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Abstract

Background: This study intended to determine important genes related to the prognosis and recurrence of breast cancer.

Methods: Gene expression data of breast cancer patients were downloaded from TCGA database. Breast cancer samples
with recurrence and death were defined as poor disease-free survival (DFS) group, while samples without recurrence and
survival beyond 5 years were defined as better DFS group. Another gene expression profile dataset (GSE45725) of breast
cancer was downloaded as the validation data. Differentially expressed genes (DEGs) were screened between better and
poor DFS groups, which were then performed function enrichment analysis. The DEGs that were enriched in the GO
function and KEGG signaling pathway were selected for cox regression analysis and Logit regression (LR) model analysis.
Finally, correlation analysis between LR model classification and survival prognosis was analyzed.

Results: Based on the breast cancer gene expression profile data in TCGA, 540 DEGs were screened between better
DFS and poor DFS groups, including 177 downregulated and 363 upregulated DEGs. A total of 283 DEGs were
involved in all GO functions and KEGG signaling pathways. Through LR model screening, 10 important feature DEGs
were identified and validated, among which, ABCA3, CCL22, FOXJ1, IL1RN, KCNIP3, MAP2K6, and MRPL13, were
significantly expressed in both groups in the two data sets. ABCA3, CCL22, FOXJ1, IL1RN, and MAP2K6 were good
prognostic factors, while KCNIP3 and MRPL13 were poor prognostic factors.

Conclusion: ABCA3, CCL22, FOXJ1, ILTRN, and MAP2K6 may serve as good prognostic factors, while KCNIP3 and MRPL13
may be poor prognostic factors for the prognosis of breast cancer.
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Traditionally, the most widely used prognostic factors
for the recurrence of breast cancer included tumor size,
histologic grade, and the number of axillary lymph nodes
with metastasis [4, 5]. These prognostic factors can sup-
ply independent prognostic information for patients with
breast cancer, whereas they are not suitable for optimal
patient management, especially as we move towards the
era of personalized treatment [6]. A recent study has
suggested that a variety of gene expression changes have
occurred in early or precancerous breast cancer, which
often precede the appearance of clinical symptoms and
can serve as molecular biomarkers of early breast cancer
[7]. Thus, a great deal of researches has been devoted to
the development and validation of molecular biomarkers
that cannot only provide prognostic information but also
predict the response to therapy [8, 9]. Currently, many
prognostic biomarkers for recurrence of breast cancer
have been established, such as 21-gene Oncotype DX
assay panel, 70-gene MammaPrit panel, 36-gene signa-
ture, PAM50-based Prosigna risk of recurrence (ROR)
(NanoString), Breast Cancer Index (BCI) (bioTheranos-
tics), and EndoPredict (EPclin) (Myriad Genetics) [10—
12]. Although the findings above, our understanding of
the molecular mechanisms of breast cancer recurrence is
far from clear because of the molecular heterogeneity of
breast cancer.

In this study, we aimed to further determine important
genes related to the prognosis and recurrence of breast
cancer by analyzing the breast cancer gene expression
profile in TCGA database based on Logit regression
(LR) model analysis and survival analysis. The results
may help to provide more powerful biomarkers for the
prognosis and recurrence of breast cancer.

