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Aberrant accumulation of misfolded proteins into amyloid deposits is a hallmark in
many age-related neurodegenerative diseases, including Alzheimer’s disease (AD),
Parkinson’s disease (PD), Huntington’s disease (HD), and amyotrophic lateral sclerosis
(ALS). Pathological inclusions and the associated toxicity appear to spread through the
nervous system in a characteristic pattern during the disease. This has been attributed
to a prion-like behavior of amyloid-type aggregates, which involves self-replication of the
pathological conformation, intercellular transfer, and the subsequent seeding of native
forms of the same protein in the neighboring cell. Molecular chaperones play a major
role in maintaining cellular proteostasis by assisting the (re)-folding of cellular proteins to
ensure their function or by promoting the degradation of terminally misfolded proteins to
prevent damage. With increasing age, however, the capacity of this proteostasis network
tends to decrease, which enables the manifestation of neurodegenerative diseases.
Recently, there has been a plethora of studies investigating how and when chaperones
interact with disease-related proteins, which have advanced our understanding of the
role of chaperones in protein misfolding diseases. This review article focuses on the
steps of prion-like propagation from initial misfolding and self-templated replication to
intercellular spreading and discusses the influence that chaperones have on these
various steps, highlighting both the positive and adverse consequences chaperone
action can have. Understanding how chaperones alleviate and aggravate disease
progression is vital for the development of therapeutic strategies to combat these
debilitating diseases.

Keywords: neurodegenarative diseases, prion-like spreading, proteostasis, molecular chaperones and Hsps,
disaggregation

INTRODUCTION

A common feature in many neurodegenerative diseases, including Alzheimer’s disease (AD),
Parkinson’s disease (PD), Huntington’s disease (HD), amyotrophic lateral sclerosis (ALS), and
prion diseases is the age-related formation of amyloid deposits (Chiti and Dobson, 2017). Each
disorder is characterized by the misfolding of one or more specific proteins: amyloid-β (Aβ) and
Tau (MAPT) in AD, α-synuclein (α-syn/SNCA) in PD, Huntingtin (HTT) in HD, superoxide
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dismutase 1 (SOD1), TAR DNA binding protein 43 (TDP-
43/TARDBP), FUS RNA-binding protein (FUS) and
dipeptide repeat proteins (DPRs) translated from C9orf72-
SMCR8 complex subunit (C9orf72) in ALS, and the prion protein
(PrP/PRNP) in prion diseases (Dobson, 2017; Eisenberg and
Sawaya, 2017). Despite having different structures and functions
under physiological conditions, under disease conditions, these
proteins adopt a β-sheet-rich conformation with a strong
tendency to form highly ordered amyloid fibrils. These fibrils
can act as pernicious templates for the native monomeric form of
the respective protein to misfold into the amyloid conformation
and incorporate into the growing fibrils, which eventually
accumulate into large intra- and/or extracellular deposits
characteristic for the respective neurodegenerative diseases
(Jucker and Walker, 2013).

Protein aggregates usually arise from the failure of the
protein quality control (PQC) machinery that maintains cellular
protein homeostasis (proteostasis). Molecular chaperones are
key components of the PQC network and support cellular
proteostasis by regulating the folding of nascent polypeptides, the
re-folding of aberrant proteins, or their removal by degradation
via the ubiquitin-proteasome system (UPS) or autophagy (Bukau
et al., 2006; Kampinga and Craig, 2010). When a protein
escapes these (re)-folding or clearance mechanisms, misfolded
forms accumulate and eventually aggregate (Hartl et al., 2011).
An age-related decline in the capacity of the PQC machinery
appears to result in a proteostasis collapse (Ben-Zvi et al., 2009),
which in turn allows the manifestation of diseases associated
with protein misfolding, such as the diseases mentioned
above. On a positive note, the age-dependent accumulation of
amyloid deposits in neurodegenerative diseases suggests that in
younger individuals there are PQC pathways active that can
prevent aggregation. Chaperones are key regulators of amyloid
formation since they monitor and prevent the misfolding
and aggregation of proteins (Kampinga and Bergink, 2016;
Wentink et al., 2019). Here, we will highlight the complex
ways in which chaperones influence the different stages of
prion-like propagation of proteins associated with the most
prevalent neurodegenerative diseases. This will contribute to
a better understanding, not only of which chaperones could
be selected for drug development, but also of when to target
these chaperones.

PRION-LIKE PROPAGATION OF PROTEIN
MISFOLDING IN NEURODEGENERATIVE
DISEASES

The propensity of a protein aggregate to act as a template or
‘‘nucleus’’ or ‘‘seed’’ to promote the aggregation of its native
form is central to the prion hypothesis (Prusiner et al., 1998).
Prions (proteinaceous infectious particles) are the causative agent
in prion diseases including bovine spongiform encephalopathy
(BSE), chronic wasting disease (CWD), and scrapie (Prusiner
et al., 1998). In prion diseases, disease-associated PrPSc can
propagate itself by templating the conversion of the endogenous
PrPC from its normal helical into a β-sheet-rich amyloid

conformation (Prusiner, 1998; Glynn et al., 2020). These
diseases are truly infectious as they can spread within and
between species. While misfolded proteins associated with
other neurodegenerative diseases do not seem to be naturally
transmitted between individuals, they share many properties
of prions, such as the ability to self-propagate, spread from
cell to cell, and subsequently induce aggregation of the same
protein in neighboring cells (Walker and Jucker, 2015). They
are often referred to as ‘‘prion-like’’ to differentiate them
from truly infectious prions, but to emphasize the strong
similarities concerning the propagation process (Jaunmuktane
and Brandner, 2019).

The formation and propagation of amyloids involve several
critical steps. The initial conformational rearrangement to an
abnormal β-sheet-rich fold favors the assembly of individual
proteins into an oligomer (Figure 1). The generation of a
propagon, a unit with a seeding-competent conformation and
size that can self-replicate, is considered the rate-limiting event
in amyloid formation (Cox et al., 2003; Iljina et al., 2016;
Meisl et al., 2017). Elongation of protofibrillar species, or the
templated addition of misfolded proteins, proceeds relatively fast.
Although an amyloid fibril is energetically very stable, there is still
an equilibrium between different oligomeric, protofibrillar, and
fibrillar protein species (Carulla et al., 2005; Baldwin et al., 2011).
Fibril growth is further accelerated by secondary nucleation
events along the fibril surface and by fragmentation (Törnquist
et al., 2018). The latter event promotes amyloid growth by
producing more fibril ends to which monomers can be added
(Knowles et al., 2009). Also, propagons are further able to
spread via multiple routes outlined in Figure 2 and template the
aggregation of like proteins in neighboring cells.

This intra- and intercellular propagation of aggregated
material seems to underlie the characteristic progressive
spreading of pathology in prion and prion-like diseases (Jucker
and Walker, 2013). Since molecular chaperones can protect cells
from harmful protein aggregates, at least at a young age, they
are gaining increasing attention in current research to develop
intervention strategies.

THE ROLE OF CHAPERONES IN
PRION-LIKE PROPAGATION

Molecular chaperones, first identified as heat shock proteins
(Hsps), help fold newly synthesized proteins, inhibit and reverse
the misfolding and aggregation, and assist in the degradation
of terminally misfolded proteins, thereby maintaining cellular
proteostasis under physiological and stress conditions (Klaips
et al., 2018). Chaperones recognize hydrophobic motifs in
misfolded proteins that are usually hidden in their native folded
state. A mere binding activity is considered a holdase function
that does not require ATP. However the folding and refolding of
proteins often rely on an ATP-dependent cycle that allows the
repeated binding and release of chaperones, thereby facilitating
(re)-folding processes (Mayer and Bukau, 2005; Liberek et al.,
2008). The latter activity is performed by ATP-dependent
chaperones, which often require specific co-chaperones that are
responsible for regulating the ATP cycle (binding, hydrolysis,
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FIGURE 1 | Amyloid formation and propagation at the molecular level. Native proteins oligomerize after adopting an abnormal β-sheet-rich fold, eventually forming a
propagon. Propagons are specific units that can recruit and incorporate native monomers, which allows them to grow into amyloid fibrils. Fragmentation events can
lead to complete depolymerization into monomers or to the formation of new propagons that in turn provide more ends for recruiting monomers.

and release) and in turn influence substrate specificity and
fate (Kampinga and Craig, 2010). Molecular chaperones are
classified into different families that were originally named for
the molecular weight of the founding member. The four main
chaperone families in metazoans are Hsp60s, Hsp70s, Hsp90s,
and small Hsps (sHsp).

sHsps lack an ATPase domain and therefore generally act as
classical holdases (Webster et al., 2019). They can be found in
inactive oligomeric complexes that keep them poised to combat
an early misfolding event (Santhanagopalan et al., 2018). Stress
conditions can activate sHsps to sequester misfolding proteins
and protect the substrates from further aggregation and facilitate
their re-folding (Biswas and Das, 2004), often in concert with
other chaperones, such as Hsp70s (Mogk et al., 2019).

