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Abstract
AIM: To investigate whether chromosomal instability (CIN) is associated with tumor phenotypes and/or with global
genomic status based on MSI (microsatellite instability) and CIMP (CpG island methylator phenotype) in early-
onset colorectal cancer (EOCRC).METHODS: Taking as a starting point our previous work in which tumors from 60
EOCRC cases (≤45 years at the time of diagnosis) were analyzed by array comparative genomic hybridization
(aCGH), in the present study we performed an unsupervised hierarchical clustering analysis of those aCGH data in
order to unveil possible associations between the CIN profile and the clinical features of the tumors. In addition,
we evaluated the MSI and the CIMP statuses of the samples with the aim of investigating a possible relationship
between copy number alterations (CNAs) and the MSI/CIMP condition in EOCRC. RESULTS: Based on the
similarity of the CNAs detected, the unsupervised analysis stratified samples into two main clusters (A, B) and four
secondary clusters (A1, A2, B3, B4). The different subgroups showed a certain correspondence with the molecular
classification of colorectal cancer (CRC), which enabled us to outline an algorithm to categorize tumors according
to their CIMP status. Interestingly, each subcluster showed some distinctive clinicopathological features. But
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more interestingly, the CIN of each subcluster mainly affected particular chromosomes, allowing us to define
chromosomal regions more specifically affected depending on the CIMP/MSI status of the samples.
CONCLUSIONS: Our findings may provide a basis for a new form of classifying EOCRC according to the
genomic status of the tumors.

Neoplasia (2017) 19, 28–34
Introduction
Colorectal cancer (CRC) has a great impact on the world population,
since it represents the third most common malignancy and the second
leading cause of death in developed countries [1,2]. Its pathogenesis is
a multistep process in which the accumulation of different genetic and
epigenetic alterations leads to the transformation of healthy colonic
epithelial cells into malignant cells [3]. The loss of genomic stability is
a key molecular pathogenic step that occurs early in tumorigenesis,
and it can be caused by at least three major molecular pathways:
chromosomal instability (CIN), microsatellite instability (MSI) and
CpG island methylator phenotype (CIMP).
Early-onset CRC (EOCRC) represents a relatively unusual entity

commonly related with hereditary forms of the disease. Thus, it is
estimated that about 11%of colon cancers and 18%of rectal cancers arise
in individuals younger than 50 years [4–7]. In comparison with late-onset
CRC, EOCRC is more frequently associated with poor clinical features
and it is considered as a high-risk group within CRC [8,9].
The clinicopathological features of tumors can differ significantly

depending on the type of genomic alterations, which makes CRC a
heterogeneous disease in which it is difficult to determine the clinical
consequences of individual alterations. Although some studies have
attempted to correlate the clinicopathological features and the molecular
profile in late-onset tumors [10–12], this relationship has not been fully
investigated in EOCRC, possibly because of the low frequency of CRC in
young people [4,5]. In our previous work, we performed a comprehensive
analysis of the DNA copy number alterations (CNAs) that occur in two
groups of patients differing in age at onset, and observed substantial
dissimilarities regarding the CIN pattern as well as the most frequent
CNAs arising in each group [13]. Taking this as a starting point, the
purpose of the present study was to investigate whether the CIN profile is
also associated with the biological characteristics and/or with the global
genomic status (based on MSI and CIMP) in EOCRC, when an
unsupervised hierarchical clustering analysis is performed according to the
similarity of the CNAs detected.

Materials and Methods

Patients, Samples and Data Collection
A total of 88 individuals diagnosed with CRC at an age of 45 years or

younger (range: 16–45 years) were collected at the 12 de Octubre University
Hospital in Madrid. Family history of cancer (including at least three
generations) and clinicopathological information was obtained for each
patient, with a follow-up of at least 60months from surgery. All patients (or a
first degree relative in case of death of the index case) providedwritten consent,
and the study was approved by the Ethics Committee of our Institution.
Six patients were excluded because familial adenomatous polyposis

was diagnosed. Material for array comparative genomic hybridization
(aCGH) analysis could be obtained from 60 of the remaining 82
patients. In our series, the left location was considerably more
common than the right one (53.3% vs. 20%) (Supplementary Table
S1). Moreover, and as expected given the early-onset of the disease,
the percentage of sporadic cases was lower than the percentage of
patients who had a familial component or fulfilled the clinical criteria
for Lynch syndrome (LS). Additional clinical, pathological and
familial features are shown in Supplementary Table S1.

