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Solar Photovoltaic (PV) systems are increasingly vital for enhancing energy security worldwide. 
However, their efficiency and power output can be significantly reduced by hotspots and snail 
trails, predominantly caused by cracks in PV modules. This article introduces a novel methodology 
for the automatic segmentation and analysis of such anomalies, utilizing unsupervised sensing 
algorithms coupled with 3D Augmented Reality (AR) for enhanced visualization. The methodology 
outperforms existing segmentation techniques, including Weka and the Meta Segment Anything 
Model (SAM), as demonstrated through computer simulations. These simulations were conducted 
using the Cali-Thermal Solar Panels and Solar Panel Infrared Image Datasets, with evaluation 
metrics such as the Jaccard Index, Dice Coefficient, Precision, and Recall, achieving scores of 
0.76, 0.82, 0.90, 0.99, and 0.76, respectively. By integrating drone technology, the proposed 
approach aims to revolutionize PV maintenance by facilitating real-time, automated solar panel 
detection. This advancement promises substantial cost reductions, heightened energy production, 
and improved performance of solar PV installations. Furthermore, the innovative integration of 
unsupervised sensing algorithms with 3D AR visualization opens new avenues for future research 
and development in the field of solar PV maintenance.
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1. Introduction

The generation of energy, particularly from fossil fuels, leads to the release of greenhouse gases such as carbon dioxide (CO2) 
into the atmosphere [1]. These emissions contribute to global warming and climate change. By saving energy, we can decrease the 
demand for fossil fuel-based energy production, leading to lower greenhouse gas emissions and a reduced impact on the environment 
[2].

Renewable energy, especially solar power, has emerged as a prominent solution in addressing global concerns related to climate 
change, unpredictable weather patterns, and the finite nature of fossil fuel resources [3,4]. This has led to a significant increase in 
the deployment of photovoltaic (PV) power stations on a global scale [5].

In light of the global advancements in renewable energy technologies enhancing the competitiveness of solar and wind energy, 
renewable energy transcends economic benefits, becoming an imperative solution to the prolonged energy crisis [6].

In paper [7], the authors offer a comprehensive analysis of solar energy potentials, employing the System Advisor Model (SAM) 
to suggest solar photovoltaic solutions designed to alleviate persistent energy challenges. In [8], the authors present an optimization 
strategy for integrating Pumped Hydroelectric Storage with a hybrid solar-wind system, utilizing the SAM to bolster sustainable 
electricity supply in urban areas. The study in [9] provides a comparative assessment of various solar energy conversion systems, 
applying the SAM to identify efficient solar technologies suitable for utility-scale applications. Solar power (SP) offers numerous 
advantages over traditional energy sources. Firstly, it is a clean and sustainable energy option, emitting minimal greenhouse gases 
during electricity generation. By harnessing sunlight, solar panels convert this abundant resource into usable electricity, reducing 
reliance on non-renewable fossil fuels and mitigating the environmental impact associated with their extraction and combustion 
[10]. Additionally, SP installations have become more economically viable in recent years. Advancements in PV technology, coupled 
with declining costs, have made solar energy increasingly affordable and competitive with conventional energy sources. As a result, 
governments, businesses, and homeowners are investing in solar power systems to reduce energy costs, achieve energy independence, 
and contribute to a greener future [11].

The global trend toward SP adoption has been driven by various factors. Moreover, government policies and incentives, such as 
feed-in tariffs and tax credits, have encouraged the adoption of solar power systems by providing financial support and favorable 
regulatory frameworks [11].

As a consequence of these developments, the installation of PV power stations has witnessed a remarkable surge across the globe. 
Solar farms and large-scale PV installations are being constructed to meet the growing demand for clean energy. This expansion 
not only facilitates the transition towards a low-carbon economy but also stimulates job creation and local economic growth [12]. 
In addition to their widespread use, PV modules hold a pivotal role in determining the overall efficiency of a solar power station. 
However, over time, these modules are prone to a range of defects that can significantly impact their power output efficiency [13]. 
Ideally, all the PV cells within a string should possess similar electrical characteristics and operate at the maximum power point 
(MPP) current, thereby optimizing their individual performance.

Unfortunately, variations in the electrical characteristics of the PV cells can occur, resulting in a mismatch in the string current. 
This mismatch prevents the entire string from operating at each cell MPP, leading to a suboptimal performance [14,15]. One common 
factor contributing to the reduced efficiency of PV modules is the phenomenon known as Potential-Induced Degradation (PID). PID 
occurs when the PV module is exposed to high voltage differentials between its conductive elements and the ground. This can lead 
to leakage currents and subsequent degradation of the module electrical properties, resulting in reduced power output [16]. Other 
factors that can affect the performance of PV modules include module soiling, shading, degradation of the anti-reflective coating, and 
hotspots caused by localized heating. Each of these issues can impact the overall efficiency of the SP station and lead to suboptimal 
energy generation [17,18].

On the other hand, there are several factors that can cause variations in the electrical characteristics of PV modules, such as partial 
shading [19] and short-circuited bypass diodes [20]. When a low-current PV cell is present in a string of high short-circuit current 
PV cells, the forward bias across all the cells can reverse bias the shaded cell. This, in turn, significantly increases the temperature of 
the affected cell, leading to a phenomenon known as hot spotting. Hot spotting can not only damage the cell but also diminish the 
overall power output of the solar panel [21]. Therefore, conducting regular inspections of PV modules is crucial to ensuring optimal 
output efficiency.

Moreover, several types of losses that can occur in solar cell fields, which are areas where solar cells are installed to generate 
electricity from sunlight. These losses can affect the overall efficiency and output of the solar power systems. The types of losses that 
can be discussed include:

• Shadow Losses [22], shadows cast on solar collectors can significantly reduce their output power capability. This is critical for 
photovoltaic systems due to mismatch losses.

• Temperature-Related Losses: [23,24] touch on the sensitivity of PV systems to surface temperature. As the temperature of the 
solar cells increases, their efficiency decreases, leading to power output losses.