Materials and methods

Data sources

[lumina HiSeq 2000 gene expression test data of breast
cancer patients were downloaded from TCGA database
(https://gdc-portal.nci.nih.gov/), involving a total of 1217
samples. After corresponding to the provided clinical in-
formation of the samples, the prognostic grouping was
conducted according to the following rules [13]: breast
cancer samples with recurrence and death were defined
as poor DFS group, while samples without recurrence
and survival beyond 5 years were defined as better DFS
group. Finally, there were respectively 52 samples and
181 samples in poor and better DFS groups. Besides,
after removing the samples without clinical information
on breast cancer subtypes (Supplementary materials-
table 1), 188 samples were left. Based on the subtypes of
breast cancer, these samples in TCGA database were di-
vided into four groups, including Basal (45 samples),
Her2 (13 samples), LumA (94 samples), and LumB (36
samples). In addition, another gene expression profile
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dataset (GSE45725 [14]) of breast cancer was down-
loaded, which included 340 breast cancer tumor sam-
ples. The detection platform was GPL6883 Illumina
humanref-8 v3.0 expression beadchip. After removing
the samples that had not been followed-up for 3 years,
the remaining samples were divided into DFS group
(107 samples) and poor DFS group (20 samples), based
on the 3-year survival associated with the clinical infor-
mation. This dataset was used as the validation data.
The histopathological data from TCGA and GSE45725
were shown in Supplementary materials-table 1 and
Supplementary materials-table 2, respectively.

Data preprocessing and differential expression analysis
After downloading the original expression level data, the
Z-score transformation method [15, 16] was used to
normalize the original data. Then, according to the group-
ing, and the R3.4.1 limma package version 3.34.7 [17]
(https://bioconductor.org/packages/release/bioc/html/
limma.html) was adopted for differentially expressed gene
(DEG) screening for the better DFS and poor DFS group
samples. False discovery rate (FDR) < 0.05 and |log, fold
change (FC)| > 1 were selected as the threshold for
screening the DEGs. To verify whether DEGs can be used
to distinguish samples with different prognostic condi-
tions, bidirectional hierarchical clustering was conducted
by the R3.4.1 pheatmap package version 1.0 [18]. (https://
cran.r-project.org/web/packages/pheatmap/index.html)
based on the Pearson correlation algorithm [19].

Function enrichment analysis

Gene Ontology (GO) function (biological process (BP),
molecular function (MF), and cellular component (CC))
and Kyoto Encyclopedia of Genes and Genomes (KEGG)
[20] pathway annotation for DEGs was performed using
DAVID version 6.8 [21, 22] (https://david.ncifcrf.gov/). P
value less than 0.05 was selected as the threshold of en-
richment significance. The DEGs that were enriched in
the GO function and KEGG signaling pathway were se-
lected for further analysis.

Independent prognostic DEG screening

Based on the breast cancer tumor samples and the clinical
prognostic information in TCGA dataset, the DEGs
enriched in the GO function and KEGG signaling pathway
were subjected to screening of significant prognostic cor-
relation using the univariate cox regression analysis in
R3.4.1 survival pack version 2.41-1 [23] (http://bioconduc-
tor.org/packages/survivalr/). Then, multivariate cox re-
gression analysis was used to further screen independent
prognostic DEGs, and log-rank p value less than 0.05 was
selected as the threshold of significant correlation.
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LR model analysis

Based on the obtained independent prognostic DEGs,
we used the glm function in R3.4.1 language to conduct
LR model to screen important feature DEGs and classify
the two groups of patients with different prognosis. All
the genes with p < 0.05 were considered as important
feature genes, and then, the accuracy was calculated
based on the significant feature genes. Based on the ex-
pression characteristics of feature DEGs, all samples
were divided into better and poor DFS groups in TCGA
training dataset and GSE45725 validation dataset,
respectively.

Correlation analysis between LR model classification and
survival prognosis

Based on the classification result of LR classification
model in the training set and validation set, the Kaplan-
Meier (KM) curve method in R3.4.1 survival package
version 2.41-1 [15] was used to evaluate the correlation
between the grouping conditions (better and poor DES)
and survival prognostic information. Then, the expres-
sion levels of important feature DEGs in TCGA training
dataset and GSE45725 validation dataset were displayed.
In addition, receiver operating characteristic (ROC)
curve was drawn to compare the sensitivity and specifi-
city. The area under the curve (AUC) was calculated
from the ROC curve. The genes based on the LR models
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were also verified in the different subtypes of breast can-
cer (Basal, Her2, LumA, and LumB types).