Assessment of Genomic Instability: Molecular Classification
A tissue specimen was obtained from each index case. Microscopic

inspection of paraffin-embedded samples was performed by a
pathologist, and samples with more than 70% of tumor cells in the
neoplastic material were considered adequate for further analysis. The
protocol for DNA isolation was as previously reported [13].

We used the Bethesda panel to assess the MSI status, and considered a
result positive when two or more markers were altered. Blood samples
were taken from the MSI index cases to assess germline mutations in
MLH1,MSH2 andMSH6.Moreover,MSI tumors were analyzed for the
BRAF V600E mutation in order to identify possible sporadic cases. For
the assessment of CIMP, we investigated the methylation status of the
promoter regions of CACNA1G, CDKN2A, CRABP1, IGF2, MLH1,
NEUROG1, RUNX3 and SOCS1. CIMP-High was defined as the
presence of ≥6/8 methylated promoters, CIMP-Low as 1/8 to 5/8
methylated promoters and CIMP-0 as the absence of methylated
promoters [14].We classified tumors into four categories according to the
MSI and CIMP status as described by Ogino and Goel: (1) MSI/
CIMP-High; (2) MSI/CIMP-Low/0; (3) MSS/CIMP-High; (4) MSS/
CIMP-Low/0 [15]. Finally, the degree of CIN was evaluated by aCGH,
considering tumors with more than 3 whole chromosomes affected as
CIN+, tumors with 1–3 whole chromosomes affected as MACS
(microsatellite and chromosome stable), and tumors with no whole
chromosome affected as CIN-.

The procedures for the evaluation of CIN, MSI, and CIMP were as
previously reported [9,13].

Unsupervised Analysis of aCGH Data
Tumors were clustered based on the copy number states of their

windowed probes [13]. Unsupervised analysis was performed using
hierarchical clustering algorithms (squared Euclidean distances) imple-
mented in Multi Experiment Viewer 4.8.1 (www.tm4.org/mev.html).

Statistical Analysis
Comparison of continuous variables was done using Student's

two-tailed t test (for normal distributions) or the Mann–Whitney U
test (for nonparametric distributions), whereas comparison of
categorical variables was done using Pearson's chi square (χ2) test.
For comparisons between more than two groups, analysis of variance
(ANOVA) (for normal distributions) or the Kruskal-Wallis test (for

http://www.tm4.org/mev.html


Fig. 1. Unsupervised hierarchical clustering based on the genomic instability profiles of the studied tumors. The studied samples were
stratified into two main clusters (A, B) and four secondary clusters (A1, A2, B3, B4) according to the similarity of the CNAs detected.
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nonparametric distributions) were used. Statistical analysis was
performed using SPSS 17.0 (SPSS Inc., Chicago, IL, USA), and
differences were considered statistically significant when the P b .05.

The study of association and correlation was performed employing R
Statistical Software [16] using Fisher's exact test, analysis of variance and the
independent sample t test. P b .05 was considered statistically significant.

Results

Unsupervised Analysis According to the CIN Profile
The unsupervised hierarchical clustering stratified samples into twomain

clusters. The first of them (cluster A) was composed of 38 cases while the
Fig. 2. Kaplan–Meier survival plots: (A) Comparison of the DFS betwe
four subclusters; (C) comparison of the OS between the twomain clu
the significantly higher proportion of tumor recurrence within the clu
second one (cluster B) was composed of 22 cases (Fig. 1; Supplementary
Fig. 1). Both clusters, in turn, were divided into two secondary clusters:
subcluster A1 (n = 25) and A2 (n = 13) derived fromA, and subcluster B3
(n = 10) and B4 (n = 12) derived from B (Fig. 1; Supplementary Fig. 1).