• Irradiance Degradation: [25] discusses the degradation of solar irradiance along a row of solar panels, leading to a decrease in 
the energy received by panels that are not in the first row. This can result in uneven power generation and overall losses in a 
solar field.

• Economic Parameters: [22]also mentions that the results are critically sensitive to economic parameters such as capital cost, fuel 
cost, interest rate, inflation rate, etc. While these are not direct physical losses, they affect the economic feasibility and thus the 
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• Meteorological Data Uncertainty: The uncertainty in meteorological data can lead to inaccuracies in the prediction of solar 
energy generation, as mentioned in [22]. This can be considered a loss in the planning and reliability of solar energy systems.

In recent solar photovoltaic (PV) research, significant advancements include a novel fault identification scheme for PV arrays, 
enhancing fault detection under challenging conditions such as low irradiance [26]. Another study introduced an innovative fault 
detection method using minimal sensors, surpassing the limitations of traditional AI techniques and improving system safety and 
efficiency [27]. Additionally, research on PV panel replacement strategies addressed challenges from manufacturing updates and 
panel availability, analyzing five replacement scenarios to guide optimal decisions for PV system sustainability [28].

Various methods are employed for PV module inspection, including manual inspection, laser detection for pinpointing potential 
issues with greater accuracy, satellite observations for obtaining a comprehensive view of the entire setup, infrared thermography 
for detecting anomalies in heat distribution, and electroluminescence imaging for identifying cracks or other defects that may not 
be visible to the naked eye [29]. These inspection techniques help identify and address any performance issues or potential risks 
promptly, allowing for timely maintenance and maximizing the overall efficiency and lifespan of the PV system.

Manual inspection is a laborious process, while techniques such as laser detection and electroluminescence imaging are not 
suitable for large-scale PV power stations. Infrared thermography is widely adopted for inspecting large PV systems due to its ease 
of use. However, even with infrared thermography, inspecting a large PV system can be time-consuming as each module needs to be 
individually inspected [30].

Recently, artificial intelligence has been extensively utilized for anomaly and fault detection [31,32]. In the field of Solar PV Mod-
ules Build-up, detecting abnormalities using AI, drones, virtual reality, and other technologies has emerged as a prominent research 
area. For instance, drone-based infrared thermography has gained considerable attention as a promising approach to streamline the 
inspection process of PV systems. By utilizing drones equipped with infrared cameras, it becomes possible to efficiently capture 
thermal data of the entire PV system from an aerial perspective [33]. This technology offers several advantages, such as improved 
accessibility to hard-to-reach areas and the ability to cover large areas quickly. However, despite its potential, many existing ap-
proaches in drone-based infrared thermography still face certain limitations. One major drawback is the reliance on manual drone 
control, which can be physically demanding and time-consuming. Piloting the drone manually requires skilled operators who must 
navigate the drone precisely to capture thermal images of all PV modules. This process can be challenging, particularly for large-scale 
installations that encompass numerous modules [34]. Moreover, a significant issue with existing approaches is the lack of precise 
information about the location of defective panels. While thermal images obtained by drones can identify areas with abnormal 
temperatures, they often fail to provide accurate localization of the specific panels that require maintenance. As a result, the subse-
quent identification and repair of defective panels become more complex and time-consuming, leading to additional delays in the 
maintenance process [35].

Various techniques have been proposed for damage detection on solar panels. In this section, we provide an overview of some 
existing techniques and highlight their key characteristics. For instance, Alsafasfeh et al. [36] proposed a technique that combines 
thermal and visual data imagery to detect various faults. They employed the Canny edge detector, Gaussian filter, and histogram 
equalization along with seed pixels to identify faults. This technique offers real-time monitoring capabilities for PV system operations 
and can detect various types of faults. However, it does not specifically address dust-related issues. Similarly, Shihavuddin et al. [37]
also developed a technique that utilizes thermal and visual data imagery for fault detection. They employed a single trained model 
capable of detecting different types of damage and provided a new dataset comprising four specific image sets. While this technique 
shows promise in detecting various types of damage, the use of a single model may reduce sensitivity to different types of damage. 
Moving forward, Zyout et al. [38] proposed a technique for surface defect detection using online visual images. They employed 
AlexNet and CNN convolutional neural networks to classify the images. This technique introduces an innovative concept but relies 
on manual feature extraction during the detection stage. Furthermore, relying on online data collection may limit the capacity of the 
classification model.

Furthermore, Henry et al. [34] presented a technique that leverages thermal and visual data imagery to detect deteriorated PV 
panels. They employed color-based segmentation followed by contour detection to identify faults. The approach was extensively 
evaluated using a large real-world dataset. However, it should be noted that the determination of the root cause of the detected fault 
still requires manual intervention. In a different approach, Abuqaaud et al. [39] proposed a technique for dust and soil detection 
using RGB cameras. They employed the Gray Level Co-occurrence Matrix (GLCM) method for image classification. The technique is 
relatively straightforward to implement, but it does not account for other classes of anomalies such as shadow areas, broken panels, 
or wet panels. Additionally, Pierdicca et al. [40] presented a technique for anomaly cell detection utilizing a thermal infrared sensor. 
They employed the Mask R-CNN architecture for image classification. The technique includes a publicly accessible dataset and has 
been compared to recent works employing deep neural networks. However, there is room for improvement by incorporating real-time 
electrical data analysis from operating photovoltaic modules using a monitoring infrastructure.

Table 1 provides an overview of the methods utilized between 2018 and 2023 for identifying faults in solar panels. The table 
outlines the techniques employed, the data sources utilized, the outcomes attained, and the constraints associated with each method.