Results

DEG screening

According to the DEG screening threshold (FDR < 0.05
and |logoFC| > 1), a total of 540 DEGs (better DES vs.
poor DES) were screened, including 177 significantly
downregulated and 363 significantly upregulated DEGs
(Fig. 1a). The bidirectional hierarchical clustering heat-
map based on DEG expression level is shown in Fig. 1b.
It can be clearly seen from the figure that samples with
similar gene expression patterns were stratified and clus-
tered into the same group, indicating that the selected
DEGs can well distinguish samples of different prognos-

tic types.

Function enrichment analysis

The downregulated and upregulated DEGs were respect-
ively enriched into 26 and 89 GO terms as well as 6 and
7 KEGG signaling pathways, as shown in Table 1. The
results showed that the significantly upregulated DEGs
in the better DFS group were significantly enriched in
BP functions such as immune response and defense re-
sponse, CC terms associated with plasma membrane
part, and MF terms of cytokine binding, and serine-type
peptidase activity. Additionally, they were significantly
involved in KEGG signaling pathways such as cell
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Fig. 1 a The volcano plot of differentially expressed genes (DEGs). Blue circle represents DEGs, black horizontal line represents FDR < 0.05, and
two black vertical lines represent |log,FC| > 1. b Bidirectional hierarchical clustering heatmap based on DEG expression level. White and black
bars represent poor and better disease-free survival (DFS) breast cancer tumor samples, respectively
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Table 1 GO function node list (top 3) significantly enriched by upregulated and downregulated DEGs
Category Term Count p value
Upregulation BP GO:0006955~immune response 67 1.270E-27
GO:0006952~defense response 45 1.130E-13
GO:0019882~antigen processing and presentation 14 9.100E-09
CcC GO:0044459~plasma membrane part 75 9.160E-08
GO:0005887~integral to plasma membrane 45 6.820E-06
GO:0005886~plasma membrane 103 7.390E-06
MF GO:0019955~cytokine binding 10 2.910E-04
GO:0008236~serine-type peptidase activity 10 8.588E-03
GO:0017171~serine hydrolase activity 10 9.209E-03
KEGG hsa04514:Cell adhesion molecules (CAMs) 15 9.070E-06
hsa04612:Antigen processing and presentation 12 1.040E-05
hsa04062:Chemokine signaling pathway 17 3.180E-05
Downregulation BP GO:0045137~development of primary sexual characteristics 5 8.024E-03
GO:0009968~negative regulation of signal transduction 6 1.340E-02
GO:0007548~sex differentiation 5 1.409E-02
CcC GO:0044456~synapse part 7 1.228E-02
GO:0045202~synapse 8 2.139E-02
GO:0005761~mitochondrial ribosome 3 3.516E-02
MF G0:0048306~calcium-dependent protein binding 3 1.372E-02
GO:0005509~calcium ion binding 14 1.696E-02
GO:0008083~growth factor activity 5 2.078E-02
KEGG hsa04514:Cell adhesion molecules (CAMs) 3 2.108E-02
hsa04150:mTOR signaling pathway 2 2.884E-02
hsa03018:RNA degradation 2 3.115E-02

adhesion molecules, antigen processing and presentation,
and chemokine signaling pathway. The downregulated
DEGs were significantly related to the development of pri-
mary sexual characteristics, negative regulation of signal
transduction, synapse part, and calcium-dependent pro-
tein binding and were involved in KEGG signaling path-
ways such as cell adhesion molecules, mTOR signaling
pathway, and RNA degradation. A total of 283 DEGs were
involved in all GO functions and KEGG signaling
pathways.

Independent prognostic DEG screening

Based on the 283 DEGs involved in all GO functions
and KEGG pathways, a total of 186 prognostic DEGs
were identified after univariate cox regression analysis by
a combination of the 233 breast cancer tumor samples.
Further multivariate cox regression analysis of the 186
prognostic DEGs screened 42 independent prognostic
DEGs.