Clinicopathological Features in the Different Clusters
Cluster A included a larger percentage of very young patients (b36

years at diagnosis) and all tumor recurrences (P = .035), and was
associated with a worse prognosis (Fig. 2; Table 1). In the comparison
of subgroups A1, A2, B3 and B4, statistical significance was only
reached when tumor histology was considered (Table 1). However, it
should be emphasized that there were some distinctive
en the two main clusters; (B) comparison of the DFS between the
sters; (D) comparison of the OS between the four subclusters. Note
ster A.



Table 1. Clinicopathological correlation of the different subgroups obtained by unsupervised hierarchical clustering analysis

Cluster A1 Cluster A2 Cluster B3 Cluster B4 P-value [1]

No. of tumors 25 13 10 12
36–45 years old 19 10 9 11 NS
b36 years old 6 (54.5%) 3 (27.3%) 1 (9.1%) 1 (9.1%)

Location
Right colon 5 (20%) 5 (38.4%) 1 (10%) 1 (8.3%)
Left colon 15 (60%) 4 (30.8%) 7 (70%) 6 (50%) NS
Rectum 5 (20%) 4 (30.8%) 2 (20%) 5 (41.7%)

Histology
Adenocarcinoma 22 (88%) 7 (53.8%) 9 (90%) 11 (91.7%) 0.034
Malignant adenoma 3 (12%) 6 (46.2%) 1 (10%) 1 (8.3%)

T. differentiation:
High 10 (45.5%) 3 (42.9%) 4 (44.4%) 2 (18.2%)
Moderate 8 (36.4%) 4 (57.1%) 5 (55.6%) 9 (81.8%) NS
Low 4 (18.1%) - - -

Mucin production 7 (31.8%) 1 (14.3%) 3 (33.3%) 2 (18.2%) NS
“Signet ring” cells 1 (4.5%) - 1 (11.1%) - NS
TNM stage
I 6 (24%) 6 (46.2%) 2 (20%) 3 (25%)
II 9 (36%) 4 (30.8%) 7 (70%) 1 (8.3%) NS
III 5 (20%) 1 (7.6%) 1 (10%) 3 (25%)
IV 5 (20%) 2 (15.4%) - 5 (41.7%)

Average No. of polyps 3.76 [1.00] 6.00 [4.00] 2.40 [2.00] 1.33 [0.00] NS[2]

Synchronous T. 2 (8%) 1 (7.7%) - - NS
Metachronous T. - 2 (15.4%) - - NS
OS ± SD 87.12 ± 50.85 99.08 ± 63.18 86.10 ± 10.03 59.50 ± 36.07 NS[3]

DFS ± SD 72.60 ± 53.90 78.38 ± 65.68 84.50 ± 9.48 51.42 ± 44.26 NS[3]

T. recurrence 5 (20%) 2 (15.4%) - - NS
Mortality 7 (28%) 3 (23.1%) - 4 (33.3%) NS
Sporadic 13 (52%) 3 (23.1%) 5 (50%) 6 (50%)
Familial aggregation 9 (36%) 6 (46.2%) 1 (10%) 4 (33.3%) NS
Amsterdam II positive 3 (12%) 4 (30.7%) 4 (40%) 2 (16.7%)
Lynch syndrome 2/7 (28.6%) 3/7 (42.8%) 2/7 (28.6%) - NS

Data shown in brackets represent median values. [1]Statistical comparison was performed using Pearson's Chi Square (χ2) test.[2] Statistical comparison was performed using the Kruskal-Wallis test.
[3]Statistical comparison was performed using analysis of variance (ANOVA). DFS: Disease-free survival. †No.: Number. ‡NS: Not significant. §OS: Overall survival. SD: Standard deviation. T.: Tumor.