Segmenting deteriorating areas of a PV system has the advantage of accurately identifying and diagnosing any problems. With 
the help of AR technology, maintenance workers can quickly locate and evaluate damaged regions in real time. This means that 
inspections take less time and repairs can be done faster, resulting in less downtime. AR can also be useful during maintenance and 
repairs by providing workers with step-by-step instructions on how to fix issues. By superimposing repair instructions and schematics 
3

onto the AR display, maintenance workers can reduce the likelihood of making mistakes and improve the quality of repairs [5].
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Table 1

Summary of methods used for SP fault detection.

Work Year Methods Data Collection Obtained Results Limitations

[36] 2018 Real-time inspection system, Thermal and 
CCD cameras mounted on a drone

Thermal and CCD videos 
captured by cameras on 
a drone flying over PV 
modules

– Relies on camera-based detection, 
may be affected by weather 
conditions and visibility. Limited 
to faults detectable through visual 
analysis.

[41] 2020 Two segmentation techniques for 
photovoltaic (PV) solar panels: filtering by 
area and active contours level-set method 
(ACM LS). Refinement using morphological 
operations and Hough transform

Solar Panel Infrared 
Image Datasets

Dice = 0.97, IoU = 0.94 Small statistical differences 
between AF and ACM LS 
segmentation. Limited to 
photovoltaic system analysis by 
cell.

[34] 2020 Autonomous drone-based solution, RGB and 
thermal cameras, Automatic flight path 
planning algorithm, Image processing 
algorithm

RGB and thermal images 
captured by cameras on 
a drone flying over PV 
modules

Automatic detection and 
localization of faulty PV 
modules, Precise 
location estimation

Requires testing and validation for 
different power plant locations and 
environmental conditions.

[42] 2020 Thermographic non-destructive tests 
(TNDTs), Convolutional Neural Network 
(CNN), Image classification

Thermographic images 
captured from PV 
modules, CNN 
classification

Automatic classification 
of thermographic 
images, 98% accuracy in 
tests

Limited to classification of dust 
and hotspots. Requires further 
evaluation for other faults.

[43] 2020 Image processing technique, Maximally 
Stable Extremal Regions (MSER), 
Homography translation technique

Thermal and visible 
images of PV modules

Automatic identification 
of hot spots, 97% 
consistency with visual 
evaluation

Limited to the identification of hot 
spots and related abnormalities.

[40] 2020 Deep Learning (Mask R-CNN, UNet, FPNet, 
LinkNet)

UAV-based thermal 
imaging

0.741 and 0.841 of 
values on Jaccard and 
Dice indices

Binary segmentation, Multi-class 
segmentation, Dataset 
improvement, Real-time 
measurements

[37] 2021 Deep learning approach, Unified model, 
Various modalities (thermal to visual 
images), Various energy installations

– Accuracy of 0.79 in 
surface damage 
detection

Limited to surface damage 
detection, specific energy 
installations considered.

[44] 2022 Drones, Thermal images, MATLAB image 
analysis, Image acquisition, Grayscale 
conversion, Filtering, 3D image construction

Solar modules installed 
on buildings

Improved inspection 
efficiency, Enhanced 
defect diagnosis 
capability

Limited to thermal image-based 
defects, potential dependency on 
image quality.

[45] 2023 Ghost Convolution, BottleneckCSP, Tiny 
target prediction head, YOLOv5, Feature 
Pyramid Network (FPN), Path Aggregation 
Network (PAN)

PV panel surface images Improved accuracy in 
tiny defect detection, 
Enhanced model 
inference speed

Limited to PV panel surface defect 
detection, potential scalability 
limitations.

Even though, AR technology can enhance safety during maintenance procedures by visualizing potential hazards and safety issues, 
it also enables maintenance staff to take necessary precautions and avoid accidents that may cause injury to persons or damage to 
property, including the PV system. Regardless, despite the growing interest in using AR for various industrial maintenance tasks, 
there remains a noticeable research gap in exploring the potential of AR for enhancing the maintenance of solar panel PV systems. In 
addition, AR can decrease the cost of PV system maintenance and repair by facilitating more efficient diagnosis and repair procedures 
and reducing labor costs and downtime. Moreover, AR provides real-time information on the PV system condition, preventing minor 
issues from escalating into larger problems, and ultimately extending the system lifespan and decreasing the need for costly repairs. 
In summary, AR visualization of damaged PV system components offers several advantages, including increased safety, cost savings, 
and more effective maintenance and repair processes.

To overcome the aforementioned issues, the design, installation, and end-users of photovoltaic (PV) systems can all reap the bene-
fits of augmented reality (AR) visualization. AR offers the potential for a highly realistic and immersive experience of the PV system, 
which can facilitate adjustments based on real-time usage and enhance the overall efficiency of the system. This, in turn, assists 
designers and installers in conducting more accurate analyses and making improvements to the system design. Moreover, AR has 
the potential to enhance users understanding of equipment maintenance and operation, thereby improving their overall experience 
and proficiency in utilizing the PV system. Additionally, visualization tools improve the localization of deteriorated areas in Solar PV 
systems by providing enhanced imaging, real-time monitoring, data analysis, augmented reality, 3D modeling, and historical data 
comparison [46]. Furthermore, the implementation of AR can greatly support PV system installation and maintenance processes [47]. 
By providing installers with a visual representation of the system in action, AR simplifies the installation and positioning of panels 
and other components. Additionally, AR technology aids in the identification and diagnosis of any potential issues or maintenance 
requirements, reducing downtime and optimizing system performance. Overall, the integration of AR in PV systems brings numerous 
4

advantages, enhancing the efficiency, effectiveness, and user experience throughout the system lifecycle [48,49].
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Fig. 1. Block Diagram of the methodology used for analyzing and visualizing deteriorated area in PV module.