LR model analysis
For the 42 DEGs that were significantly correlated with
independent prognosis, LR model was used to screen

important feature DEGs, and a total of 10 important fea-
ture DEGs were screened, as shown in Table 2. Accord-
ing to the median value of each DEG expression level,
the training set samples were divided into high expres-
sion (expression level higher than the median value) and
low expression (expression level lower than the median

Table 2 The important prognostic feature DEGs screened by

Logit model

ID B SE Df p value
UBE2L6 - 22813 0.7054 1 0.00122
ABCA3 — 1.5546 0.5185 1 0.00272
MAP2K6 - 07117 0.3443 1 0.03877
ILTRN — 05372 0.2485 1 0.03064
FOXJ1 - 0.2375 0.0955 1 0.01285
CCL22 —0.5239 0.2706 1 0.04529
APC2 0.6777 0.3478 1 0.04513
TRPM2 0.9379 0.3747 1 0.01232
KCNIP3 0.9632 0.3339 1 0.00392
MRPL13 30732 0.7985 1 0.00012

Note:B regression coefficient, SE Standard error, Df Degree of freedom
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value), and the correlation between the samples in differ-
ent expression level groups and survival prognosis was
evaluated by KM curve method. As shown in Fig. 2, the
p values of TP binding cassette subfamily a member 3
(ABCA3), C-C motif chemokine ligand 22 (CCL22), fork-
head box J1 (FOXJI), interleukin 1 receptor antagonist
(ILIRN), mitogen-activated protein kinase kinase 6
(MAP2K6), ubiquitin conjugating enzyme E2 L6
(UBE2L6), APC regulator of Wnt signaling pathway 2
(APC2), potassium voltage-gated channel interacting
protein 3 (KCNIP3), mitochondrial ribosomal protein
L13 (MRPL13), transient receptor potential cation chan-
nel subfamily M member 2 (TRPM?2) between high ex-
pression, and low expression were respectively 2.619E
-02, 2.048E-03, 2477E-02, 3.175E-03, 4.929E-02,
5.546E-04, 5.066E-04, 1.128E-02, 2.629E-02, and
1.157E-02, which indicated that these genes can be well
distinguished. Based on the hazard ratio (HR) of these
genes, ABCA3 (0.536), CCL22 (0.406), FOXJI (0.530),
ILIRN (0.426), MAP2K6 (0.587), and UBE2L6 (0.362)
were good prognostic factors, which were significantly
upregulated in the better DFS group. In contrast, APC2
(2.743), KCNIP3 (2.049), MRPL13 (1.885), and TRPM2
(2.050) were poor prognostic factors that were signifi-
cantly upregulated in the poor DFS group. Based on the
DEG expression level of 10 important feature genes, the
LR model was used to classify the prognostic types of
TCGA training set and GSE45725 validation data sam-
ples, respectively. In the GSE45725 validation dataset,
127 breast cancer samples were selected, of which 20
were breast cancer samples with recurrence within 3
years, and were defined as poor DFS group; 107 were
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samples with no recurrence and survival within 3 years
and were defined as better DFS group. The fuzzy matrix
of classification results is shown in Table 3.

Correlation analysis between LR model classification and
survival prognosis

There was a significant correlation between the grouping
of samples after classification and the actual survival
prognosis based on 10 important LR classification
models (Fig. 3a, b). In addition, the AUC of the ROC
curve in the training set and validation set were 0.903
and 0.839, respectively. These results demonstrated that
the selected feature genes based on LR model can be
well used to predict the prognosis and recurrence of
breast cancer.