Table 2. Global distribution of MSI and CIMP among the different subgroups obtained by
unsupervised hierarchical clustering analysis

Cluster A1 Cluster A2 Cluster B3 Cluster B4 P-value [1]

No. of tumors 25 13 10 12 -
MSI 2 (8%) 3 (23.1%) 5 (50%) - 0.007
Expression of MMR:
Normal 23 10 5 - 0.007
Absence 2 3 5 -

Lynch Syndrome 2 3 2 - NS
MMR genes affected:
MLH1 1 - - - -
MSH2 - 3 1 -
MSH6 1 - 1 -

BRAF mutation - - - 1 (100%) -
CIMP-High 7 (28%) 4 (30.8%) - 1 (8.3%) NS
CIMP-Low/0 18 (72%) 9 (69.2%) 10 (100%) 11 (91.7%)
Mol. classification:
MSI/CIMP-High 1 (4%) 2 (15.4%) - - 0.004
MSI/CIMP-Low/0 1 (4%) 1 (7.7%) 5 (50%) -
MSS/CIMP-High 6 (24%) 2 (15.4%) - 1 (8.3%)
MSS/CIMP-Low/0 17 (68%) 8 (61.5%) 5 (50%) 11 (91.7%)

1 Statistical comparison was performed using Pearson's Chi Square (χ2) test. CIMP: CpG island
methylator phenotype. †MMR: Mismatch repair. ‡Mol.: Molecular. §MSI: Microsatellite instability. MSS:
Microsatellite instability. No.: Number. NS: Not significant.
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clinicopathological features between the different subgroups. On the
one hand, subgroup A1 was associated with the highest percentage of
tumor recurrences. On the other hand, the subgroup including the
highest proportion of stage IV tumors (B4) showed the highest death
rates as well as the highest prevalence of rectal location (Table 1). As
expected, the right-sided location (typically related with LS) was
predominant within the subcluster with the highest percentage of
individuals with familial antecedents of the disease (A2) (Table 1).

Distribution of MSI and CIMP
Thirteen patients (16%) of a total of 81 showed MSI and the

concomitant loss of expression of one or more of the DNA mismatch
repair (MMR) proteins. Of the 13 patients withMSI, 7 had a pathogenic
germline mutation in one of theMMR genes, 4 had variants of unknown
significance in at least one of these genes, and 1 showed lack of expression
of MLH1 and hypermethylation of its gene promoter (data not shown).
Of the 60 tumors that could be evaluated by aCGH,MSI was present

in 10 cases, 7 of whichwere confirmed as LS patients (1 had amutation in
MLH1, 4 inMSH2 and 2 inMSH6) (Table 2). There was only 1 patient
with hypermethylation of the MLH1 promoter; however, the BRAF
V600E mutation was absent in this patient. MSI was homogeneously
distributed among clusters A and B, with a complete correlation with the
immunohistochemical results (Table 2). Regarding the methylator
phenotype, we observed a clear prevalence of CIMP-High tumors within
cluster A, with all but one of the tumors contained therein showing this
genotype (Table 2).When we compared the subclusters derived from the
main clusters, we observed that only B4 showed absence of MSI tumors
(being also the cluster with the lowest proportion of right-sided tumors),
and that B3 was the only subgroup entirely composed of CIMP-Low/0
tumors (Table 2).

Distribution of CIN
Clusters A and B did not differ in terms of CNAs nor with respect

to the total genomic instability index (GII), even though cluster B



Table 3. Global description and comparison of genomic instabilities observed for the different subgroups obtained by unsupervised hierarchical clustering analysis

Cluster A1 Cluster A2 Cluster B3 Cluster B4 P-value[1]

No. of tumors 25 13 10 12 -
GII total Mean [SD] 0.40010 [0.26115] 0.11184 [0.21733] 0.39149 [0.27826] 0.30166 [0.31020] 0.017
Average CNAs/tumor 135.16 (118.00) 45.69 (42.00) 95.30 (104.00) 68.50 (32.50) 0.048
GII gains Mean [SD] 0.18963 [0.10511] 0.03881 [0.09584] 0.19251 [0.22203] 0.15778 [0.15866] 0.016
Average CNAs gained/tumor: 72.32 (58.00) 11.38 (7.00) 39.10 (29.50) 32.42 (14.50) 0.0001[2]