Specifically, AR can serve as a powerful tool for promoting the adoption of renewable energy. By providing a delightful and 
immersive experience [50], AR has the potential to inspire individuals to embrace sustainable energy practices and increase their 
understanding of PV technology [51]. The utilization of AR in visualizing PV systems offers numerous advantages as it delivers 
vital information regarding their construction, installation, and maintenance. This, in turn, can contribute to a broader acceptance 
of renewable energy sources. The combination of augmented reality and infrared thermography presents a comprehensive solution 
for efficiently monitoring and diagnosing faults in PV modules, thereby enhancing their overall performance and lifespan. By inte-
grating these technologies, the study introduces a novel method for detecting and localizing faults in PV modules utilizing infrared 
thermography. The proposed method encompasses the following key contributions:

• Evaluating the condition of PV modules to determine if they are functioning normally or if there are any defects present.
• Creating a solution for detecting and locating faults in PV modules by employing improved segmentation techniques and visual-

izing 3D thermal images sourced from the Cali-Thermal Solar Panels Database.
• Introducing a novel approach for enhancing and segmenting PV images to effectively handle irregularities or anomalies.
• Introducing an advanced system based on Augmented Reality for 3D visualization and localization, which forms an integral part 

of the proposed method.

The rest of this paper is organized as follows. In Section 1, we delve into a comprehensive literature review on SP fault detection. 
Section 2 explains our proposed method of abnormality analysis, complete with an insight into data collection and pre-processing 
strategies. Subsequently, Section 3 showcases the evaluation outcomes and performance comparison of our approach. Ultimately, 
Section 4 encapsulates the significant findings of the study.

2. Methodology

This section introduces key methodologies for analyzing and visualizing abnormal data in a 3D environment. We cover the 
abnormality analysis, data collection, pre-processing, 3D broken area tracking using a segmentation framework with exponential 
stretching function and Region Growing-Based Segmentation, and 3D Augmented Reality visualization and localization. Each tech-
nique is essential for the accurate analysis and visualization of abnormality data, and we will delve into their details in the following 
subsections. Fig. 1 illustrates the block diagram of the methodology used for analyzing and visualizing deteriorated areas in a PV 
(photovoltaic) module.

2.1. Abnormality analysis method

The Abnormality analysis method is an essential step for saving time before proceeding to segmentation. In our case, we rely 
5

on thermal image analysis, referring to the method developed in [34] for detecting abnormal PV modules. This process determines 
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Table 2

Comparison of Cali-Thermal Solar Panels Image database (Data 1) [52,53] and Solar Panel Infrared Image Database (Data 2) [54].

Category (Data 1) (Data 2)

Type of PV Panels Monocrystalline Si panels, part of a photovoltaic array 
consisting of 4 serial panels

Specific type not mentioned, total capacity of 42.24 kW, 8 PV 
strings, 22 PV modules per string

Electrical Characteristics PV array connected to an electronic equipment emulating a 
real load

Each PV module rated at 240 W, total system capacity of 
42.24 kW

Layout of the Field PV array of 4 serial monocrystalline Si panels. Data acquired 
using DJI Matrice 100 drone with Zenmuse XT IR camera

PV system comprised of 8 strings with 22 modules per string. 
Thermal camera used for data acquisition was handheld and 
horizontally aligned

Additional Information Dataset includes 277 thermographic aerial images, 
temperature, wind speed, and irradiance measurements.

Isolated convolution neural model (ICNM) developed for 
classifying infrared images of PV panels based on their health 
and defects. High accuracy and efficiency

images with Anomalies 277 1009 images in three classes
Data Normalization Cropping Required; transformation to black and white
Temperature Range Min=26 C to Max=32 C Min=2.24 C to Max=103.33 C
Wind speed 3–5 ms Not mentioned
Dataset Utilization Classification of solar panel conditions Training models for anomaly detection
Fault Detection Hot spots Thermal data for any fault detection
Dataset Availability Public Public upon request
Equipment/Design Various equipment including drones and thermal cameras Skyrobotic SR-SF6 drone with FLIR TAU 2 infrared camera
Data Format/Conditions Raw thermal images, temperature, irradiance, wind speed, 

etc.
Raw thermal images, power of 66 MW

PV module health based on different criteria. In this regard, using the thermal image, we determine the highest temperature value 
𝑇𝑚𝑎𝑥, lowest temperature value 𝑇𝑚𝑖𝑛, and mean temperature value 𝑇𝑚. Subsequently, either the high-temperature threshold value 𝑇ℎ
or the low-temperature threshold value 𝑇𝑙 is calculated using either Eq. (1) and Eq. (2), respectively.

𝑇ℎ = 𝑇𝑚𝑒𝑎𝑛 + (𝑇𝑚𝑎𝑥 × 0.2) (1)

𝑇𝑙 = 𝑇𝑚𝑒𝑎𝑛 + (𝑇𝑚𝑖𝑛 × 0.2) (2)

If the temperature value 𝑇𝑣𝑎𝑙 is less than 𝑇𝑚𝑎𝑥 and 𝑇𝑚𝑖𝑛, the count value 𝑎𝑐 is raised. Specifically, the decision rule defined in 
Eq. (3) is applied to temperature values in the context of analyzing thermal images:

𝑓 (𝑥) =
{
𝑎𝑐 ++ 𝑖𝑓 (𝑇𝑣𝑎𝑙 > 𝑇𝑚𝑎𝑥) or (𝑇𝑣𝑎𝑙 < 𝑇𝑚𝑖𝑛)
𝑎𝑐 otherwise

(3)

Moving forward, the module is classified as abnormal if 𝑎𝑐 is greater than 0.2% of the module area value 𝑆𝑚𝑜𝑑𝑢𝑙𝑒, as explained in 
Eq. (4)

𝑔(𝑥) =
{

abnormal PV module if (𝑎𝑐 > 𝑆𝑚𝑜𝑑𝑢𝑙𝑒 × 0.002)
normal PV module otherwise

(4)

The equation presented above enables the identification of faulty PV modules in a large-scale PV power station. This allows us to 
focus the subsequent segmentation process specifically on the abnormal PV modules, saving time and resources by narrowing down 
the analysis to the relevant areas of interest.

