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Abstract: Poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) is a promising bio-based and
biodegradable thermoplastic with restricted industrial applications due to its brittleness and poor
processability. Natural rubber (NR) has been used as a toughening agent, but further physical
improvements are desired. In this study, rubber toughening efficiency was significantly improved
through the synergistic use of a trifunctional acrylic coagent and an organic peroxide during reactive
extrusion of PHBV and NR. The rheological, crystallization, thermal, morphological, and mechanical
properties of PHBV/NR blends with 15% rubber loading were characterized. The peroxide and
coagent synergistically crosslinked the rubber phase and grafted PHBV onto rubber backbones,
leading to enhanced rubber modulus and cohesive strength as well as improved PHBV–rubber
compatibility and blend homogeneity. Simultaneously, the peroxide–coagent treatment decreased
PHBV crystallinity and crystal size and depressed peroxy-radical-caused PHBV degradation. The new
PHBV/NR blends had a broader processing window, 75% better toughness (based on the notched
impact strength data), and 100% better ductility (based on the tensile elongation data) than pristine
PHBV. This new rubber-toughened PHBV material has balanced mechanical performance comparable
to that of conventional thermoplastics and is suitable for a wide range of plastic applications.

Keywords: poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV); bioplastic; natural rubber;
reactive extrusion; toughening

1. Introduction

Currently, more than 90% of plastics are petroleum-based and non-biodegradable [1], and their
wide industrial use is of significant environmental concern. Development of biodegradable polymers
from renewable resources is needed to lessen oil dependence, reduce environmental pollution, and
improve global sustainability. Polyhydroxyalkanoates (PHAs) are biodegradable aliphatic polyesters
produced through bacterial fermentation of sugars or lipids [2]. PHA properties can be customized
to meet the final use requirements by adjusting the monomer unit composition [3], microorganism,
and carbon source used in fermentation [4]. PHA versatility provides a wide range of properties for
various applications [5], contributing to the predicted market growth from about 51,150 tonnes in 2010
to 405,100 tonnes by 2020 [6].
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One of the most studied PHAs is polyhydroxybutyrate (PHB), obtained from polymerization
of 3-hydroxybutyrate monomers. It has properties similar to polypropylene (PP) but is stiffer
and more brittle—characteristics which prevent its widespread industrial use. Incorporation of
poly(3-hydroxyvalerate) to form poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV), which has
improved flexibility and toughness, has various promising applications in the packaging, biomedical,
agricultural, automotive, and construction industries [7,8]. Yet, despite these enhancements, PHBV
remains brittle, has an unacceptably narrow processing window, and is expensive [9]. PHBV brittleness
is mainly caused by its high degree of crystallinity and large spherulites [10,11], which can be reduced
by plasticization [12], incorporation of nucleating agents to reduce spherulite size [13,14], chemical
modification, and blending with flexible polymers [15].

Incorporation of natural rubber (NR) into PHBV through melt blending is an industrially
and economically viable route to improve PHBV flexibility and toughness. NR is a promising
toughening agent due to its ductility, elasticity, availability, and low cost [16]. NR’s renewability
and biodegradability can also help maintain the “green” nature of PHBV [16]. The rubber toughening
mechanisms can be explained by several theories. According to void toughening theory, rubber
particles concentrate stress then go through cavitation, releasing volume strain energy and reducing
the resistance of the polymer matrix to volumetric expansion [17–19]. The matrix then undergoes shear
yielding and/or crazing, which absorbs most of the fracture energy [17–19]. In contrast, stress field
theory suggests that rubber particles influence the crystallization behavior of the polymer matrix and
introduce a layer of oriented crystalline lamellae perpendicular to the rubber/matrix interface [20,21].
The lamellae are connected by hydrogen-bonded planes which are perpendicular to the lamellae and
have low slip resistance [20]. When impacted by an outside force, the inter-particle regions deform
through crystalline slip, causing shearing of the surrounding crystalline regions and rotation of the
crystals, enabling more energy absorption and resulting in improved toughness [20]. This is also the
concept behind filler-induced toughening of polymers [22].