N 1 Mb 58.28 (48.00) 6.08 (4.00) 26.50 (18.00) 24.42 (7.50) 0.0001[2]

b 1 Mb 14.04 (11.00) 5.31 (5.00) 11.60 (11.50) 8.00 (4.50) 0.047[2]

GII losses Mean [SD] 0.21047 [0.21216] 0.07303 [0.14926] 0.19898 [0.11768] 0.14388 [0.16880] NS[2]

Average CNAs lost/tumor: 62.84 (58.00) 34.31 (42.00) 56.20 (72.00) 36.08 (16.50) NS
N 1 Mb 42.12 (20.00) 11.46 (14.00) 40.80 (51.00) 23.75 (12.00) 0.024[2]

b 1 Mb 20.72 (15.00) 22.85 (24.00) 15.40 (15.00) 12.33 (3.00) NS
Average of aneuploidy: 2.83 (3.00) 1.46 (0.00) 4.44 (4.00) 4.08 (3.00) NS
Whole chromosomes gained 1.76 (2.00) 0.76 (0.00) 1.80 (0.50) 2.58 (1.50) 0.010[2]

Whole chromosomes lost 0.96 (0.00) 0.69 (0.00) 2.20 (3.00) 1.50 (1.00) NS[2]

CIN- tumors 4 (20%) 10 (50%) 3 (15%) 3 (15%) 0.003[3]

CIN+ tumors 9 (39.1%) 2 (8.7%) 6 (26.1%) 6 (26.1%)
MACS 12 (70.6%) 1 (5.9%) 1 (5.9%) 3 (17.6%)

Data shown in parentheses represent median values. Tumors with more than 3 whole chromosomes affected were considered as CIN+; tumors with 1–3 whole chromosomes affected were considered as
MACS; tumors with no whole chromosome affected were considered as CIN-. [1]Statistical comparison was performed using analysis of variance (ANOVA). [2]Statistical comparison was performed using
the Kruskal-Wallis test. [3]Statistical comparison was performed using Pearson's Chi Square (χ2) test. CIN: Chromosomal instability. †CNAs: Copy number alterations. ‡GII: Genomic instability index.
§MACS: Microsatellite and chromosome-stable. Mb: Megabasepairs. No.: Number. NS: Not significant. SD: Standard deviation.
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showed a slightly higher value of GII total and a lower number of
CNAs per sample. However, the average aneuploidy frequency was
significantly higher in cluster B (P = .026; Supplementary Table S2).
Interestingly, subgroup A1 showed significantly higher values for GII total

(P = .001), GII gains (P = .0001), GII losses (P = .030) and average
number of CNAs per sample (P = .002), and contained almost the entire
instability associated with cluster A (Supplementary Table S3). By
contrast, we did not find significant differences between B3 and B4,
despite the higher degree of instability in the first subgroup
(Supplementary Table S4). In the comparison of the four secondary
subgroups, A2 demonstrated significantly lower values for almost all
parameters suggestive of CIN. As a result, it was the subgroup with the
highest percentage of CIN- tumors (P = .003; Table 3).

Concerning aneuploidy, we observed that the vast majority of
MACS (also MSS) were included in A1, whereas the vast majority of
CIN- tumors were included in A2 (Table 3). As expected, the most
unstable subgroup (A1) included the highest proportion of MSS
tumors and the most stable subgroup (A2) included the highest
proportion of MSI tumors (Tables 2 and 3); this is not surprising,
given that CIN and MSI are carcinogenesis pathways traditionally
considered as mutually exclusive. Moreover, we observed some
aneuploid events that seemed to be more frequent in some subgroups
than in others. Thus, alterations in chromosomes 19 and 22 were
predominant in subcluster A1 (60%), whereas alterations in
chromosomes 4, 11 and 15 were predominant in B3 (40%) and
alterations in chromosome 13 were predominant in B4 (67%).