The Hsp70 family consists of heat shock-inducible
(e.g., HSP70-1/HSPA1A) and constitutively expressed (e.g.,
HSC70/HSPA8) members and has highly assorted functions,
including the folding of newly synthesized proteins, refolding
of misfolded proteins, disaggregation, membrane translocation,
endocytosis, and degradation of terminally misfolded proteins.
This functional diversity is provided by a myriad of co-
chaperones. The Hsp70 core chaperone typically cooperates
with a member of the J-domain protein (DNAJ) family
and a nucleotide exchange factor (NEF) that regulate the

Hsp70 ATPase cycle (Mayer and Bukau, 2005). The DNAJ family
expanded from six DNAJs found in E. coli to 49 in Homo sapiens
(Finka and Goloubinoff, 2013; Bar-Lavan et al., 2016). This
increase in complexity may reflect the evolutionary selection
pressure for greater versatility of Hsp70 machines. After
being processed by Hsp70s and their co-chaperones, clients
can be subsequently handed over to chaperonins and Hsp90
family members.

The ATP-dependent Hsp60 family, also commonly referred
to as the chaperonins, is divided into two groups: Group I
is generally found in eubacteria, but also in evolutionarily
derived mitochondria, and Group II is found in archaea and
in the eukaryotic cytosol (Hartl and Hayer-Hartl, 2002). The
eukaryotic chaperonin, also known as t-complex 1 (TCP1), or
chaperonin containing TCP1 (CCT), is a multiprotein complex
composed of two rings with eight different but similar subunits.
Driven by ATP-binding and hydrolysis, the subunits open and
close a central folding chamber that encapsulates substrate
proteins. It is essential as it supports the folding of ∼10% of
all newly synthesized proteins, in particular actin and tubulin
(Yam et al., 2008).

The members of the Hsp90 family are highly conserved
and exist in all kingdoms of life except archaea. Similar
to the Hsp70 family, there are inducible (e.g., HSP90AA1)
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FIGURE 2 | Spreading routes of amyloidogenic proteins. The intercellular transmission of disease proteins can occur via several pathways. Some substrates can be
translocated directly across the plasma membrane or shed via microvesicles. Misfolded proteins can be also targeted by all branches of autophagy, and thereby
enter the endo-lysosomal system. Aggregates can either be engulfed via bulk or selective (involving adaptor proteins, such as sequestosome 1 (SQSTM1/p62)
macroautophagy or taken up into LEs and MVBs through microautophagy. Abnormal proteins may also be directly ingested by lysosomes as a result of CMA.
Degradation-resistant aggregates may be released into the extracellular space by lysosomal fusion with the plasma membrane or transported into neighboring cells
via TNTs. Endocytosis mediates the uptake of either free protein or extracellular vesicles containing the disease-associated protein. To be released into the cytosol of
the receiving cell, misfolded proteins can induce endocytic vesicle rupture. Released proteins can then recruit monomers and catalyze their incorporation, which
eventually leads to the formation of amyloid aggregates in the receiving cell. CMA, chaperone-mediated autophagy; LE, late endosome; MVB, multivesicular body;
TNT, tunneling nanotube.

and constitutively expressed variants (e.g., HSP90B1) that
interact with more than 20 co-chaperones and adaptors thereby
regulating a multitude of cellular processes (Taipale et al., 2010;
Biebl and Buchner, 2019). Since kinases and steroid hormone
receptors are major clients of Hsp90s, they are key regulators of
many signaling pathways.

In addition to these main chaperone classes, there are several
other types of metazoan chaperones for which a relationship
with a particular prion-like protein has been established.

Details about these chaperones are given in the respective
individual sections.

At first, the role of chaperones in prion-like propagation of
misfolded proteins might seem obvious, as the main task of
chaperones is to support the correct folding of proteins and
protect them from misfolding and aggregation. While this is
often the case, there are nonetheless also conflicting results where
chaperones have been shown to aggravate protein misfolding or
toxicity. Although chaperones may interact with the native state
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of prion-like proteins also under physiological conditions, we will
focus here on the interaction with pathological forms, discussing
both the beneficial and detrimental impact chaperones may have
on the progression of protein misfolding diseases.

Prion Diseases
Prion diseases or transmissible spongiform encephalopathies
(TSEs) are fatal neurodegenerative diseases that affect humans
and animals, including BSE (also known as mad cow disease)
in cattle, CWD in deer and elk, scrapie in sheep and goats,
and Creutzfeldt-Jakob disease (CJD) in humans (Imran and
Mahmood, 2011; Collinge, 2016; Scheckel and Aguzzi, 2018).
All prion diseases are characterized by the accumulation of
PrPSc in the central nervous system. Cellular PrPC is a
glycosylphosphatidylinositol (GPI)-anchored membrane protein
and has the highest expression in neurons of the brain
and the spinal cord (Stahl et al., 1987; Harris et al., 1993;
Tichopad et al., 2003). Proposed functions of PrPC include
the maintenance of synapses and neuroprotective signaling
(Westergard et al., 2007).

While the exact function of PrPC remains unclear, it is,
however, crucial for the propagation of PrPSc, as mice lacking
the PRNP gene are resistant to prion infection (Büeler et al.,
1993; Sailer et al., 1994; Brandner et al., 1996). Since PrPC is
localized on the cell surface, the first interaction and conversion
into pathological PrPSc likely occur at the plasma membrane
(Goold et al., 2011). Also, PrPC is endocytosed in a clathrin-
dependent manner and delivered from early endosomes and
late endosomal multivesicular bodies (MVBs) to lysosomes for
degradation. Blocking PrPC endocytosis inhibits the formation of
PrPSc, suggesting that conversion also occurs along the endocytic
pathway (Borchelt et al., 1992). PrPSc is rapidly truncated into
a C-terminal PrP27–30 protease-resistant core, which is very
stable and accumulates in MVBs and lysosomes. Intercellular
transmission proceeds via exosomes that are derived from
intraluminal vesicles (ILVs) of MVBs and are released into
the extracellular space through their fusion with the plasma
membrane (Fevrier et al., 2004). In tissue culture cells, PrPSc

was also shown to be able to spread within endocytic vesicles
through tunneling nanotubes (TNTs), long membranous tubules
that connect the cytosol of two cells (Gousset et al., 2009; Zhu
et al., 2015).

Hsp70 family genes are upregulated in CJD patients and
prion-infected mice (Kenward et al., 1994; Kovács et al., 2001).
Furthermore, several models have shown that manipulation
of chaperone levels can influence disease progression, which
underlines the relevance of chaperones for prion diseases.
When mice that lack heat shock factor 1 (HSF1), the
primary transcription factor for the expression of numerous
chaperones, are exposed to prions, they succumb to the disease
about 20% faster than wildtype animals (Steele et al., 2008).
Prion disease progression was also accelerated if cytosolic
or endoplasmic reticulum (ER) Hsp70s levels were reduced
(Park et al., 2017; Mays et al., 2019). In the opposite
direction, the data are less clear. While the induction of
HSP70 expression slowed the progression of prion phenotypes
in Drosophila (Zhang et al., 2014), overexpression of HSP70 had

no impact on survival times of prion-infected mice (Tamgüney
et al., 2008). Thus, further research is necessary to gain
insights into the exact mechanisms by which chaperones
influence the course of prion diseases to identify effective
therapeutic approaches.

