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Abstract: Wrist motion provides an important metric for disease monitoring and occupational risk
assessment. The collection of wrist kinematics in occupational or other real-world environments could
augment traditional observational or video-analysis based assessment. We have developed a low-cost
3D printed wearable device, capable of being produced on consumer grade desktop 3D printers.
Here we present a preliminary validation of the device against a gold standard optical motion capture
system. Data were collected from 10 participants performing a static angle matching task while seated
at a desk. The wearable device output was significantly correlated with the optical motion capture
system yielding a coefficient of determination (R2) of 0.991 and 0.972 for flexion/extension (FE) and
radial/ulnar deviation (RUD) respectively (p < 0.0001). Error was similarly low with a root mean
squared error of 4.9° (FE) and 3.9° (RUD). Agreement between the two systems was quantified using
Bland–Altman analysis, with bias and 95% limits of agreement of 3.1° ± 7.4° and −0.16° ± 7.7° for FE
and RUD, respectively. These results compare favourably with current methods for occupational
assessment, suggesting strong potential for field implementation.

Keywords: wearable device; electromechanical goniometry; occupational biomechanics

1. Introduction

Wrist motion is a valuable metric in many fields, including orthopaedic surgery, hand
and upper extremity rehabilitation and therapy, ergonomics, athletics, and other areas that
relate to the performance of a task involving the hands and upper extremity. The wrist is
frequently described as a two degree of freedom joint, with the largest range of motion
occurring about the flexion/extension (FE) and radial/ulnar deviation (RUD) axes [1].

Wrist motion can be quantified in a variety of ways, including optical motion cap-
ture (OMC), electrogoniometry, and video analysis. OMC is widely considered to be a
benchmark for kinematic measurement methods as it is accurate, non-invasive, widely
used in scientific experimental studies, and does not expose participants to the radiation
associated with imaging-based methods [1]. However, there are notable disadvantages
to OMC. The systems are expensive, restricted to a confined laboratory setting or capture
volume, and require significant time and technical expertise for the setup, operation, and
data post processing [1,2]. Video capture is more widely used in ergonomic assessment,
as it is more portable, and easier to setup and operate, making it practical to use in the
workplace. While some experimental strategies have been successful with the extraction of
continuous kinematics from video data, these strategies have not yet been widely explored
for ergonomic assessment [3]. Commonly-used ergonomic assessment methodologies
include rapid upper limb assessment (RULA) [4], rapid entire body assessment (REBA) [5],
and strain index (SI) [6], all of which rely on expert analysis to bin postures into general
ranges for subsequent interpretation.

Electrogoniometry offers a practical alternative to video analysis or OMC-based meth-
ods and has been demonstrated to have good agreement with OMC-based methods, and
higher reliability than video-analysis [1,3]. Wearable ergonomic assessment tools, such as
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electrogoniometers, are also advantageous as they are minimally obtrusive, making them
better suited for long-term monitoring in occupational settings, which could improve our
understanding of chronic risk factors for occupational upper extremity injuries [7]. Early
approaches used electromechanical goniometers, comprised of a rigid frame and poten-
tiometer for angular sensing [8,9]. However, with the advent of flexible electrogoniometers,
there was a shift away from using potentiometer based electromechanical goniometers. The
reason for this is that flexible electrogoniometers are minimally intrusive, more robust to er-
rors in alignment relative to the joint centers of rotation, and multiple axes of rotation can be
measured with a single device [10]. Flexible electrogoniometers, however, are susceptible
to crosstalk between the FE and RUD axes, necessitating algorithmic correction [11,12].

The use of inertial measurement units (IMUs) is an even more appealing approach
than electrogoniometry, as they are modular, and can be placed in an even more minimally
invasive manner. Results, however, have been inconsistent when applied to the calculation
of wrist joint kinematics [13]. IMU performance is heavily reliant on the approach applied
in the post processing of the data, and output can vary significantly depending on the un-
derlying kinematic model used [14]. Furthermore, IMUs are affected by local ferromagnetic
interference which may pose challenges in certain occupational environments [14].

Electrogoniometry and IMUs both offer the technical capability to collect joint kinemat-
ics in occupational environments; however, durability, validity, and cost of commercially
available wearable systems have been highlighted as barriers to broad adoption by practic-
ing occupational safety and health professionals [15]. In particular, average acceptable per
device cost has been estimated at $72.21 (USD) which poses a significant barrier, as most
valid, commercially-available devices capable of continuously monitoring joint kinematics
greatly exceed this threshold [15].