2.2. Data collection

Prior to the segmentation and visualization processes, data collection was conducted using the Cali-Thermal Solar Panels Image 
database [52,53] and Solar Panel Infrared Image Database [54]. This comprehensive datasets include a wide range of test images 
depicting various areas of solar panel deterioration, as illustrated in Fig. 2(a). These datasets encompasse diverse scenarios of deterio-
rated cases, encompassing different types of deterioration or sample PV panels. Indeed, Fig. 2 serves also as a visual representation of 
the differences in visual appearance between abnormal and normal PV modules, providing a visual reference for identifying potential 
defects in this database.

In Table 2, a comprehensive comparison is presented between two distinct solar panel image databases: the Cali-Thermal Solar 
Panels Image database (Data 1) and the Solar Panel Infrared Image Database (Data 2) [54]. The comparison spans various categories, 
including the number of images with anomalies, data normalization procedures, temperature ranges, wind speed conditions, dataset 
utilization purposes, fault detection methods, dataset availability, equipment and design specifications, data format and conditions, 
as well as the geographical location of the data collection.

On the other hand, we also picked the dataset solar panel infrared images v5 [55] for segmentation purposes. The dataset includes 
934 images of solar panels, which are annotated in Tensorflow Object Detection format. Each image has been resized to a resolution 
of (416 × 416) pixels. This dataset is designed for computer vision projects related to solar panel inspection and defect detection 
6

[56,57]. In Fig. 2(b), representative samples of the dataset are depicted, providing a visual representation of the underlying data.
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Fig. 2. Samples of abnormal and normal PV modules highlighting the distinct differences in visual appearance and potential defects on (a) Cali-Thermal Solar Panels 
and (b) Solar Panel Infrared Image Database.

2.3. Segmentation framework for tracking 3D broken areas

The histogram stretching technique plays a crucial role in spatial domain pre-processing methods, which are essential for enhanc-
ing images, recognizing patterns, and performing binarization and segmentation. The linear stretching approach is widely employed 
for expanding luminance levels uniformly. However, its effectiveness is limited when the luminance levels are fully distributed. To 
overcome this limitation, non-linear techniques are utilized to compress some dynamic luminance levels while expanding others.

2.4. Exponential stretching function

This study introduces an exponential stretching function to expand the bright region. The function is described in Eq. (5):

𝑓 (𝑥) = 𝑥𝐿−1 ⋅
(
1 − 𝑒

− 𝑥−𝑥𝑚𝑖𝑛
𝑥𝑚𝑎𝑥−𝑥𝑚𝑖𝑛

)
(5)

where 𝑥 refers to a luminance level, 𝑥(𝐿−1) denotes the total number of luminance levels within a permitted range, 𝑥𝑚𝑖𝑛 and 𝑥𝑚𝑎𝑥
represent the minimum and maximum luminance levels, respectively.

2.5. Region growing-based segmentation

This technique utilizes the region-growing method to combine image pixels, in which the starting point is divided into multiple 
locations. The algorithm calculates the region of interest into multiple regions and identifies redundancies. Finally, redundant regions 
7

are displayed in different colors. Algorithm 1 can be expressed as:
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Algorithm 1: Region Growing-Based Segmentation.
Input: Stretched image, 𝑆𝑖,𝑗
Output: Binary Image, 𝐵𝑖,𝑗 , and Segmented Regions, 𝐶𝑖,𝑗

Parameter Initialization:

𝜖← a constant: Define the acceptable error within the context of the segmentation procedure, 𝜖← 5.
𝑘 ← a constant: Define the surrounding pixel, 𝑘 = [1, 2, … , 𝑁], 𝑁 ← 4.
𝜏 ← a threshold: Define the image-dependent threshold.
Process:

𝑝𝑖,𝑗 ← 1 when 𝑆𝑖,𝑗 ≥ 𝜏

for 𝑎 ← 1 to 𝑖 × 𝑗 do
𝑅𝑎,𝑘 ← 𝑝𝑎

while
(

1
𝑁

∑𝑁

𝑘=1𝑅𝑎,𝑘

)
< 𝜖 and size < 𝑆𝑖,𝑗 do

𝑅𝑎,𝑘 is connected to its surrounding pixels.

𝑅𝑎 ←
⋃𝑁

𝑘=1𝑅𝑎,𝑘

𝐵𝑖,𝑗 ←

{
1, when 𝑅𝑎 <

1
𝑁

∑𝑁

𝑘=1𝑅𝑎,𝑘

0, otherwise

𝑅𝑖,𝑗 ←
∏𝑖×𝑗

𝑎=1𝑅𝑎

𝐶𝑖,𝑗 ←𝑅𝑖,𝑗 ⊙ 𝑆𝑖,𝑗 where ⊙ denotes a dot product operator.

Table 3

Parameters selection.

Image 𝜀 = 3, 𝜏 = 160 𝜀 = 5, 𝜏 = 160 𝜀 = 7, 𝜏 = 160

GT Segmented

Image 𝜀 = 3, 𝜏 = 128 𝜀 = 5, 𝜏 = 128 𝜀 = 7, 𝜏 = 128

GT Segmented

For 𝜀, it is set as 5. The region is iteratively grown by comparing all unallocated neighboring pixels to the region, less than a 
region-based mean error. Based on Table 3, 𝜀 = 5 generates a corresponding segmented image compared with its ground truth. In 
the case of 𝜀 = 7, the segmented regions become larger than its ground truth. For 𝜀 = 3, the segmented regions are smaller. As shown 
in Table 2. For 𝑘, it is set as 4 (north, east, west, and south directions). Algorithm 1 describes a general form. For 𝜏 , it is an image 
threshold. If 𝜏 = 128 and the threshold is less than 160 (the dataset-dependent threshold), the results show inaccurate segmented 
regions. The threshold is crucial for classifying pixels with higher illumination. These pixels are initialized as seeds for multi-level 
segmentation. As shown in Table 3, the lower the value of 𝜀, the more under-segmented the result. When 𝜀 = 7, it over-segments and 
8

includes unwanted parts.
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Fig. 3. (a) Solidworks conception, (b) PV Blender conception.