Parkinson’s Disease and Other
Synucleinopathies
Accumulation of aggregated α-syn/SNCA is a hallmark of
PD and other synucleinopathies (Uversky, 2003, 2011). In
PD, Lewy bodies containing aggregated α-syn, occur in a
predictable manner, which is classified into six distinct stages
based on the location of α-syn inclusions seen in postmortem
brains (Braak et al., 2003). These observations have led to
the hypothesis, that pathological α-syn may propagate like
prions. This idea has gained momentum through observations
in PD patients who underwent embryonic neuronal cell
transplantation. When examined several years later, these
patients showed signs of disease development in the grafted
tissue, indicating that pathological α-syn had spread from
diseased to healthy tissue (Kordower et al., 2008; Li et al.,
2008). Various animal and cell culture models have confirmed
the existence of such intercellular dissemination of α-syn
(Jucker and Walker, 2013; Vasili et al., 2019).

The presence of numerous different chaperones in Lewy
bodies suggests a central role of these proteins in α-syn pathology
(McLean et al., 2002). Moreover, the importance of chaperones
and in particular J-domain proteins in the disease is also evident
through the discovery of respective mutations in genome-wide
association studies. For instance, DNAJC6 mutations have been
linked to juvenile parkinsonism (Lin and Farrer, 2014), while
DNAJC13/RME8 mutations have been associated with familial
forms of PD (Vilariño-Güell et al., 2014).

Prevention of α-syn aggregation has been shown with
multiple sHsps (HSPB1, HSPB2, HSPB3, HSPB5, HSPB6, and
HSPB8), the J-domain proteins DNAJB6 and DNAJB8, and
with Hsp70s (Rekas et al., 2004; Outeiro et al., 2006; Bruinsma
et al., 2011; Cox et al., 2016; Aprile et al., 2017; Bendifallah
et al., 2020; Vicente Miranda et al., 2020). Hsp90s also
prevent α-syn aggregation but by specifically interacting with
oligomeric species rather than monomers or fibrils (Falsone
et al., 2009; Daturpalli et al., 2013). The constitutively expressed
HSC70, along with HSPB1 and HSPB5, can also bind α-syn
fibrils, and coating of the fibrillar surface reduced toxicity
(Waudby et al., 2010; Pemberton et al., 2011; Redeker et al., 2012;
Cox et al., 2018).

Chaperones not only interfere with early nucleation and fibril
elongation events but are also able to depolymerize mature
α-syn fibrils (Duennwald et al., 2012; Gao et al., 2015). This
disaggregation function is dependent on the specific cooperation
of the core HSC70 with a class B J-domain protein, DNAJB1,
and an Hsp110-type NEF, HSPA4/APG-2 (Gao et al., 2015).
HSPB5/αB-crystallin can assist in the depolymerization of
α-syn fibrils by stimulating the Hsp70 disaggregase (Duennwald
et al., 2012). These in vitro observations indicated that α-syn
disaggregation might be beneficial and cytoprotective since
fibrillar α-syn was eventually dissolved. However, a recent study
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reported the opposite effect in vivo. Diminishing disaggregation
activity by knocking down the only cytosolic Hsp110-type
NEF, HSP-110 significantly reduced the accumulation of
toxic α-syn species in C. elegans (Tittelmeier et al., 2020).
Moreover, α-syn particles generated by the Hsp70 disaggregase
were preferred substrates for intercellular transfer. Hence, the
Hsp70 disaggregation machinery seems to be involved in
the prion-like propagation of α-syn by generating seeding-
competent α-syn species, and blocking this activity is beneficial
with regard to amyloidogenic substrates (Tittelmeier et al.,
2020). While this result seems counterintuitive at first, it is
reminiscent of the crucial role of Hsp104 in the propagation of
yeast prions, where depletion of Hsp104 leads to a rapid loss
of yeast prions (Chernoff et al., 1995). Hsp104 cooperates with
the Hsp70 chaperone system and promotes prion replication
by extracting monomers from prion fibrils, which leads to
their fragmentation and the increased generation of propagons
(Jones and Tuite, 2005; Tessarz et al., 2008; Tipton et al., 2008).
Hexameric AAA+ Hsp100-type disaggregates such as Hsp104 are
absent in metazoans, but the Hsp70 system has evolved to
provide this function (Shorter, 2011; Rampelt et al., 2012).
While chaperone-mediated disaggregation seems to significantly
contribute to the toxicity associated with pathological α-syn, it is
essential for the maintenance of cellular proteostasis, as reducing
HSP-110 levels compromised the overall cellular protein folding
environment (Tittelmeier et al., 2020). For this reason, complete
inhibition of this activity is not a suitable intervention strategy.
Rather, the modulation of individual isoforms or more specific
components may be a promising therapeutic approach. The
observed adverse side effects could be minimized, e.g., by the
only temporary intake of drugs that inhibit the machinery. Also,
the human chaperome is more redundant (there are e.g., three
Hsp110-type NEFs compared to only one in C. elegans, Brehme
et al., 2014) and the reduction of a single-player would probably
reduce rather than eliminate disaggregation activity and result
in fewer side effects. Nevertheless, more studies are needed to
explore the usefulness of this approach.

Another way in which chaperones can help prevent the
spreading of α-syn is by facilitating the elimination of aberrant
species. Turnover of α-syn can be mediated by the UPS,
with the HSC70 co-chaperone carboxyl terminus of Hsp70-
interacting protein (CHIP) governing this degradation pathway
(Shin et al., 2005). Another process, described as chaperone-
mediated autophagy (CMA), also involves HSC70, which targets
misfolded α-syn and translocates it into lysosomes
for degradation (Cuervo et al., 2004). However, CMA
and lysosomal degradation are often impaired in PD
(Pan et al., 2008; Chu et al., 2009).

The exact mechanisms of intercellular transfer of α-syn
are not yet fully understood, but current research suggests
several parallel transmission routes (Brundin and Melki, 2017;
Vasili et al., 2019). First, α-syn must exit the donor cell. As
a cytosolic protein, α-syn is not released by the conventional
secretory pathway via the ER and Golgi apparatus. Instead,
there is growing evidence that the endo-lysosomal system is
involved in α-syn spreading in addition to its role in the
degradation of the protein. Endosomal α-syn can be either

directly transported to neighboring cells via TNTs (Abounit
et al., 2016; Rostami et al., 2017; Victoria and Zurzolo, 2017), or it
can eventually be released via unconventional secretion pathways
involving secretory lysosomes or exosomes (Emmanouilidou
et al., 2010; Danzer et al., 2012; Ngolab et al., 2017; Tsunemi
et al., 2019). Another recently described mechanism for the
release of aberrant protein species is the misfolding-associated
protein secretion (MAPS) pathway (Lee et al., 2016). Here the
ER-associated deubiquitinase USP19 recruits misfolded cytosolic
proteins, such as α-syn, to the ER surface and then transfers
them to DNAJC5 and HSC70 localized at late endosomes (LEs),
which finally fuse with the plasma membrane and release their
content to the extracellular space (Fontaine et al., 2016; Xu
et al., 2018). Spreading also relies on the uptake of extracellular
α-syn into the recipient cell. To this end, clathrin-mediated
endocytosis is involved in the uptake of free or exosomal α-syn
(Oh et al., 2016; Ngolab et al., 2017). As part of this process,
HSC70 cooperates with DNAJC6/Auxillin and an Hsp110-type
NEF to disassemble clathrin coats (Sousa and Lafer, 2015).
After uptake, misfolded α-syn species must enter the cytosol
to be able to template the aggregation of native α-syn in
the recipient cell. Indeed, α-syn has been shown to escape
from endocytic vesicles by rupturing the endosomal membrane
(Flavin et al., 2017).