Recently, our lab has developed a low-cost (<$50 (USD)) wearable device capable of
recording wrist FE and RUD. The device is similar to previously used potentiometer-based
electromechanical goniometers, such as the device used by Schoenmarklin and Marras
in their study of hand-intensive industrial jobs [8,16], or the device used by Ryu et al. in
their study of functional wrist motions [9], however, several factors make it appealing to
re-explore this approach to kinematic monitoring. The low cost and high performance
of modern dataloggers and miniaturized rotary position sensors make broad field imple-
mentations of electromechanical goniometers much more feasible. Additionally, as our
device is 3D printed, it is trivial to customise to match participant anthropometrics which
can improve device alignment with joint centers of rotation and improve accuracy. The
majority of the cost associated with this device is the datalogger, which is a distinct module
from the wearable transducer. This means that a single datalogger can be used repeatedly
with different transducers that can be customised for diverse participant anthropometrics.
This could greatly reduce the costs associated with occupational kinematic monitoring and
facilitate the collection of large datasets of occupational wrist kinematics. The purpose of
this study was to evaluate the accuracy of the kinematic data produced by the wearable
device relative to an OMC system.

2. Materials and Methods
2.1. Device Design

The wearable device is 3D printed in polylactic acid (PLA) and attaches to the dorsal side
of the hand and forearm via double sided tape and a hook and loop wrist strap (Figure 1 ). The
frame includes two hinges, instrumented with rotary position sensors, placed over the
approximate anatomical centers of rotation for the FE and RUD axes of the wrist. The
device can be 3D printed using a consumer grade fused filament fabrication printer and a
low-cost rotary position sensor is located at each hinge point to record the corresponding
joint angle.

Two wearable devices were produced based on hand and wrist anthropometric data
from 50th percentile-sized male and female wrists [17]. The devices were printed in
PLA and a Bourns Model 3382 rotary position sensor (Bourns, Riverside, CA, USA) was
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installed at each of the FE and RUD axes. Data were digitised and stored by a Teensy
3.5 microcontroller (PJRC, Sherwood, OR) in 10-bit resolution at 100 Hz.

Figure 1. The 3D printed wearable device with wrist strap (A), datalogger (B), and transducer (C).

2.2. Benchtop Test Procedures

To quantify baseline kinematic differences between the OMC system and wearable
device, a static benchtop validation was performed, without the device being worn. All
markers were placed on the wearable device, as shown in Figure 2. Note that markers 1 and
2 were placed proximally, and markers 5 and 6 were placed distally and dorsally relative
to correct anatomical placement. These differences in relative marker placement when
compared to correct anatomical marker placement resulted in an angular offset, which was
removed by normalising to a position which would represent an approximately neutral
posture if the device were being worn.

Figure 2. Marker locations for wearable device analysis. Markers 1 and 2 approximate the anatomical
positions of the second and fifth metacarpophalangeal markers, markers 3 and 4 approximate the
positions of the radial and ulnar styloid markers, and markers 5 and 6 approximate the anatomical
positions of the medial and lateral humeral epicondyle markers.

To generate a calibration, the device was manually moved through its range of motion
in each axis in approximately 5° increments while holding the opposing axis approximately
stationary. A linear calibration was calculated based on this data and applied to all benchtop
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validation data. Next, a nested set of combined FE and RUD postures were recorded. This
consisted of recording 5 RUD postures (neutral posture, extreme radial deviation, extreme
ulnar deviation, moderate radial deviation, and moderate ulnar deviation) at 5 different
FE postures (neutral posture, extreme flexion, extreme extension, moderate flexion, and
moderate extension). The wearable and OMC system were then compared using both the
calibration and test data.

2.3. In Vivo Experimental Procedures

Ten healthy, right-hand dominant subjects (6 female and 4 male, aged 24 ± 6 years)
were recruited for this study. All participants provided written informed consent and the
study was approved by the University of Guelph Research Ethics Board (REB# 16-12-600).

Six, 14-mm diameter retroreflective markers were mounted on each subject’s right
forearm and hand (Figure 3). OMC data were recorded by a VICON motion capture system
using 5 T160 and 4 Bonita cameras (Vicon Motion Systems Ltd., Oxford, UK) with wrist FE
and RUD angles recorded concurrently by the wearable device. Markers were placed on
the second and fifth metacarpal-phalangeal joints, on the wearable device over the radial
and ulnar styloid processes, and on the medial and lateral epicondyles of the elbow. The
radial and ulnar styloid markers were placed on the wearable device in line with the flexion
extension axis.

Figure 3. Forearm and hand coordinate systems and markerset, showing corresponding anatomical landmarks including:
Second metacarpal-phalangeal joint (1), fifth metacarpal-phalangeal joint (2), radial styloid process (3), ulnar styloid process
(4), medial humeral epicondyle (5), and lateral humeral epicondyle (6). * Markers 3 and 4 are placed on the wearable device.