2.6. Limitations, assumptions, and uncertainties

The methodology of this research is primarily based on thermal image analysis, which is susceptible to external influences such as 
ambient conditions, potentially leading to inaccuracies in identifying abnormal PV modules. The segmentation framework may face 
challenges with minimal or low-contrast deteriorations. We assume that thermal images reliably indicate PV module health and that 
the regions of interest are homogeneous. However, uncertainties arise from the dependency on the quality of thermal imagery and 
the precision of temperature measurements, as well as the chosen parameters for the segmentation framework, which could impact 
the overall reliability of the results.

2.7. 3D augmented reality visualization and localization approach

In order to improve the visualization of PV systems and identify deteriorated areas, we have developed a 3D model of a Solar 
Photovoltaic panel. The model was created using a combination of SolidWorks [58] and Blender [59] software. Our design process 
consisted of three main steps: firstly, we created a base for the panel, followed by adding solar cells, and finally, we included details 
such as mounting holes, rounded edges, fasteners, textures, and colors to achieve a more realistic appearance. This 3D model serves 
as a valuable tool for studying and analyzing the behavior of PV systems under different conditions, and it can aid in the identification 
and diagnosis of areas that may require maintenance or repair.

To begin with, we followed a straightforward three-step process in SolidWorks. Firstly, we created a new SolidWorks document. 
Secondly, we sketched the shape of the solar panel using 2D drawing tools such as lines, circles, and arcs. Finally, we applied features 
such as extrusions and cuts to convert the 2D sketch into a detailed and accurate 3D model of the solar panel. This process allowed 
us to easily and precisely manipulate the design and iterate on various options until we achieved the desired outcome. Overall, the 
use of SolidWorks significantly streamlined our design process, resulting in a highly efficient and effective design (see Fig. 3(a)).

The photorealistic appearance of our PV design was significantly enhanced through the use of Blender [59]. By incorporating 
a variety of elements such as textures, colors, mounting holes, and softened edges, we were able to bring our concept to life. The 
resulting 3D model is highly detailed and visually stunning (see Fig. 3(b)). Additionally, Blender versatile rendering features allowed 
us to experiment with different lighting and shading settings to achieve the best visualization performance.

Compared to using SolidWorks alone, Blender provided us with more flexibility and options for creating a more realistic and de-
tailed PV design. Its ability to produce photorealistic textures and colors allowed us to better envision the final product. Furthermore, 
the incorporation of mounting holes and softened edges improved the design usability and functionality. Overall, the combination of 
SolidWorks and Blender provided us with an efficient and effective approach to producing a high-quality PV design.

2.7.1. AR rendering

We utilized Vuforia SDK [60] to enhance the realism and interactivity of our PV design visualization through augmented ren-
dering. This cross-platform SDK provided robust tools for tracking and augmenting virtual objects in the real world. By utilizing 
markers as 3D features, we were able to precisely track and modify the design in real-time within the physical environment. These 
markers, specific forms, and images served as standards for scene localization and augmentation to ensure accurate tracking. With 
Vuforia augmented virtual rendering, we achieved a highly realistic representation of the PV design in situ. This allowed us to better 
understand how the design would interact with its environment, a crucial consideration for evaluating its performance. Unity3D [61]
was used to create the AR environment, as it allows for full access to any item created and can import 3D models (.FBX) necessary 
for loading our PV 3D model. Our 3D reconstruction of the segmented deteriorated PV areas was also incorporated.

3. Results

To accurately detect and locate deteriorated cells within PV panels, it is essential to conduct an in-depth abnormality analysis. 
9

Before proceeding with the segmentation process, an evaluation of the abnormality analysis results must be performed to identify the 
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Fig. 4. 𝑇𝑚𝑎𝑥 and 𝑇𝑚𝑖𝑛 values for 11 PV panels, indicating which panels have deteriorated cells. Segmentation is necessary to accurately delineate the affected region 
and optimize performance.

specific panels/cells that require further investigation. Once the panels with deteriorated cells are identified, the proposed approach 
can be segmented and then evaluated using computer simulations to ensure its effectiveness.

Upon evaluation, the next step involves segmenting the PV panels to isolate the regions with deteriorated cells. This process is 
crucial in accurately identifying the damaged areas and preventing false positives. The segmentation results are then analyzed to 
obtain a comprehensive understanding of the extent of the damage.

To provide a more intuitive understanding of the damaged regions, AR visualization techniques can be employed. The AR visual-
ization results enable users to visualize the damage in real time, providing a clearer picture of the damage. In brief, in this section, 
we discuss the abnormality analysis results, evaluation of the proposed approach using computer simulations, segmentation results, 
and AR visualization results.

3.1. Abnormality analysis results

Fig. 4 illustrates the 𝑇𝑚𝑎𝑥 and 𝑇𝑚𝑖𝑛 values of 11 PV panels, providing information on their states. The panels with deteriorated cells 
can be identified by analyzing the obtained values, which is important for selecting the panel to which the segmentation approach 
will be applied. This can significantly reduce processing time. Panels 2, 4, 5, 6, 8, and 11 exhibit thermal values (𝑇𝑣𝑎𝑙) within the 
range 𝑇𝑚𝑖𝑛 < 𝑇𝑣𝑎𝑙 < 𝑇𝑚𝑎𝑥 (25 ◦C < 𝑇𝑣𝑎𝑙 < 40 ◦C), indicating that these panels are clean and do not require segmentation based on the 
approach proposed in subsection 𝐴. In contrast, panels 1, 3, 7, 9, and 10 display thermal values outside this range (𝑇𝑣𝑎𝑙 < 𝑇𝑚𝑖𝑛 and 
𝑇𝑣𝑎𝑙 > 𝑇𝑚𝑎𝑥), indicating deteriorated cells. These panels experience unfavorable operating conditions, such as increased heat stress 
or reduced efficiency, leading to higher and lower temperature values. The 𝑇𝑚𝑎𝑥 values for these panels are higher than those of the 
other PVs, suggesting that one or several cells have deteriorated. Similarly, the 𝑇𝑚𝑖𝑛 values for these panels are lower, indicating 
that they integrate cells with very low performances. The analysis of Fig. 4 emphasizes the importance of identifying the specific 
reasons for PV panel performance deterioration and implementing appropriate measures to mitigate the negative effects and optimize 
performance. Therefore, segmentation is necessary to accurately delineate the affected region.