In the different subtypes of breast cancer, including basal
type (Fig. 4a), Her2 type (Fig. 4b), LumA type (Fig. 4c), and
LumB type (Fig. 4d), the prognosis of breast cancer pre-
dicted by the LR classification models was similar with the
actual survival prognosis. Additionally, the AUCs of ROC
curve in the basal type (Fig. 4a), Her2 type (Fig. 4b), LumA
type (Fig. 4c), and LumB type (Fig. 4d) were 0.892, 0.818,
0.916, and 0.838, respectively. These results implied that
the 10 important genes screened based on LR model can
also be well utilized to predict the prognosis of different
subtypes of breast cancer.

The expression levels of 10 important DEGs in TCGA
training set and GSE45725 validation data samples were
displayed in Fig. 5. As shown in the figure, the expres-
sion level of each important DEG in the two data sets
was consistent, and the 7 DEGs, ABCA3 (p = 3.56E-04
in TCGA and p = 1.01E-02 in GSE45725), CCL22 (p =

ABCA3 ccL22
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Table 3 The classification result in TCGA dataset and GSE45725
microarray dataset
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1.14E-04 in TCGA and p = 4.72E-02 in GSE45725),
FOXJ1 (p = 345E-05 in TCGA and p = 4.88E-02 in
GSE45725), ILIRN (p = 5.55E-05 in TCGA and p =
2.19E-02 in GSE45725), KCNIP3 (p = 2.68E-04 in
TCGA and p = 2.92E-02 in GSE45725), MAP2K6 (p =
5.87E-05 in TCGA and p = 3.28E-02 in GSE45725),
and MRPL13 (p = 8.27E-05 in TCGA and p = 9.74E-04
in GSE45725), were significantly expressed in both
groups in the two data sets.

Discussion

The mRNA expression studies have been widely used to
predict the prognosis of breast cancer patients [24—26].
In this study, based on the breast cancer gene expression
profile data in TCGA, 540 DEGs were screened between
better DFS and poor DES groups, including 177

TCGA Predict

Class Better DFS Poor DFS Percent (%)
Observed Better DFS 172 9 95.03

Poor DFS 14 38 73.08
Overall percent (%) 90.13
GSE45725 Better DFS 100 7 9346
Observed Poor DFS 6 14 70.00
Overall percent (%) 89.76
DFS Disease-free survival
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Fig. 3 The KM curves of the correlation between the classification groups in TCGA training set (a) and GSE45725 validation set (b) and the actual
survival prognosis based on the LR classification model. The blue and red curves represent the groups of good and poor prognosis samples

predicted by the LR classification model, respectively. ¢ Area under the curve (AUC) was calculated from the receiver operating characteristic
(ROCQ) curve. Black and red curves represent the TCGA training set and GSE45725 validation set
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downregulated and 363 upregulated DEGs. Through LR
model screening, 10 important feature DEGs were iden-
tified and then validated in the GSE45725, among which,
ABCA3, CCL22, FOX]J1, ILIRN, KCNIP3, MAP2K®6, and
MRPL13, were significantly expressed in both groups in
the two data sets. Additionally, based on the K-M curve,
it was found that ABCA3, CCL22, FOXJ1, ILIRN, and
MAP2K6 were factors associated with good prognostic
outcome, while KCNIP3 and MRPL13 were risk factors
associated with poor prognostic outcome. Our findings
will improve our understanding of breast cancer and
provide novel biomarkers for the prognosis and recur-
rence of breast cancer.

Among the five factors associated with good prognos-
tic outcome, CCL22, FOX]J1, and ILIRN were found to
be significantly involved in function associated with im-
mune response. Defense against tumors is one of the
functions of the immune system, and the host immune