Participants performed all tasks while seated at a desk (Figure 4). First, participants
performed a dynamic range of motion trial for both FE and RUD. Next, participants placed
their forearm on an armrest affixed to the desk. Participants were instructed to hold static
wrist angles by matching a protractor marked on the desk. Participants started at a neutral
posture and increased in 10-degree increments to their maximum range of motion, then
back in the same 10-degree increments to their minimum range of motion before returning
to neutral posture, again by 10-degree increments. This process was performed individually
for both FE and RUD angles.
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Figure 4. Experimental setup showing radial/ulnar deviation (A) and flexion/extension (B) measurements.

2.4. Data Analysis

All data were analysed using a custom Python 3.9 script. Local coordinate systems based
on the ISB recommendations for the forearm and hand segments were defined (Table 1) [18].
Wrist angles were calculated using Euler angles with a ZYX rotation order where the Z
axis defined FE and the X axis defined RUD. Joint angles were calculated following the ISB
recommendations for the wrist joint coordinate system which in turn is based on Grood
and Suntay’s knee joint coordinate system [18,19]. All joint angle time series were filtered
using a 4th order zero lag Butterworth low pass filter with a cut-off frequency of 10Hz. To
synchronise the two data sources, the cross-correlation function was computed between
the OMC and wearable data. The data were synchronised by aligning them to the global
maximum of their cross-correlation function.

For each subject, a linear calibration was computed to calibrate the wearable device to
the OMC system using the FE and RUD dynamic range of motion trials. This calibration
was then applied to the static trial data. Performance was quantified by comparing the
calibrated static trials between the OMC system and wearable.

Table 1. Definitions of the forearm and hand coordinate systems used to calculate wrist angles, orange markers indicate
calculated midpoints, X-axes point volarly.

Y-Axis X-Axis Z-Axis

Forearm

Vector between the midpoint of the radial
and ulnar styloid processes and the
midpoint of the medial and lateral

epicondyles of the elbow

Vector normal to the plane formed by the
radial and ulnar styloid processes and the

midpoint of the medial and lateral
epicondyles of the elbow

Cross product of the X-axis of the forearm
and Y-axis of the forearm
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Table 1. Cont.

Y-Axis X-Axis Z-Axis

Hand

Vector between the midpoint of radial
and ulnar styloid processes, and the

midpoint of the second and fifth
metacarpal-phalangeal joints

Vector normal to the plane formed by the
radial and ulnar styloid processes and the

midpoint of the second and fifth
metacarpal-phalangeal joints

Cross product of the X-axis of the hand
and Y-axis of the hand

3. Results
3.1. Benchtop Test

The calibration trial for the FE and RUD axes is shown in Figure 5 with the calibration
for both FE and RUD applied. Performance was quantified using coefficients of determina-
tion which were 0.995 and 0.996 for FE and RUD respectively, as shown in Figure 6. RMSE
was 3.8° and 1.7° for FE and RUD respectively.

Figure 5. Wearable and optical motion capture (OMC) flexion/extension (FE) and radial/ulnar
deviation (RUD) calibration trials, with calibration applied.
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Figure 6. Correlation between the optical motion capture and wearable device during benchtop testing.

3.2. In Vivo Test

Individual and cumulative performance of the wearable device relative to the OMC
system are presented in Table 2. Correlation between systems is quantified by the coefficient
of determination and depicted graphically in Figure 7. Measurement error is presented
as the root mean squared error over all postures expressed by participant and FE as well
as RUD.

Table 2. Wearable device performance relative to OMC for all subjects. Root mean squared error
(RMSE) and the coefficient of determination (R2) are presented for flexion/extension and radial/ulnar
deviation. All R2 are significant (p < 0.0001). Cumulative performance is calculated across the
entire dataset.

Participant
Flexion/Extension Radial/Ulnar Deviation

R2 RMSE (°) R2 RMSE (°)

Participant 1 0.998 3.0 0.973 3.9
Participant 2 0.995 3.0 0.976 3.4
Participant 3 0.991 7.4 0.980 4.6
Participant 4 0.986 5.2 0.992 4.5
Participant 5 0.994 4.6 0.992 4.5
Participant 6 0.992 6.2 0.975 5.3
Participant 7 0.992 5.7 0.987 1.9
Participant 8 0.994 3.6 0.996 5.3
Participant 9 0.997 5.5 0.995 2.9

Participant 10 0.998 5.0 0.990 2.0

Cumulative Performance 0.991 4.7 0.966 3.9

Correlation was high across all participants with a minimum R2 of 0.973. Agreement
between the two systems was quantified using Bland–Altman analysis [20]. Mean differ-
ences between the systems were 3.1° and −0.2° with limits of agreement of ±7.4° and ±7.7°
for FE and RUD, respectively (Figure 3).
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Figure 7. Correlation between wearable and optical motion capture (OMC) for flexion/extension (FE) and radial/ulnar
deviation (RUD) (A) mean-difference plots quantifying agreement between the wearable and OMC for FE and RUD (B).
Each point represents one posture.

