefulness of Power Doppler US With a Microbubble Contrast Agent in
Evaluating Therapeutic Response-Preliminary Results. Radiology (2000) 217
(2):558–63. doi: 10.1148/radiology.217.2.r00oc07558
August 2021 | Volume 11 | Article 694102

https://doi.org/10.1097/SLA.0000000000003701
https://doi.org/10.1097/SLA.0000000000003701
https://doi.org/10.3322/caac.21208
https://doi.org/10.1136/gutjnl-2015-310912
https://doi.org/10.1016/j.ejso.2007.09.027
https://doi.org/10.1245/ASO.2003.03.026
https://doi.org/10.1245/ASO.2003.03.026
https://doi.org/10.1097/MD.0000000000002924
https://doi.org/10.1097/MD.0000000000002924
https://doi.org/10.3390/cancers11091265
https://doi.org/10.1080/02656736.2019.1569731
https://doi.org/10.1016/j.ebiom.2018.09.023
https://doi.org/10.1007/s00330-019-06347-w
https://doi.org/10.1016/S1470-2045(18)30413-3
https://doi.org/10.1007/s00330-018-5935-8
https://doi.org/10.1158/1055-9965.EPI-20-0075
https://doi.org/10.3389/fonc.2021.605230
https://doi.org/10.3389/fonc.2019.00821
https://doi.org/10.1016/S1470-2045(20)30034-6
https://doi.org/10.1097/RLI.0000000000000653
https://doi.org/10.3389/fonc.2018.00294
https://doi.org/10.3389/fonc.2020.00053
https://doi.org/10.1080/02656736.2017.1373306
https://doi.org/10.1007/s11547-014-0415-y
https://doi.org/10.1080/02656736.2019.1687945
https://doi.org/10.1080/02656736.2019.1687945
https://doi.org/10.1007/s00330-018-5809-0
https://doi.org/10.1080/02656736.2018.1536285
https://doi.org/10.1080/02656736.2018.1536285
https://doi.org/10.3892/mmr.2020.11080
https://doi.org/10.3892/ijo.24.3.609
https://doi.org/10.1080/02656730500133736
https://doi.org/10.1080/02656730500133736
https://doi.org/10.1016/j.jss.2005.03.020
https://doi.org/10.1186/s40644-019-0207-7
https://doi.org/10.1186/s40644-019-0207-7
https://doi.org/10.1007/s003300100940
https://doi.org/10.1007/s003300100940
https://doi.org/10.2214/AJR.04.1916
https://doi.org/10.1148/radiology.217.2.r00oc07558
https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


Bao et al. CEUS-Based Radiomics Predicted Liver Metastases
35. Theek B, Opacic T, Magnuska Z, Lammers T, Kiessling F. Radiomic Analysis
of Contrast-Enhanced Ultrasound Data. Sci Rep (2018) 8(1):11359. doi:
10.1038/s41598-018-29653-7

36. Zheng W, Li Q, Zou XB, Wang JW, Han F, Li F, et al. Evaluation of Contrast-
Enhanced US LI-RADS Version 2017: Application on 2020 Liver Nodules in
Patients With Hepatitis B Infection. Radiology (2020) 294(2):299–307. doi:
10.1148/radiol.2019190878
Conflict of Interest: The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be construed as a
potential conflict of interest.
Frontiers in Oncology | www.frontiersin.org 10
Publisher’s Note: All claims expressed in this article are solely those of the authors
and do not necessarily represent those of their affiliated organizations, or those of
the publisher, the editors and the reviewers. Any product that may be evaluated in
this article, or claim that may be made by its manufacturer, is not guaranteed or
endorsed by the publisher.

Copyright © 2021 Bao, Chen, Zhu, Xie and Chen. This is an open-access article
distributed under the terms of the Creative Commons Attribution License (CC BY).
The use, distribution or reproduction in other forums is permitted, provided the
original author(s) and the copyright owner(s) are credited and that the original
publication in this journal is cited, in accordance with accepted academic practice. No
use, distribution or reproduction is permitted which does not comply with these terms.
August 2021 | Volume 11 | Article 694102

https://doi.org/10.1038/s41598-018-29653-7
https://doi.org/10.1148/radiol.2019190878
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles

	CEUS-Based Radiomics Can Show Changes in Protein Levels in Liver Metastases After Incomplete Thermal Ablation
	Introduction
	Materials and Methods
	Animal Model
	Palliative Ablation Method
	Multimodal Ultrasound Examination and Image Evaluation
	Sample Collection and Molecular Biological Examination
	Feature Extraction and Selection
	Machine Learning and Model Performance Evaluation

	Results
	Molecular Changes After Tumor Ablation
	The Expression of HSPs Is Increased After Ablation
	Apoptosis in the Incomplete Ablation Group and the Control Group

	Interobserver Agreement
	Feature Selection
	Model Performance Evaluation

	Discussion
	Conclusions
	Data Availability Statement
	Ethics Statement
	Author Contributions
	Funding
	Acknowledgments
	References



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /PageByPage
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages false
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 1
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness false
  /PreserveHalftoneInfo false
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages false
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages false
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages false
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /ENU (T&F settings for black and white printer PDFs 20081208)
  >>
  /ExportLayers /ExportVisibleLayers
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /BleedOffset [
        0
        0
        0
        0
      ]
      /ConvertColors /NoConversion
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /ClipComplexRegions true
        /ConvertStrokesToOutlines false
        /ConvertTextToOutlines false
        /GradientResolution 300
        /LineArtTextResolution 1200
        /PresetName ([High Resolution])
        /PresetSelector /HighResolution
        /RasterVectorBalance 1
      >>
      /FormElements false
      /GenerateStructure true
      /IncludeBookmarks true
      /IncludeHyperlinks true
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MarksOffset 6
      /MarksWeight 0.250000
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PageMarksFile /RomanDefault
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
    <<
      /AllowImageBreaks true
      /AllowTableBreaks true
      /ExpandPage false
      /HonorBaseURL true
      /HonorRolloverEffect false
      /IgnoreHTMLPageBreaks false
      /IncludeHeaderFooter false
      /MarginOffset [
        0
        0
        0
        0
      ]
      /MetadataAuthor ()
      /MetadataKeywords ()
      /MetadataSubject ()
      /MetadataTitle ()
      /MetricPageSize [
        0
        0
      ]
      /MetricUnit /inch
      /MobileCompatible 0
      /Namespace [
        (Adobe)
        (GoLive)
        (8.0)
      ]
      /OpenZoomToHTMLFontSize false
      /PageOrientation /Portrait
      /RemoveBackground false
      /ShrinkContent true
      /TreatColorsAs /MainMonitorColors
      /UseEmbeddedProfiles false
      /UseHTMLTitleAsMetadata true
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