3.2. Visual inspection results

The segmentation performance of the proposed method, Segment Anything Model (SAM) [62], and Weka approaches was eval-
uated visually on a set of degraded imagery samples. The evaluation was conducted by comparing the segmented hotspots of the 
proposed method with those obtained using SAM [63] and Trainable Weka Segmentation [64]. The ground truth was used as a 
reference to compare the segmentation results, as shown in the second column of Fig. 5.

The segmentation results were compared in terms of visual inspection, and the subjective findings are presented in Fig. 5. The 
results indicate that the proposed method outperforms the other two approaches in segmenting abnormality regions. Specifically, the 
proposed method achieves a more accurate and precise segmentation of the hotspots compared to SAM and Weka.

It is worth noting that the SAM approach performs relatively well but still falls short of the proposed method. Meanwhile, Weka 
tends to over-segment the images, leading to less accurate segmentation results. Overall, the proposed method offers better visual 
segmentation results, which can potentially improve the accuracy and efficiency of hotspot detection and characterization tasks.

3.3. Evaluation of proposed approach using computer simulations

Several statistical methods are widely used to assess the quality of image segmentation. In this paper, we picked the methods 
10

including: Jaccard Index (also known as Intersection over Union or IoU) [65]: This quality measurement calculates the similarity 



Heliyon 10 (2024) e27973A. Oulefki, Y. Himeur, T. Trongtirakul et al.

Fig. 5. Visual segmentation comparison of six image examples using various methods: Columns 1–5 respectively show the original image, ground truth, proposed, 
Weka, and SAM segmentation results.

Table 4

Summary of segmentation metrics used in this study.

Metric Formula Description

Jaccard Index (IoU) TP

TP+FN
Measures the similarity between the intersection and union of segmented and ground truth regions.

Dice Coefficient 2⋅TP

2⋅TP+FP+FN
Quantifies the overlap between segmented and ground truth regions.

Precision TP

TP+FP
Evaluates the accuracy of positive predictions among the segmented regions.

Recall (Sensitivity) TP

TP+FN
Measures the ability to detect positive instances in the ground truth.

Rand Index TP+TN

TP+TN+FP+FN
Assesses similarity based on pixel-wise classifications.

between the segmented region and the ground truth area. The formulas for Jaccard Index and other metrics are summarized in 
Table 4.

3.4. Performance comparison with existing approaches

The performance of the proposed segmentation approach was evaluated using metrics such as Jaccard Index (IoU), Dice coef-
ficient, Precision, and Recall measures. The statistical results of the segmentation on a set of imagery with deterioration. In order 
to compare the performance of the proposed approach efficiently, we also compared the statistical values of the segmented hotspot 
with those obtained using the proposed, SAM [63], and Weka [64] methods as shown in Table 5. In this regard, this table presents 
the data results of the four matrices observations, discussed earlier, with each method having distinct mean values. As shown in the 
table, the results indicate that the proposed method has the highest mean values, while SAM [63], and Weka [64] methods have 
slightly lower mean values compared to the proposed method, and Weka has the lowest mean values among the four methods in 
terms of precision and DSC. These findings suggest that the proposed method likely performs the best among the evaluated methods.

The implementation of the proposed scheme was carried out on a Windows 10 Pro for Workstations with a 3.7 GHz Intel Core i-9 
processor and 32 GB of RAM, using the latest MATLAB Version.

3.5. Heat-map chart analysis for determining the visibility of deteriorated areas

After obtaining the 2D segmentation output, additional processing steps are executed to produce a 3D segmentation output 
11

suitable for integration into Blender software. Thus, heat-map chart analysis is a practical procedure picked for determining the 
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Table 5

Statistical segmentation comparison using the proposed against Weka and SAM 
segmentation methods.

Method IoU Dice S C Precision Recall Rand Index

Weka
𝜇 0.6869 0.5211 0.4921 0.9660 0.6912
𝜎 0.1391 0.1943 0.2601 0.0338 0.1324

SAM
𝜇 0.6212 0.6645 0.7568 0.9791 0.6646
𝜎 0.1927 0.1433 0.2072 0.0405 0.1512

Proposed
𝜇 0.7680 0.8232 0.9045 0.9961 0.7680
𝜎 0.1457 0.0895 0.0739 0.0056 0.1457

Fig. 6. Heat-map chart analysis of a deteriorated surface of 4 samples. Black areas indicate intact regions, while colored areas indicate higher levels of surface 
deterioration.

visibility of deteriorated areas. It involves creating a color-coded map that highlights the deteriorated areas of the solar panel with 
high or low-intensity values. The brighter or warmer colors typically indicate areas of higher intensity, while the darker or cooler 
colors represent areas of lower intensity.

For example, Fig. 6 shows a heat-map chart analysis of a deteriorated surface. The darker areas in the image indicate intact 
regions, while the brighter areas indicate relatively higher levels of deterioration surface.

Overall, heat-map chart analysis is a decisive tool for identifying and visualizing areas of deterioration. This technique can be 
used in conjunction with other image analysis methods to provide a more comprehensive understanding of the extent and severity 
of deterioration in a given solar panel.

3.6. AR visualization results

Augmented Reality (AR) technology can effectively promote the knowledge and adoption of Photovoltaic (PV) technology and 
12

sustainable energy practices by providing an engaging, interactive, and enjoyable experience. The Vuforia SDK for AR rendering 
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Fig. 7. PV and AR visualizations: (a) PV Augmented Reality visualization and (b) AR visualization of the PV deteriorated areas.

was used during the design process, providing a robust and user-friendly tool for analyzing and improving the PV design. The AR 
rendering of PV visualization is depicted in Fig. 7(a), and it can be experienced through smartphones, tablets, and AR glasses.