Alzheimer’s Disease and Other
Tauopathies
Tau
More than 20 different neurodegenerative diseases are associated
with the progressive accumulation of Tau inclusions in different
brain areas and cell types which are collectively referred to
as tauopathies, including AD and frontotemporal dementia
(FTD; Goedert et al., 2017a). The sequential appearance of Tau
aggregates in the brain during disease progression follows a
stereotypic distribution pattern, categorized into six ‘‘Braak
stages’’ according to the prevalence of Tau pathology in different
brain regions (Braak and Braak, 1991; Jucker and Walker,
2013). Intriguingly, the extent of Tau deposition in the different
brain regions is a good correlate for the disease stage (Jucker
and Walker, 2013). Tau’s capacity to propagate in the brain
is further supported by extensive research in mouse models.
Injection of recombinant or patient-derived Tau aggregates
into mouse brains causes the formation of Tau inclusions both
at the injection site and in distant interconnected brain areas
(Narasimhan and Lee, 2017). Therefore, it is assumed that
seeding-competent Tau material is transported to other parts of
the brain in a connectivity-dependent manner where it induces
the aggregate formation of native Tau (Goedert et al., 2017a).

Although we are mainly focusing here on the effect of
chaperone action on pathological Tau species, it is worth
mentioning that under healthy conditions, various chaperones
control the homeostasis of native Tau, such as its loading onto
microtubules or degradation via the proteasome and autophagy
pathways (Miyata et al., 2011; Young et al., 2018).

NMR studies with monomeric Tau have identified binding
sites for various chaperones that are either close to or within
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the repeat domains that contribute to the β-sheet structures in
amyloid Tau fibrils (Jinwal et al., 2013; Mok et al., 2018). By
interacting with this region chaperones can stabilize soluble Tau
and thereby prevent its assembly into amyloid fibrils. Several
Hsp70 family members, their co-chaperones DNAJA1 and
DNAJA2, chaperonin, various sHsps, as well as the extracellular
chaperone clusterin (CLU) delay the aggregation of wildtype
and aggregation-prone Tau mutants in vitro (Patterson et al.,
2011; Mok et al., 2018). Additionally, it has been shown that
Hsp70s suppress Tau aggregation by stabilizing Tau oligomers to
inhibit further seeding (Kundel et al., 2018) and by preventing
fibril elongation into larger assemblies (Patterson et al., 2011;
Baughman et al., 2018). This prevention of Tau aggregation and
fibril growth observed in vitro presumably delays disease onset
and progression, as supported by studies in in vivo models, in
which the absence of particular chaperones led to accelerated
Tau aggregation and toxicity (Eroglu et al., 2010). In line with
this, HSPB1 overexpression decreased Tau levels and rescued the
Tau mediated damage in a mouse model (Abisambra et al., 2010).
Interestingly, HSP90 stabilizes aggregation-prone conformations
of Tau and promotes oligomer formation in vitro (Weickert et al.,
2020). However, the fate of Tau is highly dependent on the
specific HSP90 co-chaperone (Shelton et al., 2017). For instance,
overexpression of the co-chaperone FKBP prolyl isomerase 5
(FKBP51) in a mouse model increases Tau oligomers at the cost
of fibril formation and at the same time enhances neurotoxicity
(Blair et al., 2013).

Chaperones do not only suppress or delay the initial
aggregation of monomeric and oligomeric Tau species but
are also capable of dissolving Tau fibrils. The aforementioned
trimeric human Hsp70 disaggregation machinery (HSC70,
DNAJB1, HSPA4) readily disassembles a variety of amyloid Tau
aggregates ranging from in vitro assembled fibrils to aggregates
extracted from a cell culture model to brain material of AD
patients (Nachman et al., 2020). Thus, the Hsp70 disaggregation
machinery is capable of disaggregating pathologically
relevant forms of Tau. Although mainly monomers were
released the liberated Tau species were nevertheless seeding-
competent and induced self-propagating Tau aggregates in a cell
culture model (Nachman et al., 2020). In subsequent research,
it needs to be determined whether disaggregation of amyloid
Tau fibrils may exacerbate neurotoxicity in vivo. However, it is
tempting to speculate that chaperone-mediated disaggregation
might promote the prion-like propagation of amyloid Tau
aggregates and eventually increase the overall amyloid burden
in vivo, especially considering its effect on α-syn aggregation and
toxicity in C. elegans discussed above (Tittelmeier et al., 2020).
Interestingly, the co-chaperone DNAJB4 can substitute for
DNAJB1 in the Hsp70 disaggregase, while class A J-domain
proteins are unable to support disaggregation of Tau,
indicating specificity, but also a certain redundancy in
the recognition of amyloid Tau (Nachman et al., 2020).
Interfering with the specific interaction between these
class B J-domain proteins and amyloid fibrils could be
an effective treatment strategy to reduce unfavorable
amyloid disaggregation without affecting the processing of
other substrates.

As Tau is a cytoplasmatic protein that deposits intracellularly,
the spreading of Tau requires release and uptake of seeding-
competent Tau material from the cytosol of donor and receiving
cells. Similar to α-syn, Tau is also a substrate of the MAPS
pathway (Fontaine et al., 2016; Lee et al., 2016; Xu et al., 2018),
where HSC70 together with its co-chaperone DNAJC5 promotes
the release of Tau into the extracellular space both in cell culture
and in a mouse model. However, it remains unknown which
Tau species get released via this pathway and whether this
material can then seed the aggregation of native Tau molecules
in recipient cells. Following its release, extracellular Tau can then
be taken up by neighboring cells by similar routes described for
α-syn (Goedert et al., 2017b). However, it is not yet clear to
what extent clathrin-mediated endocytosis and the chaperones
involved could contribute to Tau propagation (Yoshiyama et al.,
2007; Holmes et al., 2013; Calafate et al., 2016).

Aβ

AD is characterized by the deposition of both intracellular Tau
aggregates and extracellular senile plaques consisting of the
Aβ peptide in the brain (Goedert and Spillantini, 2006). The
Aβ peptide is generated by endoproteolytic cleavages within
the transmembrane protein amyloid-β precursor protein APP
(De Strooper and Annaert, 2010). Similar to the stereotypical
deposition of Tau and α-syn aggregates, the appearance of Aβ

plaques follows a predictable pattern that sequentially affects
certain areas of the brain during disease progression (Jucker
and Walker, 2013). The prion-like behavior of Aβ has been
confirmed in numerous rodent models (Meyer-Luehmann et al.,
2006; Eisele et al., 2010). Moreover, it has been shown that
cadaveric pituitary-derived human growth hormone, which was
contaminated with Aβ seeds, caused a plaque-like pathology in
treated patients, suggesting an iatrogenic transmission of Aβ

pathology (Jaunmuktane et al., 2015; Purro et al., 2018).
In vitro studies have identified several cytosolic chaperones,

such as the sHsps HSPB1, HSPB5, HSPB6, and HSPB8, the
J-domain protein DNAJB6, as well as chaperonin that suppress
Aβ aggregation, either by inhibiting initial aggregation or
recruiting oligomeric species into larger structures (Lee et al.,
2006; Wilhelmus et al., 2006; Shammas et al., 2011; Månsson
et al., 2014a; Mangione et al., 2016; Vilasi et al., 2019). As
the sequestration of oligomers reduces the number of particles
that can act as seeds this mechanism could help to limit the
incorporation of monomers by templated misfolding. Almost
all amino acids in the Aβ peptide are incorporated into its
amyloid fold (Kollmer et al., 2019). In contrast, larger proteins,
such as α-syn and Tau have N- and C-terminal extensions
forming a fuzzy coat around their amyloid cores (Scheres et al.,
2020; Schweighauser et al., 2020). The lack of available binding
sites flanking the amyloid core is probably the reason why
the canonical Hsp70 chaperone machinery does not interact
with Aβ assemblies (Kakkar et al., 2014; Wentink et al., 2019).
In contrast, the mitochondrial chaperonin HSPD1 can bind
to Aβ oligomers, which reduces Aβ-mediated neurotoxicity
by preventing Aβ oligomers from interacting with membranes
(Marino et al., 2019; Vilasi et al., 2019). It is tempting
to speculate that this function might be conserved by the
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homologous cytosolic chaperonin CCT, which could help to
reduce Aβ toxicity by preventing disruption of intracellular
membranes (Julien et al., 2018). Yet, the physiological relevance
of these findings regarding cytosolic chaperones remains to be
investigated. Aβ aggregates form in the endosomal-lysosomal
pathway and plaques deposit in the extracellular space (Peric
and Annaert, 2015). However, a contribution of cytoplasmic
Aβ oligomers to amyloid toxicity and transmission has been
demonstrated in cell culture models (Nath et al., 2012). It
will be interesting to test whether cytosolic chaperones directly
interact with these cytoplasmic Aβ species and modulate their
properties in vivo.