4. Discussion

The aim of this study was to quantify the performance of a low-cost 3D printed
wearable device relative to an OMC system for measuring wrist FE and RUD angles.
Overall, the wearable device performed quite well relative to the OMC system with high
correlation and low bias. The discrepancy between the two systems was more evident when
examining the RMSE and 95% limits of agreement, however, this still represents a major
improvement in data resolution relative to video analysis commonly used for ergonomic
assessment. Video-based ergonomic assessment, while valid, suffers from uncertainty due
to the coarse resolution caused by dividing the range of motion into bins, typically 3 to 6,
as well as susceptibility to parallax errors caused by suboptimal camera placement [21].

Our device produces results comparable to recent findings for flexible electrogoniome-
ters. McHugh et al. found biases of −5.2° and −0.8 with 95% limits of agreement of ±9.1°
and ±3.3° for FE and RUD, respectively when using a strain gauge-based electrogoniome-
ter [1]. Performance of our wrist wearable was similar despite the relative simplicity and
low cost of our device compared to the strain gauge-based or fiber optic electrogoniometers
frequently used for kinematic data collection.

Recently, interest has largely been focused on the use of inertial measurement units
(IMUs), as they are unobtrusive, and can produce results comparable with OMC, however
their performance for measuring wrist angles has been varied. In their recent review of
kinematic analysis using IMUs, Poitras et al. found reported RMSE ranging from 3°–20°
and 3°–30° for FE and RUD, respectively [13]. It should be noted that performance for state
of the art commercially available IMU systems is on the favourable end of that range. In
their evaluation of the Xsens MVN system, Robert-Lachaine et al. found a RMSE of 3.8°
and 3.6° with biases of −1.0° and −1.3° with limits of agreement of ±6.9° and ±5.9° [14].
Our results compare favourably especially when considering that the type of IMU system
used was more similar to an OMC system in terms of cost and technical expertise required,
than this simple joint specific monitoring tool.

The benchtop testing serves an important purpose in quantifying the inherent dif-
ferences in the way that the wearable and OMC system measure kinematics. Applying
anatomically-based coordinate systems to calculate angular data for this benchtop test
resulted in crosstalk. This is evident at samples 30 and 38 in Figure 5, where the OMC
derived FE angle decreases at a high RUD angle. This phenomenon arises from the fact
that the wearable device and OMC system define the center of rotation for RUD at differ-
ent points. Wrist joint motion is particularly complex, and there is no consensus for the
precise determination of the FE and RUD rotation axes in vivo [22]. This means that a
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generalised OMC implementation, such as the one used here, will always suffer from some
crosstalk, and thus falls somewhat short of being a true gold standard. While it would
be possible to redefine the OMC coordinate systems for the hand and forearm such that
they precisely match the wearable device, and minimise reported error, our goal was to
evaluate the performance of the wearable device relative to a conventional application of
OMC. Here we have mitigated the effects of FE and RUD axis mismatch by evaluating the
device for planar motion in FE and RUD, separately. Unsurprisingly both RMSE and R2

for the benchtop test case outperform the cumulative RMSE and R2 for our in vivo study.
However, benchtop test results still remain within the performance range observed during
the in vivo experiment.

This study is narrow in scope, focusing on quantifying the accuracy of electrome-
chanical goniometry relative to current practices for OMC. The accuracy found here,
combined with the historical validity of this style of instrument make a strong argument
for deploying the device to study ergonomic risk factors. Within the study of ergonomics,
there has been interest in developing risk assessments which leverage the availability
of wearable technologies. A shift towards wearable kinematic monitoring would allow
for more comprehensive monitoring of ergonomic risk factors [23]. This would also al-
low an exploration of individual-specific, as well as job-specific postural risk factors [16].
Furthermore, widespread application of wearable devices could increase the volume, reso-
lution, and reliability of the available kinematic data when compared to conventional video
analysis methods [3]. The availability of low-cost potentiometer-based rotary position
sensors such as the Bourns Model 3382, combined with the design flexibility afforded by
desktop 3D printing provide a compelling opportunity to produce wearable devices for
occupational assessment.
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