Segmenting the deteriorated areas of PV systems provides significant benefits in terms of accurately locating and diagnosing 
issues. AR visualization of these segmented areas enables maintenance personnel to view the PV system and its damaged regions in 
real time, facilitating precise location and assessment of flaws or damages. Fig. 7(b) showcases the AR rendering of the visualization 
of the PV deteriorated areas. The utilization of AR technology in PV systems has the potential to revolutionize the way we maintain 
and optimize our renewable energy sources.

3.7. Discussion

Without seeking input from experts in photovoltaic solar system maintenance, the author independently conducted a visual 
verification of the virtual augmentation. This decision was guided by several considerations, primarily driven by factors such as the 
time and cost implications associated with engaging professional users. Furthermore, the author possesses a profound understanding 
of AR technology and the tools utilized in the verification of visual augmentation, potentially granting deeper insight into how 
the augmented information aligns with real-world maintenance responsibilities. Following the initial visual verification process, 
the author plan includes subsequent phases involving expert validation and peer review, aligning with the research objectives and 
the specific requirements of the solar PV maintenance project. At a later stage, the involvement of external specialists may offer 
an additional layer of scrutiny and validation for the results. The interpretation and analysis of the results presented in this study 
demonstrate the effectiveness of the proposed method for detecting and segmenting deteriorated cells in solar PV panels. Fig. 6
provides valuable information on the thermal performance of PV panels, highlighting the need for segmentation to accurately 
delineate the affected regions. The analysis reveals that panels with thermal values within the range 𝑇𝑚𝑖𝑛 = 25 < 𝑇𝑣𝑎𝑙 < 𝑇𝑚𝑎𝑥 = 40 are 
clean and do not require segmentation, while panels with values outside this range exhibit deteriorated cells.

The segmentation performance of the proposed method was compared with Meta and Weka approaches, and the subjective 
findings showed that the proposed method outperformed the other two methods in accurately and precisely segmenting abnormality 
regions. The mean values of the four matrices observations also indicate that the proposed method likely performs the best among 
the evaluated methods. The heat-map chart analysis proved to be an effective technique for identifying and visualizing areas of 
deterioration, which can be used in conjunction with other image analysis methods to provide a more comprehensive understanding 
of the extent and severity of deterioration in a given solar panel.

Furthermore, the study highlights the significance of effective maintenance for solar PV modules. The accurate and efficient 
detection and segmentation of deteriorated cells can significantly reduce processing time and facilitate the precise location and 
assessment of flaws or damages, ultimately optimizing the performance of the PV system. Augmented Reality (AR) technology can 
also play a crucial role in promoting the adoption of Photovoltaic (PV) technology and sustainable energy practices by providing an 
engaging and interactive experience.

However, this study has limitations that can be addressed in future research. The proposed method was evaluated on a limited set 
of degraded imagery samples, and more extensive testing is needed to assess its effectiveness on a larger scale. Additionally, the study 
focused solely on detecting and segmenting deteriorated cells, and future research can explore other aspects of PV maintenance, such 
as fault detection and diagnosis. Overall, the study offers valuable insights into the importance of effective maintenance for solar PV 
modules and the potential of advanced technologies like AR in optimizing the performance of renewable energy sources.

4. Conclusion

This paper presents a novel approach for detecting abnormalities, such as hot spots and snail trails, in solar photovoltaic (PV) 
modules using unsupervised sensing algorithms and 3D augmented reality visualization. By facilitating more effective diagnosis and 
repair procedures, AR can help to lower the cost of PV system maintenance and repair. The proposed segmentation framework and 
analysis methods are evaluated using computer simulations and real-world image datasets, demonstrating the effectiveness of the 
13

approach in identifying dirty areas in solar PV modules. The findings emphasize the importance of regular maintenance to ensure 
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the efficiency and power capacity of solar PV modules. The short-term aim of this work is to detect solar panels in an automatic and 
real-time manner using drones, which can significantly improve the efficiency of PV module maintenance. The proposed approach 
could be a game-changer in the field of solar PV maintenance, as it allows for quick and accurate detection of abnormalities without 
human intervention. This can lead to cost savings, increased energy production, and improved overall performance of solar PV 
systems. Furthermore, the use of unsupervised sensing algorithms and 3D augmented reality visualization techniques adds a new 
dimension to the field of solar PV maintenance, opening up possibilities for further research and development in this area.

However, the incorporation of human judgment is pivotal to ensure the accuracy and reliability of anomaly detection in PV, 
especially considering the complexity and variability of anomalies in PV modules including hot spots, micro-cracks, potential-induced 
degradation (PID), snail trails, light-induced degradation (LID), delamination, etc. This necessity for expert analysis, hence, does 
increase the costliness of our method.

Future work will focus on mitigating the necessity of expert human analysis in detecting anomalies in PV modules. Typically, 
several strategies could be implemented. Enhancing the precision of unsupervised sensing algorithms through machine learning, 
employing deep learning models like CNNs for defect recognition, and establishing semi-automated systems for initial AI screening 
with human experts reviewing critical cases can significantly improve efficiency. Augmenting data with simulated defects, leveraging 
a crowdsourced approach for data analysis, and instituting a continuous learning loop with real-world feedback can evolve the 
system’s accuracy. Additionally, integrating anomaly detection with predictive maintenance, refining augmented reality tools for 
better visualization, collaborating with regulators for industry standards, and developing a feedback mechanism from technicians’ 
repairs will collectively diminish the reliance on human judgment, thereby reducing costs and enhancing the method’s scalability.

Solar Photovoltaic (PV), Augmented Reality (AR), True Positive (TP), False Positive (FP), True Negative (TN), False Negative (FN) 
and Intersection over Union (IoU) are abbreviations whereas.
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