Recurrent CNAs
Among the most frequent alterations in cluster A were gains at

19p13 (72%) and 9q33-q34 (62%), and losses at 5q13 (67%) and
1q12-q21 (62%), while the most frequent alterations in cluster B
were gains at 8q22-q24 and 13q13-q14 (41%), and losses at 12q24
(50%). In addition, there were 63 recurrent alterations (frequencies
greater than or equal to 30%) occurring with statistically significantly
different frequencies in clusters A and B (Supplementary Table S5).
On the other hand, gains at 19p13-p12 and 19q13 (96%) were
common in A1, but only losses at 2q12-q13 (64%) were recurrent in
A2. Finally, gains at 4q31-q32, 5q14, 12p13-q13 and 13q12
(100%), and losses at 17q11 (80%) were frequent in B3, whereas
gains at 1p36-p34, 2p25-p24, 2q11-q14, 2q37, 3p25, 3q21-q23,
7p14, 7q32 and 16p13-p11 (92%) were frequent in B4.

Molecular Classification
Based on MSI and CIMP status, we defined four molecular groups

as described in Materials and Methods [15]. MSS/CIMP-Low/0
tumors were the most frequent whereas MSI/CIMP-High tumors
were uncommon (Table 2). Moreover, MSI/CIMP-High tumors
were related with LS patients and/or Amsterdam II-positive families.

The unsupervised analysis clustered the samples into four groups
according to the similarity of their CNAs. These groups showed a certain
degree of correspondence with the molecular classification proposed by
Ogino and Goel [15], in such a way that we were able to outline an
algorithm by which tumors might be categorized according to their
genomic status based on CIMP. Thus, the CIMP-High tumors were
mostly contained within clusters A1 or A2 depending on the CIN degree,
whereas the CIMP-Low/0 tumors were mostly contained within clusters
B3 or B4 depending on the presence/absence of MSI (Fig. 3).
Interestingly, the genomic instability of each subcluster mostly affected
particular chromosomes allowing us to define chromosomal regionsmore
specifically affected depending on the CIMP/MSI status of the samples.
The most frequent events of CIN in A1 involved chromosomes 19 and
22, whereas in B3 they involved chromosomes 4, 11 and 15, and in B4
they involved chromosome 13 (Fig. 3).

Discussion
In a previous study, we confirmed the existence of substantial
differences between the CIN pattern of early-onset and late-onset
colorectal tumors, suggesting that genomic profiles may be associated
with age of onset in CRC [13]. In the present study, our aim was to
investigate whether the CIN profile is also associated with the
clinicopathological implications and/or with the global genomic
status based on MSI and CIMP in EOCRC. For this purpose, we
analyzed a cohort of 60 EOCRCs and performed an unsupervised
hierarchical clustering analysis of the aCGH data.

The unsupervised analysis organized samples into twomain clusters (A
and B) and four secondary clusters (A1, A2, B3, B4) (Fig. 1). No



Fig. 3. Algorithm by which tumors may be categorized according to
their genomic status based on CIN, MSI and CIMP. The CIMP-High
tumors were mostly contained within clusters A1 or A2 depending
on the CIN degree, whereas the CIMP-Low/0 tumors were mostly
contained within clusters B3 or B4 depending on the MSI status.
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significant differences were observed regarding the clinicopathological
features of the tumors included in clusters A and B, and they were overall
those expected considering the familial component of each one of them
(Table 1). Both MSI and CIMP showed a heterogeneous distribution
across the clusters, with CIMP-High tumors mostly stratified into cluster
A and CIMP-Low/0 tumors mostly stratified into cluster B (Table 2).
There were no differences either between the subgroups derived from the
main clusters, and it was not surprising that the cluster with the highest
percentage of metastasis at diagnosis (B4) exhibited the lowest values of
OS (overall survival) and DFS (disease-free survival), that is, they had the
worst prognosis (Table 1).
It is well known that sporadic tumors commonly develop via the CIN

pathway, which is characterized by chromosomal imbalances (aneuploi-
dy) and a high frequency of loss of heterozygosity [17]. On this basis, it
would be expected that tumors contained in cluster B showed a higher
degree of CIN, as has in fact been observed (Table 3). Contrary to
expectations, the average number of CNAs per sample was higher in
cluster A.
The average of whole chromosomes affected was significantly higher