In both theoretical models, NR’s toughening efficacy depends on interfacial adhesion between
NR and PHBV, rubber particle size and dispersion, inter-particle distance (ligament thickness), rubber
modulus, matrix properties, processing conditions, and other factors [17]. Generally, optimal particle
size, homogeneous rubber dispersion, thin ligaments, and good rubber/matrix adhesion are required
for maximum toughness. Reactive blending has been used for rubber-toughened thermoplastics
by improving blend morphology and compatibility between rubber and plastic [23]. This process
selectively cures rubber during its intimate melt mixing with a thermoplastic [24], preventing either
phase from coalescing [25] and leading to excellent rubber dispersion in the plastic matrix [26].
In addition, crosslinking allows rubber to reach high strains under stress through the formation of
strong fibrils [17]. Crosslinking also enhances interconnectivity among stress fields around rubber
particles, allowing for easier stress transfer [17,27]. Covalent bonds between the rubber and plastic
matrixes clearly would overcome interfacial repulsion and improve interfacial adhesion [28,29].

Peroxide-induced crosslinking of rubber and other polymers is an effective non-sulfurous
crosslinking method acceptable in food contact applications [30]. Peroxides produce strong free
radicals as they break down when exposed to heat during melt blending [30]. The radicals abstract H
atoms from methylene groups on polymer chains and initiate formation of C–C crosslinks between
very different, normally incompatible polymers [30]. Reactive blending of PHB and PBS (polybutylene
succinate), with dicumyl peroxide (DCP) crosslinker, reduced PBS particle size and enhanced interfacial
adhesion between the two polymers [31]. The PHB/PBS blends had improved tensile and impact
strength over pristine PHB [31]. Similarly, PLA flexibility was improved by DCP-initiated reactive
blending with NR [28]. Here, a continuous crosslinked NR phase was dispersed in the PLA matrix
and the two phases had good interfacial adhesion (PLA grafted onto NR during melt-blending) [28].
However, peroxide-induced crosslinking lacks chemical selectivity, and competition between in situ
compatibilization/crosslinking and free-radical-caused polymer degradation makes it difficult to
control blend properties [32]. The balance between productive and non-productive competing reactions



Polymers 2019, 11, 565 3 of 20

is affected by the polymer microstructure and the presence of dissolved oxygen and hydrogen donors
(anti-oxidants, fatty acids, oils, etc.) in the formulation [32]. As most of the non-productive reactions
are kinetically favored, productive reactions advancing effective crosslink formation can occur only if
there is a very high concentration of reactive sites on the polymer backbone [32].

Coagents are typically multifunctional monomers highly reactive with free radicals. Coagents can
be used in peroxide-induced crosslinking to shift the reaction balance toward productive reactions
by introducing a high concentration of reactive sites. These reactive sites result in efficient use of
the peroxide-derived radicals and reduce the occurrence of deleterious side reactions [32], leading to
increased crosslink density (Figure 1). The addition of coagents triallyl cyanurate (TAC), trimethylol
propane triacrylate (TMPTA), and N,N′-m-phenylene dimaleimide (MPDM) in reactive blending of
polypropylene (PP) and ethylene octene copolymer (EOC) increased the crosslink density of EOC and
decreased the thermal degradation of PP [29]. The coagents limited deleterious PP chain scissions by
reacting with PP macroradicals, forming a more stable polymer radical [29]. Also, the coagents reduced
PP crosslinking by grafting onto PP polymer chains, which inhibited spherulite growth, decreased
PP crystallinity, and improved PP toughness [29]. Similarly, the addition of coagent difunctional
maleimide stabilized PP macroradicals and unsaturated polyester (UP) melts, localized the free radical
reactions to PP/UP interfaces [33], maximized the formation of grafted copolymer, and improved
blend properties [33].

In our previous study, peroxide alone was used during reactive blending of PHBV and NR
to improve blend compatibility and morphology [34]. Blends containing 10–15% NR provided an
optimal combination of processing and mechanical properties [35]. However, further improvements in
blend strength and toughness are desired to obtain materials with balanced mechanical properties for
broadened industrial applications. Therefore, a coagent was synergistically used with peroxide in this
study to further improve the blend mechanical performance. The effect of the coagent on the thermal,
crystallization, morphological, and mechanical properties of PHBV/NR blends was investigated. In our
previous work [34,35], we investigated the effect of peroxide (0.15–0.45 wt %), coagent (0–0.63 wt %),
and rubber (10–20 wt %) concentrations on the mechanical properties of PHBV/NR blends. The
optimal formulation of the blends was 0.45 wt % peroxide, 0.63 wt % coagent, and 15 wt % NR, and
this was used to fabricate blends of PHBV and NR in this work.
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2. Materials and Methods

2.1. Materials

NR, which was Standard Indonesian Rubber-20 (SIR-20) of constant viscosity, was
purchased from CentroTrade LLC (Wadsworth, OH, USA). Peroxide Luperox 101XL45 (2,5-Bis
(tert-butylperoxy)-2,5-dimethylhexane) and coagent (trimethylolpropane triacrylate, TMPTA) were
purchased from Sigma-Aldrich (St. Louis, MO, USA). PHBV with approximately 2 mol %
hydroxyvalerate (HV) content was purchased from Tianan Biological Material Co. (Ningbo, China).
Both rubber and peroxide were used as received. PHBV pellets were vacuum-dried for 24 h at 60 ◦C
before use.