The amyloid formation can also be accelerated by secondary
nucleation events on amyloid surfaces as their interaction with
monomers catalyzes the formation of new seeds (Törnquist et al.,
2018). By shielding such surfaces, the BRICHOS domain inhibits
Aβ aggregation in vitro by interfering with oligomerization and
secondary nucleation (Willander et al., 2012). The BRICHOS
domain is found in the proteins Bri2 and Bri3 that co-localize
with extracellular Aβ plaques in the early stages of disease
(Del Campo and Teunissen, 2014; Dolfe et al., 2018), which
hints to a potential role of these proteins in containing the
spreading of pathology by shielding the plaques. The extracellular
chaperone CLU is a well-established genetic risk factor for AD
(Foster et al., 2019). CLU prevents Aβ aggregation in vitro by
sequestering and stabilizing oligomeric species (Narayan et al.,
2012; Beeg et al., 2016). While several studies have found CLU
reduces the uptake of Aβ oligomers and fibrils into neurons and
microglia in cell culture models (Nielsen et al., 2010; Mulder
et al., 2014), others have observed enhanced Aβ uptake in the
presence of CLU (Yeh et al., 2016). A contribution of CLU to
cellular uptake of Aβ would directly impact Aβ transmission.
Thus, to be able to exploit CLU as a potential therapeutic target,
it is essential to further explore its role in the intercellular
dissemination of Aβ.

Polyglutamine Diseases
There are nine different adult-onset autosomal dominantly
inherited diseases that are caused by an expansion of a
trinucleotide (CAG) repeat encoding a polyglutamine (polyQ)
tract, including HD and six forms of spinocerebellar ataxia
(Lieberman et al., 2019). The disease-associated proteins are not
related to each other, but they all contain a polyQ tract with
a length of 10–35 glutamine repeats in healthy individuals. A
stretch of 40 or more glutamines will eventually cause disease,
with a longer expansion correlating with an earlier age of onset
(Scherzinger et al., 1999). PolyQ expansion is associated with the
formation of amyloid aggregates, which can be localized in the
nucleus or in the cytoplasm (Scherzinger et al., 1997; Reddy et al.,
1999). HD is the most prevalent of these diseases, where polyQ
expansion occurs in HTT.

Genetic screens for modifiers of polyQ aggregation have
identified several chaperones (Krobitsch and Lindquist, 2000;
Nollen et al., 2004; Silva et al., 2011). Furthermore, activation
of HSF1 ameliorates the toxicity of polyQ in vivo (Fujikake
et al., 2008; Kumsta and Hansen, 2017). Many sHsps, including
HSPB1, HSPB4, HSPB6, HSPB7, HSPB8, and J-domain proteins,

including DNAJB1, DNAJB2, DNAJB6, and DNAJB8, were
shown to prevent the initial aggregation of polyQ (Kazemi-
Esfarjani and Benzer, 2000; Willingham et al., 2003; Carra et al.,
2005; Hageman et al., 2010; Vos et al., 2010; Labbadia et al., 2012;
Månsson et al., 2014b), while the chaperonin CTT prevented
polyQ aggregation by capturing smaller oligomeric species (Tam
et al., 2009; Shahmoradian et al., 2013). DNAJB6 emerges as a
key protective co-chaperone for polyQ containing sequences and
has been shown to very efficiently inhibit the primary nucleation
step in polyQ amyloid formation by directly binding to the
polyQ tract (Gillis et al., 2013; Kakkar et al., 2016). Moreover,
recent research revealed that during differentiation of pluripotent
stem cell lines from HD patients into neurons, there is a loss
of expression in DNAJB6, which leads to aggregation of polyQ
(Thiruvalluvan et al., 2020). This could explain why pathological
aggregates are predominantly present in neurons and why stem
cells are protected.

The Hsp70 system plays a multifaceted role in polyQ
aggregation and toxicity. HSP70 is involved in the prevention
of polyQ aggregation alone (Muchowski et al., 2000; Monsellier
et al., 2015), as well as in collaboration with the J-domain
protein DNAJB1 (Wacker et al., 2004). HSP70 is also capable of
sequestering smaller polyQ species into larger non-toxic fibrillar
structures thereby preventing their toxic interaction with other
cellular components (Behrends et al., 2006). This function is
mediated by HSP70 with the help of CCT and a J-domain
protein (Behrends et al., 2006). Short Q-rich peptides can also
shield the interactive surfaces of polyQ proteins, altering the
interaction of other prion-like proteins, directing them into
nontoxic aggregates (Ripaud et al., 2014).

The HSC70-DNAJB1-HSPA4 disaggregation machinery is
not only able to disintegrate α-syn and Tau fibrils as described
above (Gao et al., 2015; Nachman et al., 2020), but also
disentangle polyQ fibrils (Duennwald et al., 2012; Scior et al.,
2018), which demonstrates the high versatility of this chaperone
machinery. Similar as in the case of α-syn, compromising
this disaggregase leads to fewer aggregates and rescues the
toxicity of polyQ in C. elegans (Tittelmeier et al., 2020). This
is in agreement with observations in yeast, where deletion
of the yeast disaggregase Hsp104 also leads to a decrease
in polyQ aggregates (Krobitsch and Lindquist, 2000). These
data imply that chaperone-mediated disaggregation can handle
many different types of amyloid aggregates and as a result,
it could play a central role in the prion-like propagation of
aggregates in many diseases, rendering it a highly attractive
therapeutic target.

While polyQ aggregates can replicate by inducing the
aggregation of native proteins through a templated seeding
mechanism, like the other prion-like proteins, the relevance
of intercellular spreading of protein aggregates in disease
pathogenesis is unclear, especially because of the strong genetic
component of these diseases. There is currently also no evidence
for the involvement of chaperones in the intercellular spreading
of polyQ proteins besides a potential indirect effect on vesicle
trafficking.

However, multiple studies are implying non-cell-autonomous
effects in these diseases, such as excitotoxicity, where neurons
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die as a result of disturbances in the surrounding supporting
cells. Models, where polyQ is expressed exclusively in the most
vulnerable neurons, fail to elicit many disease symptoms, which
are seen when polyQ is expressed not only in neurons but
also in glial cells (Gu et al., 2005; Sambataro and Pennuto,
2012). This suggests that some aspects of disease pathology
are due to non-cell-autonomous toxicity. For example, the
selective vulnerability of neurons has been linked to aberrant
activation of glutamate. Normally, this is regulated by the
uptake of glutamate into glial cells, however, this process
is altered in glial cells expressing disease-associated polyQ
proteins (Liévens et al., 2001). Targeting this interconnection
seen between neurons and glial cells may be a practical goal
in the treatment of these diseases. Recently, this idea was
explored using a Drosophila model with polyQ expressed in
neurons and DNAJB6 expressed in glial cells. The exclusive
expression of DNAJB6 in glial cells results in the non-
cell-autonomous protection against neurodegeneration and
prolongs lifespan (Bason et al., 2019). A deeper understanding
of how chaperones could alleviate the non-cell-autonomous
effects of prion-like proteins could reveal an exciting new
therapeutic approach.

Amyotrophic Lateral Sclerosis
ALS is a fatal, rapidly progressing disease characterized by the
degeneration of upper and lower motor neurons. Typically,
motor symptoms manifest at mid-adulthood and begin in a
restricted part of the body, which varies from patient to patient
and then spreads to neighboring areas. This implies a prion-like
pathomechanism based on neuronal connectivity (Ravits and La
Spada, 2009; Sibilla and Bertolotti, 2017). The speed at which
symptoms spread from one area to another correlates with
disease duration (Ravits, 2014).