within the cluster with the lowest hereditary component (cluster B; P =
.026) even though we did not observe statistical differences regarding the
GII total (Table 3). Interestingly, we observed that A1 contained almost
the entire instability linked to cluster A. Therefore, the lack of statistical
differences in the comparison of the GII total between A and B may be
understood as a consequence of the masking of the high degree of
instability associated to A1, because in a normal distribution the mean of
the sampling distribution is equal to the mean of the population. Despite
the fact that high levels of CIN have been related to a worse prognosis in
CRC [18], in our series the worst clinical outcomes were linked to the
cluster with a lower average of GII total (cluster A) which showed a
significantly higher proportion of tumor recurrence (P = .035; Fig. 2).
Probably, this contradiction is a consequence of the high discrepancy
betweenA1 andA2 in terms ofCINbeing neutralizedwhen cluster Awas
evaluated as a whole entity.

Each subcluster manifested prevalence of certain events of CIN.
The most frequent aneuploidies in A1 involved chromosomes 19 and
22 (60%) where some genes related to CRC are located (MMP11,
GSTT2, CHEK2 and EP300). Moreover, about 96% of tumors
included in A1 showed gains at 19p13-p12 and 19q13 while only
losses at 2q12-q13 (64%) were recurrent in A2. This is an interesting
finding because 19p13-p12 and 19q13 harbor genes previously
related with the development of malignancy and growth progression
of certain tumors such as STK11 (a tumor suppressor related to
Peutz-Jeghers syndrome) or MADCAM1, whose relationship with
inflammatory bowel disease has been reported [19]. More interesting,
the region 2q12-q13 harbors BUB1, a gene encoding a mitotic
checkpoint serine/threonine-protein kinase whose alterations have
been related to early-onset CRC [20]. The most frequent
aneuploidies observed in B3 affected chromosomes 4, 11, 15
(40%). In this respect, it is important to mention that losses of
large parts of chromosome 4 (where some genes important for
carcinogenesis appear to be located) are repeatedly reported in several
cancers [21–28]. Also supporting our results, there are many studies
that identify different loci in chromosomes 11 and 15 as candidates
for CRC susceptibility [29–34]. Finally, it is worth mentioning
chromosome 13 since all tumors of B3 showed alterations in 13q12.
This region contains CDX2, a specific transcription factor expressed
during intestinal development whose lack of expression appears to be
associated with a poor prognosis in CRC [35]. In addition,
chromosome 13 was the autosome most frequently affected by
aneuploidy within subcluster B4 (67%), which may be important
given the large clinical and molecular heterogeneity of this subgroup.

Our unsupervised analysis revealed a certain parallelism with the
molecular classification proposed by Ogino and Goel [15], which on
the one hand allowed us to outline an algorithm by which tumors
may be classified according to their genomic instability features, and,
on the other hand, allowed us to define some chromosomal
alterations recurrently affected depending on the CIMP/MSI status
of the samples (Fig. 3). On this basis, the CIMP-High/CIN- tumors
were mainly included within the cluster A whereas the CIMP-Low/0/
CIN+ tumors were mainly included within the cluster B. In the same
way, the MSI tumors were predominant in A2 and B3 whereas the
MSS tumors were predominant in A1 and B4. Therefore, the cluster
A1 mostly included the CIMP-High/MSS/CIN- tumors, the cluster
A2 mostly included the CIMP-High/MSI/CIN- tumors, the cluster
B3 mostly included the CIMP-Low/0/MSI/CIN+ tumors and the
cluster B4 mostly included the CIMP-Low/0/MSS/CIN+ tumors.
Interestingly, the tumors contained within A1 frequently showed
alterations in chromosomes 19 and 22, the tumors contained in B3
frequently showed alterations in chromosomes 4, 11 and 15, and the
tumors contained in B4 frequently showed alterations in chromo-
some 13 (Fig. 3). Validation and improvement of this algorithm in
further studies may ultimately provide a new form of classifying
EOCRC according to the CNAs detected, and consequently might
have a significant impact on the understanding of the still poorly
characterized EOCRC.
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