2.2. Methods

2.2.1. Blend Preparation

Pre-dried PHBV, NR, peroxide Luperox 101XL45, and coagent TMPTA were premixed and fed
into a pre-heated Leistritz ZSE-27 twin-screw extruder (Somerville, NJ, USA) for blending. The reactive
blending was conducted at 60 rpm, with a reverse compounding temperature from 180 to 145 ◦C
(Table 1). The formulae of the blends are shown in Table 2. The blends of PHBV and NR, with or
without peroxide/coagent treatment, are generally referred to as PHBV/NR blends in this study.

Table 1. Barrel temperatures of poly (3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV)/natural rubber
(NR) reactive extrusion.

Heaters Temperatures (◦C)

1 (Below hopper) 180
2 175
3 175
4 170
5 170
6 160
7 160
8 155
9 150

10 (Die) 145

Table 2. PHBV and PHBV/NR blends obtained from extrusion melt blending.

Sample PHBV/NR (wt/wt) Peroxide (wt %) Coagent (wt %)

PHBV 100:0 0 0
PHBV/NR 85:15 0 0

PHBV/NR/P 85:15 0.45 0
PHBV/NR/P/C 85:15 0.45 0.63

2.2.2. Gel Fraction Measurement

Pelleted samples were dissolved in chloroform at 60 ◦C for 24 h. The turbid solutions were
centrifuged at 4000 rpm for 10 min. The gels on the top of the centrifuged solutions were collected,
rinsed by chloroform five times, and dried. The gel fractions (Gf) were calculated as follows:
Gf = m1/m0 × 100%, where m0 is the initial weight of the samples and m1 is the weight of the dried
residue obtained after chloroform extraction [31].

2.2.3. Rheological Characterization

The rheological behavior of the materials was analyzed using a TA Instrument Ares LSII rheometer
(New Castle, DE, USA). Rheological determinations were performed at 175 ◦C using a 25 mm parallel
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plate system. Each disk sample, with a thickness of 1 mm and diameter of 25 mm, was equilibrated for
5 min before the gap was set to the testing position of approximately 0.9 mm or until the top plate made
contact with the upper surface of the sample. The complex viscosity, storage modulus (G′), and loss
modulus (G”) were measured with increasing frequency from 0.1 to 100 rad s−1 at 0.3% strain [38–40].

2.2.4. Scanning Electron Microscopy (SEM)

The fracture surfaces of the samples from notched impact testing were visualized using a Quanta
200 (FEI Inc., Hillsboro, OR, USA) scanning electron microscope (SEM). The samples were observed
after mechanical failure at ambient temperature. Samples were coated with a 10 nm layer of gold using
a Cressington 108 sputter coater (Watford, UK).

2.2.5. Mechanical Characterization

Pellets of PHBV/NR blends were injection molded into mechanical testing specimens and
vacuum-dried for 24 h at 60 ◦C prior to testing. Tensile testing was conducted according to
ASTM D638-08 using an Instron 5542 with the Bluehill v. 2.17 software package (Instron Corp.,
Norwood, MA, USA). Dumbbell-shaped samples (165.0 × 19.0 × 7.0 mm3) with a grip distance of
115 mm were prepared, and a crosshead speed of 5 mm·min−1 at room temperature was used. The
flexural properties were determined according to ASTM D790-15. The test sample dimensions were
127.0 × 12.7 × 3.2 mm3. The 1% secant modulus, which represents the stress–strain ratio at the point
on the curve that corresponds to the point of extension that is 1% of the initial sample length, was
determined to evaluate the flexibility of the samples. Notched impact tests were conducted according
to ASTM D256-10. Notched impact samples (63.5 × 12.7 × 0.32 mm3 with a 22.5◦ notch) were tested
using an impact tester from Tinius Olsen (Horsham, PA, USA). The reported standard deviation (SD)
values were calculated from at least three samples. Statistical analyses were performed using JMP 10.0
(Marlow, Buckinghamshire, UK). Significant differences (p-values < 0.05) in mechanical data between
PHBV and its blends were determined using one-way analysis of variance (ANOVA) and the Tukey
HSD method.