In motor neurons of patients with both familial and sporadic
forms of the disease, protein inclusions have been found
postmortem that usually contains either SOD1 or ubiquitinated
TDP-43 (Kwong et al., 2007). Moreover, various missense
mutations have been identified in SOD1, TDP-43, and FUS,
as well as a hexanucleotide repeat expansion in C9orf72,
which increase the aggregation propensity of these proteins and
are associated with familial ALS (fALS) accounting for 10%
of all ALS cases (Sibilla and Bertolotti, 2017). Also, exome
sequencing of a large ALS patient cohort identified several
mutations in the J-domain protein DNAJC7 that led to reduced
protein levels in patient-derived fibroblasts (Farhan et al., 2019).
This finding directly links chaperone activity to ALS etiology.
Although further work is required to elucidate how the loss of
DNAJC7 function causes ALS, this underlines the importance of
the PQC system for these protein misfolding diseases.

SOD1
The prion-like behavior of SOD1 has been established over the
last decade employing in vitro and cell culture systems as well
as mouse models. Recombinant SOD1 aggregates act as seeds
accelerating the aggregation of natively folded SOD1 in vitro
(Chattopadhyay et al., 2008). In cell culture, SOD1 aggregates
can spread intercellularly within exosomes or via direct release

into the extracellular space (Münch et al., 2011; Grad et al., 2014;
Silverman et al., 2016). The released SOD1 species are taken up
from the medium by the receiving cells via micropinocytosis
(Münch et al., 2011). Subsequently, the SOD1 aggregates escape
into the cytoplasm where they seed aggregation of the native
SOD1 molecules forming self-propagating foci (Münch et al.,
2011). Also, SOD1 aggregate pathology can be transmitted
between mice through the injection of brain homogenate
(Ayers et al., 2014).

Members of the Hsp70 family and their J-domain partner
protein and sHsp chaperones have been found to colocalize
with SOD1 inclusions in patient tissues and rodent ALS models
and to interact with mutant SOD1 in cell culture models,
indicating that aggregated SOD1 is recognized as a substrate by
the PQC system (Shinder et al., 2001; Watanabe et al., 2001;
Howland et al., 2002; Liu et al., 2005; Matsumoto et al., 2005).
However, even though the sHsps HSPB1 and HSPB5 reduce
SOD1 aggregation in vitro (Yerbury et al., 2013), overexpression
of HSPB1 in a SOD1G93A mouse model only delayed the onset of
motor symptoms and did not affect the overall survival of these
mice (Sharp et al., 2008), suggesting that increasing the levels
of individual chaperones does not always lead to a beneficial
outcome. Accordingly, while increased levels of Hsp70 family
members reduced SOD1 aggregation and toxicity in cultured
mouse primary motor neurons expressing SOD1G93A (Bruening
et al., 1999), this had no impact on either survival or onset
of motor symptoms in several SOD1 mutant mouse models,
including SOD1G93A (Liu et al., 2005). Interestingly, Serlidaki
et al. (2020) have recently demonstrated in cell culture that the
effect of Hsp70s on the aggregation of the SOD1A4V mutant
depends on the particular Hsp70 variant, which is overexpressed.
While HSPA1A suppresses SOD1 aggregation, its close homolog
HSPA1L enhances aggregate formation. The differences in
client fate seem to result from the fact that Hsp110-type
co-chaperones prefer to interact with HSPA1A rather than
HSPA1L (Serlidaki et al., 2020). More specifically, HSPA1A
requires the NEF HSPA4 (APG-2) to inhibit SOD1 aggregation,
while the aggregation promoting activity of HSPA1L does
not depend on this NEF. However, it remains unknown
which specific molecular mechanisms determine the affinity
of Hsp110 family members for different Hsp70s in the
cellular context.

It is therefore not surprising that NEF overexpression has also
varying consequences. Overexpression of BAG1 in SOD1G93A

transgenic mice did not improve their survival or the onset
of ALS-like phenotypes (Rohde et al., 2008). In contrast,
overexpression of the Hsp110-type NEF HSPA4L (APG-1)
in SOD1G85R transgenic mice extended the lifespan of these
animals (Nagy et al., 2016). However, the molecular mechanism
underlying the beneficial effect of HSPA4L overexpression
remains unclear. While the authors speculate that elevated levels
of HSPA4L might lead to an increase in Hsp70 disaggregation
capacity, the opposite is also conceivable. It has been shown that
excessive concentrations of NEFs can poison the Hsp70 system
(Nollen et al., 2000; Kampinga and Craig, 2010; Gao et al., 2015).
Usually, NEFs function in sub-stoichiometric amounts relative to
Hsp70, and increasing their concentrations beyond this optimal
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ratio will overstimulate the ATPase cycle and consequently
lead to too rapid dissociation of the substrate. As a result, the
client protein would be released prematurely. Consequently,
NEF overexpression would disrupt rather than promote the
Hsp70 function. Further research is, therefore, necessary to shed
light on this important aspect.

Currently, there is no evidence that chaperones are directly
involved in the intercellular transmission of SOD1. However,
chaperones are capable of modulating SOD1 aggregation and
toxicity, which could at least indirectly affect the spreading.
Moreover, since it has been shown that the sHsp HSPB8 together
with HSC70, BAG3, and CHIP, mediates the autophagic
degradation of misfolded SOD1 and thus directs it into the
endo-lysosomal pathway (Crippa et al., 2010), this could promote
the dissemination of SOD1 assuming that it follows similar routes
as α-syn and Tau (Uemura et al., 2020).

Future research is needed to gain a more comprehensive
picture of which sets of chaperones and co-chaperones act
together to suppress or enhance SOD1 aggregation. Furthermore,
it is necessary to evaluate the effect of modifying individual
chaperone levels in in vivo models to predict the overall effect
on SOD1 pathology.

TDP-43
TDP-43 is the main component of the characteristic protein
inclusions in the central nervous system (CNS) of patients
suffering from sporadic ALS (sALS) (Neumann et al., 2006).
TDP43 pathology can be observed in about 95% of all sALS cases
but is also frequently found in other neurodegenerative diseases,
such as frontotemporal lobar degeneration (FTLD), in which
ubiquitin-positive Tau-negative TDP-43 inclusions occur. These
diseases are collectively referred to as TDP-43 proteinopathies
(Arai et al., 2006).

Although the disease-associated aggregation and spreading of
TDP-43 have not yet been studied in as much detail as other
prion-like proteins, such as Tau or α-syn, there is nevertheless
strong indication for a prion-like pathomechanism of TDP-
43. The progressive spreading of TDP-43 pathology between
interconnected brain areas upon injection of patient-derived
pathological TDP-43 was demonstrated in a mouse model (Porta
et al., 2018). In cell culture models, both recombinant TDP-43
aggregates and patient-derived detergent-insoluble TPD-43 are
taken up from the medium and seed the aggregation of
endogenous TDP-43 in the cytoplasm (Furukawa et al., 2011;
Nonaka et al., 2013). The intercellular transmission of seeding-
competent TDP-43 species in these model systems occurs at least
in part via exosomes (Nonaka et al., 2013; Iguchi et al., 2016).
Intriguingly, exosomes containing seeding-competent TDP-43
are also present in the cerebrospinal fluid (CSF) of ALS patients,
which could contribute to the spreading of pathology during
disease progression (Iguchi et al., 2016).

TDP-43 is a client of several chaperone families.
Consequently, enhanced chaperone expression due to
HSF1 activation reduces TDP-43 aggregation and restores
TDP-43 solubility (Chen et al., 2016; Wang et al., 2017). While
Chen et al. (2016) attributed this observation to the induction of
Hsp70s and the co-chaperone DNAJB2a, a similar approach by

Wang et al. (2017) identified DNAJB1 and HSPB1 as the major
downstream factors of HSF1. In vitro assays will be required to
identify the specific molecular mechanisms by which each of
these chaperones interact with TDP-43 and at what stage during
TDP-43 aggregation they act.