response plays a key role in progression and response to
therapy of breast cancer [27]. A study has revealed that
the risk of breast cancer is associated with impaired im-
mune responses [28]. CCL22 has an effect on repressing
immune responses to tumor cells through its ability of
recruiting Treg and Th2-cells, thereby enhancing tumor
development [29]. Li et al. [30] has reported that CCL22
is an independent prognostic predictor of breast cancer
patients. In addition, recent studies have suggested that
FOXJI may be a tumor suppressor, which suppresses cell
migration and invasion in ovarian cancer [31]. A study
by Wang et al. [32] have demonstrated that downregu-
lated FOXJI is an independent prognostic predictor for
gastric cancer, and it is found to be hypermethylated in
breast tumorigenesis [33]. Our study showed that higher
expression of FOXJI was associated with better DFS in
breast cancer, and FOXJI may be a good prognostic fac-
tor for the prognosis of breast cancer. For ILIRN, its low
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expression is an early driver of carcinogenesis of urothe-
lial carcinoma of the urinary bladder [34]. Moreover,
genetic polymorphisms of ILIRN are found to be associ-
ated with individual susceptibility for breast cancer de-
velopment in Korean women [35]. Combined with our
results, it was speculated that CCL22, FOXJ1, and ILIRN
may play an important role in ameliorating the progno-
sis of breast cancer patients through involving in im-
mune response.

ABCAS3, also a prognostic factor of a good prognostic
outcome, has been reported to be involved in lipid trans-
port and lipid secretion, and is expressed in some hu-
man epithelial cells [36]. A recent study has found that
ABCA3 has strong expression in normal mammary
gland tissue and was exclusively expressed in the epithe-
lial cell layer. The loss of ABCA3 protein expression was
related to a more aggressive phenotype in breast cancer
patients. The upregulation of ABCA3 was associated
with a better prognosis of patients with breast cancer
[37]. In accordance with the findings above, our study
also suggested that upregulated ABCA3 may be related
to the good prognosis of breast cancer and served as a
protective factor in breast cancer.

In addition, MAP2K6 is an upstream kinase of the p38/
MAPK signaling pathway [38]. Recent studies have found
that MAP2K6 may be associated with the progression of
cancers [39]. MAP2K6 expression is found to be signifi-
cantly upregulated in gastric cancer, colon cancer, and
esophageal cancer compared with the control [39]. Over-
expression of MAP2K6 predicts a worse prognosis of pa-
tients with nasopharyngeal carcinoma [40]. However,
Wang et al. [41] reported that MAP2K6 gene had a low
expression in breast cancer compared with control. The
possible reason is that the expression of MAP2K6 in dif-
ferent cancers is different, and its function is complicated.
In our study, we found that MAP2K6 had a higher expres-
sion in the better DFS group compared with the poor DFS
group, which indicated that high expression of MAP2K6
may be associated with good prognosis breast cancer. Fur-
ther studies are needed to investigate the specific mecha-
nisms of MAP2K6 in the prognosis of breast cancer.

However, MRPL13 and KCNIP3 were predicted to be
risk factors associated with poor prognostic outcome in
breast cancer. MRPL13 was associated with the function
of mitochondrial ribosome. It has been suggested that
mitochondrial ribosomes are linked to tumorigenesis.
The expression of genes encoding for mitochondrial
ribosomal proteins is modified in numerous cancers [42,
43]. Recently, a study reported that overexpression of
mitochondrial ribosomal protein S18-2 provides a per-
manent stimulus for cell division, which suggested its in-
volvement in carcinogenesis [44]. The role of MRPL13
in breast cancer has not been reported to our know-
ledge. For KCNIP3, it has been identified as a potential
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biomarker for the early detection of basal-like breast
cancer [45]. In alignment with our results, we speculated
that MRPL13 and KCNIP3 may be served as poor prog-
nostic biomarkers, and their downregulation may have a
better prognosis of breast cancer.

Conclusion

In conclusion, ABCA3, CCL22, FOX]J1, MAP2K6, and
ILIRN may serve as good prognostic factors, while KCNI
P3 and MRPLI13 may be poor prognostic biomarkers to
predict the recurrence and prognosis of breast cancer.
These good and poor prognostic biomarkers are re-
quired to be confirmed using larger cohorts, different
validation data or different subgroups. The results will
provide more powerful biomarkers for the prognosis and
recurrence of breast cancer.
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