2.2.6. Thermogravimetric Analysis (TGA)

A TA Instrument Discovery TGA 550 (New Castle, DE, USA) was used to study the thermal
decomposition properties of the materials. Samples were heated under nitrogen from room
temperature to 500 ◦C at 20 ◦C·min−1. Extrapolated onset (To) and peak (Tp) degradation temperatures
were taken from the weight loss and derivative thermograms, respectively.

2.2.7. Differential Scanning Calorimetry (DSC)

The thermal transitions of the materials were investigated using a previously described
procedure [38,41] with a TA Instrument Discovery DSC 2500 (New Castle, DE, USA). The samples were
first heated from room temperature to 200 ◦C at 10 ◦C·min−1, annealed at 200 ◦C for 4 min to remove
the thermal history, subsequently cooled to −85 ◦C, held for 4 min, and reheated from −85 to 200 ◦C at
10 ◦C·min−1. The onset and peak crystallization temperatures (Tc(onset) and Tc(peak)) were determined
from the cooling scans. The glass transition temperature (Tg), melting temperature (Tm), enthalpy of
fusion (∆Hm), and degree of crystallinity (Xc) were determined from the second heating scans. Tm

was determined at the peak value of the endotherms and Tg at the midpoint of the heat capacity
changes (0–20 J g−1). ∆Hm was determined from the area under the endotherms using TRIOS Software
v4.1.1.33073. The relative crystallinity of the blends was obtained by dividing ∆Hm by the enthalpy
value of a theoretically 100% crystalline PHBV (146 J·g−1) taken from literature values [42–45].
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2.2.8. X-ray Diffraction (XRD)

XRD patterns of the samples were obtained using a Rigaku Miniflex 600 X-ray diffractometer
(Woodlands, TX, USA) operating at 40 kV and 15 mA. Data were collected in the range of 2θ = 5◦–60◦

at 2◦·min−1. Crystal interplanar distances (d-spacing) (three families of lattice planes (020), (110),
and (121) studied) were calculated using Bragg’s relationship [46,47]: λ = 2d× sin θ, where d is the
d-spacing, λ is the X-ray wavelength (1.5406 Å), and θ is the scattering angle. The crystal size was
calculated by the equation D = K×λ

β×cosθ , where D is the crystal size, λ is the X-ray wavelength, β is
the full width at half-maximum (FWHM) of the peak, θ is the scattering angle, and K is the Scherrer
constant (0.9) [48].

2.2.9. Fourier Transform Infrared Spectroscopy (FTIR)

FTIR absorption spectra of the crosslinked part (gel from the chloroform extraction) of the blends
were obtained using an Agilent 4500a portable FTIR spectrometer (Santa Clara, CA, USA) in attenuated
total reflectance (ATR) mode, with 4 cm−1 resolution, 64 scans, and spectral wavelengths ranging from
650 to 4000 cm−1.

2.2.10. Proton Nuclear Magnetic Resonance (1H NMR) Spectroscopy

The chemical structures of the uncrosslinked part (solution from chloroform extraction after
removal of the gel) of the blends were characterized by 1H NMR (Bruker AC-P 400 MHz spectrometer)
at room temperature with CDCl3 as a solvent. Chemical shifts were referenced to the residual proton
peak of CDCl3 at 7.24 ppm.

3. Results and Discussion

3.1. Crosslink Formation during Reactive Blending

The crosslinking effect of the peroxide and coagent during the reactive blending of PHBV and NR
is shown in Table 3. Of note, pristine PHBV, which did not go through the melt procedure, did not form
a gel (crosslinks), as was expected, due to the lack of networks in its macro-molecular structure. Pristine
NR had 1.5% gel, and extrusion did not break down the gel. The slightly higher gel content observed
in extruded NR than in pristine NR may be caused by rubber aging under heat and oxygen [49].
Unexpectedly, no gel was present in PHBV/NR blend, indicating that the PHBV phase broke down
the pre-existing NR gel and prevented the heat/oxygen-caused rubber aging/crosslinking during the
melt blend formation. Both PHBV/NR/P and PHBV/NR/P/C contained gels mainly formed by the
rubber phase, as indicated by the TGA thermograms and FTIR spectra of the gels (Figure 6; Figure
10, and discussed later). The PHBV/NR/P/C blend had a gel fraction similar to its rubber content,
suggesting that the highly reactive coagent molecules fully crosslinked NR, potentially by restricting
competing deleterious reactions through efficient use of peroxide-derived radicals. In contrast, the
gel fraction of PHBV/NR/P (6%) was much lower than its rubber content (15%) but higher than the
corresponding gel fraction of the incorporated rubber in the blend, indicating that peroxide alone, at 3
phr loading, only crosslinked a fraction of the rubber phase in this blend. It is worth mentioning that
instead of synergistically using the coagent, increasing the loading of peroxide alone can also increase
the NR crosslink density. However, the use of peroxide may be counterproductive because it can cause
polymer chain scission, as discussed later.
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Table 3. Gel fractions of pristine PHBV, pristine NR, and PHBV/NR blends determined by
chloroform extraction.