Also, TDP-43 is degraded by chaperone-assisted selective
autophagy (CASA), where the sHsp HSPB8 works together with
HSC70, BAG3, and CHIP to deliver substrates to autophagy.
Inducing HSPB8 in a cell culture model increases TDP-43
turnover and overexpression of the Drosophila HSPB8 ortholog
suppresses TDP-43-mediated neurotoxicity (Crippa et al., 2010,
2016; Gregory et al., 2012). The presence of TDP-43 in the
lysosomal fraction isolated from the rodent brain also indicates
autophagy-mediated turnover (Ormeño et al., 2020). Moreover,
both recombinant wildtype TDP-43 and an aggregation-
prone mutant are degraded by isolated lysosomes in vitro and
TDP-43 is a substrate of CMA interacting with the major CMA
components in cell culture (Huang et al., 2014; Ormeño et al.,
2020). Although TDP-43 aggregation upregulates CMA, it
simultaneously disturbs the membrane integrity of LAMP2A-
positive lysosomes compromising the autophagolysosomal
pathway (Ormeño et al., 2020). It is therefore highly likely that
the disruption of lysosomal membranes leads to the release
of seeding-competent TDP-43 species and thus contributes to
TDP-43 spreading similarly as previously shown for α-syn and
Tau (Flavin et al., 2017). In addition to α-syn and Tau, TDP-43
is also a client of the MAPS pathway (Fontaine et al., 2016),
but whether this HSC70/DNAJC5-dependent release of TDP-43
contributes to the spreading of TDP-43 pathology in ALS and
FTD patients remains to be shown.

Taken together, TDP-43 shares significant characteristics of
a prion-like protein, and chaperones are involved at several
key steps of TDP-43 turnover, which could be critical for
the propagation of TDP43 pathology. However, to obtain a
comprehensive picture of the specific mechanisms by which
individual chaperones or combinations of chaperones influence
TDP-43 aggregation, in vitro studies investigating the direct
effect of chaperones on TDP-43 aggregation kinetics using
recombinant proteins are required. This would be of great value
for the discovery of potential drug targets.

FUS and C9orf72
While for the other ALS-related proteins such as SOD1 and
TDP-43 a prion-like behavior is well established, data indicating
an intercellular spreading mechanism for FUS and C9orf72-
derived DPRs is only recently emerging (Nomura et al., 2014;
Feuillette et al., 2017; Zhou et al., 2017; Morón-Oset et al., 2019).
However, since chaperones are known to be able to modulate
the toxicity of FUS and C9orf72 (Deng et al., 2015; Cristofani
et al., 2018), it is highly likely that they would also affect their
transmission in one way or the other.

The Role of Chaperones in the Homeostasis of
Membraneless Compartments
Over the last decade, it has become increasingly clear that
there is a relationship between neurodegenerative diseases,
in particular ALS and FTD, and abnormal formation of
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membraneless cellular compartments (Alberti and Dormann,
2019). Prion-like proteins, including TDP-43 and FUS, contain
intrinsically disordered domains that can undergo liquid-liquid
phase separation (LLPS), which is crucial for the formation
of membraneless cellular compartments, such as nucleoli and
stress granules (SGs; Alberti and Dormann, 2019). During phase
separation a homogenous solution of macromolecules partitions
into two distinct phases; specific macromolecules accumulate
to form a denser phase, while the remaining phase is depleted
of these components (Hyman et al., 2014). This dense phase
is not solid but behaves liquid-like, i.e., it can undergo droplet
fusion and is characterized by high internal dynamics as the
enriched components rapidly move in and out of this phase
(Alberti et al., 2019).

Under healthy conditions, TDP-43 and FUS co-localize with
RNA-containing SGs, which are normally formed transiently
upon cellular stress and rapidly dissolve as the stress subsides
(Aulas and Velde, 2015). However, disease-associated mutations
in these proteins alter their phase separation characteristics
towards more solid states, which has been shown to impede SG
dissociation and promote the maturation from liquid droplets
into immobile aggregates both in vitro and in cell culture
models (Patel et al., 2015). Moreover, non-RNA-binding proteins
implicated in other proteinopathies, such as Tau (Wegmann
et al., 2018) and α-syn (Ray et al., 2020) may also undergo LLPS,
suggesting that this could represent a pathway for the formation
of amyloid aggregates in general.

Since reduced dynamics and a more rigid consistency within
phase-separated compartments ultimately promote amyloid
fibril assembly, their formation and disintegration need to be
tightly controlled by the cellular PQC machinery (Alberti and
Dormann, 2019). Several in vitro and cell culture studies have
shown that molecular chaperones are recruited into SGs and
regulate SG formation and stability (Figure 3).

Under normal conditions, DNAJB6 and HSPA1A bind to
TDP-43 and control its accumulation into SGs (Udan-Johns
et al., 2014). However, upon heat shock, the availability of
these chaperones becomes limited, which favors the formation
of insoluble TDP-43 aggregates. DNAJB6 also helps to resolve
nuclear TDP-43 SGs which form under healthy conditions in
response to a heat shock (Stein et al., 2014). In this study, a
DNAJB6 harboring a mutation in the G/F domain is unable to
promote SG dissolution, leading to the persistence of TDP-43
aggregates. The fact that a mutation in DNAJB6 is associated with
limb-girdle muscular dystrophy which in turn is accompanied
by pathological TDP-43 aggregates, indicates a protective
function of DNAJB6 against dysregulated TDP-43 SG formatio
(Harms et al., 2012).

In addition to TDP-43, aggregation-prone SOD1 variants
can also cause SGs to transition to a more solid state (Mateju
et al., 2017). In this study, Hsp70 family members and the
sHsp HSPB1 were enriched in SOD1 containing SGs. Likewise,
HSPB1 regulates the LLPS behavior of FUS depending on
the cellular stress state, thus preventing aberrant FUS amyloid

FIGURE 3 | Chaperones maintain SG dynamics. Proteins containing intrinsically disordered domains can undergo phase separation upon cellular stress, such as
heat stress, and form liquid-like SGs. Under healthy conditions, the SGs are dissolved when the stress subsides. Chaperones (green hexamer) such as Hsp70s,
sHsps, and DNAJB6 are involved in the resolubilization process and thus regulate SG homeostasis. Disease-associated mutations in SG associated proteins, the
accumulation of DRiPs, or prolonged exposure to stress conditions reduce the fluidity of SGs, leading to a more solid-like structure that promotes amyloid formation
over time. The HSPA1A-BAG3-HSPB8 chaperone network (orange hexamer) targets aberrant SGs for degradation. SG, stress granule.
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formation within SGs (Liu et al., 2020). Moreover, defective
ribosomal products (DRiPs), i.e., prematurely terminated
nascent polypeptides, accumulate in cytosolic SGs leading to
a reduction in SG fluidity (Seguin et al., 2014; Ganassi et al.,
2016). A chaperone complex consisting of HSPA1A, BAG3, and
HSPB8 monitors SG composition and mediates the degradation
of DRiPs to restore SG dynamics (Ganassi et al., 2016).

The involvement of chaperones in regulating the dynamics
of membraneless compartments is further supported by their
function in the nucleolus. The phase-separated nucleolus serves
as a PQC compartment which sequesters misfolded protein
species (Mediani et al., 2019). Prolonged exposure to stress
or a failure to dissolve the liquid-like phase causes proteins
in the nucleolus to transition into an amyloid state (Azkanaz
et al., 2019; Frottin et al., 2019; Mediani et al., 2019). Their
resolubilization during the recovery period depends on the
refolding activity of Hsp70 family members that re-localize to the
nucleolus (Audas et al., 2016; Azkanaz et al., 2019; Frottin et al.,
2019; Mediani et al., 2019).

In addition to conventional chaperones, several other proteins
exhibit chaperone-like activity as they suppress abnormal phase
separation of certain RNA-binding proteins. For example, the
nuclear import receptor transportin-1 (TNPO1) shifts disease-
associated FUS variants to a more dispersed state thus preventing
their assembly into granules that inhibit local mRNA translation
within the axonal compartment (Qamar et al., 2018).

Taken together, chaperones control properties of phase-
separated compartments by modulating their internal dynamics
during physiological and stress conditions. They are vital
to maintaining their liquid-like state by mediating their
disassembly or autophagic degradation (Alberti et al., 2017).
This surveillance mechanism prevents abnormal aggregation and
amyloid formation within membraneless organelles and thus
serves as a cellular defense strategy in protein folding diseases to
delay disease onset.

CONCLUSIONS AND FUTURE
PERSPECTIVES

The main task of molecular chaperones is to maintain cellular
proteostasis. Interactions of chaperones with abnormal protein
species are therefore aimed to remove them. In principle, the
following basic mechanisms of action of chaperones during
prion-like propagation of disease proteins can be distinguished
(Figure 4). On the one hand, chaperones can stabilize misfolded
protein species, thus preventing their further accumulation
(Hartl et al., 2011). Also, they can dissociate protein aggregates by
extracting individual monomers (Mogk et al., 2018). Both these
processes can eventually help the substrates to regain their native
folding state. If this does not succeed, chaperones can control the
sequestration of misfolded protein species in a way that prevents
harmful interactions with the rest of the proteome (Miller et al.,
2015). Finally, they can also mediate their degradation by the
UPS (Kästle and Grune, 2012) or autophagy (Menzies et al.,
2017). Besides their role in eliminating abnormal protein species,
chaperones are also involved in multiple cellular processes, such
as endocytosis (Sousa and Lafer, 2015).

Although all chaperone activities are generally ‘‘well-
intentioned’’ and many of them have purely positive effects,
some also have disadvantages. For instance, the action of
the Hsp70 disaggregation machinery can have two outcomes,
one beneficial and one harmful. This chaperone system is
supposed to dissolve protein aggregates and in the case of
amorphous aggregates that are not seeding-competent, it usually
accomplishes their dissociation (Rampelt et al., 2012; Tittelmeier
et al., 2020). In the case of amyloid substrates, however, this
activity seems to liberate more toxic and seeding- and spreading-
competent species (Nachman et al., 2020; Tittelmeier et al., 2020),
which accelerates prion-like propagation. Also, delivery to the
UPS or autophagy is intended to degrade misfolded proteins,
but if this fails, these pathways could also generate seeding- and
spreading-competent fragments of disease proteins or, in the case
of autophagy, facilitate their delivery to neighboring cells. The
respective outcome might depend on the state of the cellular
proteostasis network. While in young individuals the proteostasis
capacity is high and e.g., the products of the disaggregation
reaction can either be refolded or degraded, in older individuals
the proteostasis capacity is increasingly impaired and the
disaggregated material can no longer be efficiently removed.
Moreover, chaperones are also involved in trafficking pathways,
which are linked to the intercellular spreading of prion-like
proteins. Thus, chaperones can also contribute indirectly to
the dissemination of propagons by sustaining the cellular
pathways required for cell-to-cell spreading, which are hijacked
by disease proteins.

A cautionary note is advised when interpreting results
from investigating the impact of chaperones. Due to the
interconnectivity of the proteostasis network, manipulating
expression levels of one chaperone can have unforeseen effects.
On the one hand, inhibition of a central chaperone can lead
to compensatory upregulation of other chaperones within the
network (Sannino et al., 2018). On the other hand, high
concentrations of certain chaperones can also have an inhibitory
effect. For example, both in vitro and in vivo work suggest that
not only low levels of the HSP110 NEF, but also too high levels
can poison the HSP70 disaggregation activity (Nollen et al., 2000;
Kampinga and Craig, 2010; Rampelt et al., 2012). Therefore, it
would be very beneficial for future studies to characterize not
only the expression level of the protein of interest but also the
fluctuations of the entire chaperone network; this would allow a
more differentiated interpretation of the results.

Taken together, the studies discussed here show that
chaperones play an ambivalent role in neurodegenerative
diseases. When considering chaperone therapy, it is therefore
important to bear in mind that chaperone action is not
per se beneficial in the context of proteinopathies. Nevertheless,
the recent literature established a strong relationship between
molecular chaperones and the propagation and spreading
of prion-like proteins, suggesting that chaperones are a
promising therapeutic target to interfere with the progression of
neurodegenerative diseases. While boosting chaperone activity
to prevent the initial aggregate formation in early phases
of the disease would be the most effective strategy, this
might not be feasible as these initial aggregation events
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FIGURE 4 | Chaperone interactions during prion-like propagation of disease proteins. The folding and refolding activity of chaperones helps destabilized or
misfolded protein species to resume their native state. These transient interactions with misfolded proteins or small oligomers prevent the formation of a
seeding-competent propagon (green hexamer). In contrast, the Hsp70 disaggregation machinery can fragment large fibrils leading to the formation of smaller
seeding- and spreading-competent species (red hexamer). Chaperones also recognize and sort terminally misfolded forms (orange hexamer) and either mediate their
sequestration into an inert deposit (purple hexamer) or deliver them to degradation pathways. Sequestration may reduce the accessibility of fibril ends and thus
prevent the further incorporation of native proteins into the amyloid fibril. Extracellular chaperones can also sequester amyloidogenic proteins into large deposits
making uptake into receiving cells more difficult. The delivery of amyloidogenic proteins to macroautophagic isolation membranes for their selective clearance is
mediated by HSC70 and an sHsp, HSPB8, together with the NEF BAG3 (Gamerdinger et al., 2009). In microautophagy, constitutively expressed HSC70 targets
substrates to LEs/MVBs (Sahu et al., 2011). In CMA, HSC70 translocates clients directly across the lysosomal membrane (Tekirdag and Maria Cuervo, 2018).
Lysosomes and MVBs can fuse with the plasma membrane releasing either free proteins or exosomes to the extracellular space. In the receiving cell, HSC70 and
DNAJC6 are involved in the internalization of misfolded proteins via clathrin-mediated endocytosis by uncoating clathrin-coated vesicles (light blue hexamer;

(Continued)
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FIGURE 4 | Continued
Sousa and Lafer, 2015). By rupturing the endosomal membrane,
disease-associated proteins are released from the endocytic vesicle into the
cytosol (Flavin et al., 2017), which might be prevented by lysosomal or
cytosolic Hsps (yellow hexamer). In the cytosol of the receiving cell,
chaperones can finally interfere with the seeding of naïve species by the
released propagon (dark blue hexamer). CMA, chaperone-mediated
autophagy; LE, late endosome; MVB, multivesicular body; NEF, nucleotide
exchange factor; UPS, ubiquitin-proteasome system.

usually remain undetected for a long period. During more
advanced disease stages, when the proteostasis capacity is
already significantly impaired, it might therefore be more
effective to interfere with specific chaperone activities to prevent
the dissemination or generation of propagons. Since it is
not yet fully understood which aggregate species (oligomers,
prefibrillar assemblies, or amyloid fibrils) mediate neurotoxicity
and which specific variants spread from cell to cell during
disease progression (and whether these are the same or distinct
species; Ries and Nussbaum-Krammer, 2016), more research
is needed to determine which specific chaperone actions are
overall beneficial or detrimental in vivo as this will determine
therapeutic strategies.

Another important aspect to consider in chaperone therapy is
that the fate of a certain amyloidogenic protein species depends
not only on a single chaperone but also on its interactions
with various co-chaperones. Furthermore, it is also determined
by the cellular environment. These findings emphasize the
complexity within the chaperone network in vivo, which cannot
be inferred easily from in vitro data. More research using
in vivo models is therefore required to fully understand how
chaperone cooperation ultimately determines the fate of certain
aggregate species.

Finally, proteinopathies are characterized by disease-specific
patterns of neurodegeneration, which mainly affect certain
cell types and brain regions during the disease, while others
are spared (Jackson, 2014; Fu et al., 2018). There is growing
evidence that not only prions but also other prion-like proteins
can form fibrils with different conformations, so-called strains,
which can affect different brain regions to different degrees

(Jackson, 2014; Melki, 2015). These observations raise the
question of whether differences in the proteostasis capacity of
these cells could be the reason for this selective susceptibility
(Jackson, 2014; Labbadia and Morimoto, 2015). In yeast,
chaperone activity helps to maintain the conformational diversity
of prion strains (Stein and True, 2014; Killian et al., 2019). Thus,
it is tempting to speculate that mammalian chaperones could
as well promote the structural identity of amyloid conformers
and contribute to the amplification of disease-specific strains by
generating distinct seeding-competent propagons. Whether and
which role differences in the chaperone repertoire play in this
process is still completely unclear and an exciting question for
the future.
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