Samples Pristine PHBV Pristine NR Extruded NR * PHBV/NR PHBV/NR/P PHBV/NR/P/C

Gel (wt %) 0 1.56 ± 0.04 3.91 ± 0.02 0 6.0 ± 0.71 13.0 ± 0.35

* NR alone was extruded under the same conditions as the PHBV/NR blend extrusion.

3.2. Rheological Properties

The formation of crosslinks during reactive blending significantly affected the rheological
properties of PHBV in the blends. The viscosity of pristine PHBV decreased with peroxide treatment,
mainly due to peroxide-caused polymer degradation through chain scission, which has been observed
in peroxide-assisted reactive extrusion of polyolefin graft copolymers and peroxide-induced reactive
blending of biodegradable polyesters poly-ε-caproIactone (PCL) and PHB [50,51]. PHBV/NR/P
was more viscous and had more significant shear thinning behavior than PHBV/NR and pristine
PHBV (Figure 2), suggesting (1) enhanced chain entanglements caused by peroxide-initiated
crosslinking of NR in the blends [52], as supported by the higher gel content, and (2) covalent
PHBV/NR grafting [53–55] (demonstrated by FTIR and NMR analysis and discussed below). This
observation differs from a previous study where peroxide treatment decreased the viscosity of
PP/ethylene–propylene rubber (EPR)/polyethylene (PE) blends by causing polymer chain scission [36].
The viscosity increase in PHBV/NR/P in this study indicated that peroxide crosslinking of NR more
than compensated for any polymer chain scission [52]. PHBV/NR/P/C was more viscous than
PHBV/NR/P (Figure 1), reflecting its greater crosslink density (gel content, Table 3) in the presence of
coagent. The coagent played a triple role in this blend: (1) it promoted efficient NR crosslinking by
covalently binding to NR polymer chains and forming a more stable NR polymer radical (Figure 1),
which was more likely to form an NR–NR crosslink with another NR radical before deleterious scission
or dehydrohalogenation reactions occurred [56]; (2) it crosslinked PHBV and NR to form copolymers
(supported by FTIR and NMR results), reducing interfacial tensions and incompatibility between the
two phases [36]; (3) during the melt blending process, peroxy radicals attacked the unstable tertiary H
of PHBV molecules and caused chain cleavage, β chain scission, and chain branching [57,58], resulting
in the formation of low-molecular-weight polymer chains [59–61] reflected by the decreased viscosity.
It has been reported that a coagent can suppress this thermally enhanced degradation process by
stabilizing and reacting with PHBV macroradicals (Figure 9) [52,57,62].
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The crosslinking effect of peroxide and coagent was further studied by way of van Gurp–Palmen
plots (Figure 3), which depict the relationship between the complex modulus (|G|*) and phase
angle (δ) of materials. These plots detect the fluid–solid transition of polymer melts [63], with high
δ values indicating dominant liquid-like behavior and low δ values indicating the formation of
a more elastic system [63,64]. Pristine PHBV, peroxide-treated PHBV, and PHBV/NR had phase
angles of approximate 90◦ at low |G|* values, reflecting their linear molecular chains with limited
entanglements [65] and dominating fluid-like behavior. The observed high phase angle together with
the previously discussed low complex viscosity of peroxide-treated PHBV indicated that a low peroxide
content (3 phr) was insufficient to crosslink PHBV but was still able to degrade it. PHBV/NR/P
had lower phase angles, indicating enhanced elastic behavior, likely caused by the formation of a
partial rubber network reflected by its higher gel content than PHBV/NR. PHBV/NR/P/C had
the lowest phase angle, similar to NR alone, indicating that coagent addition caused near-complete
NR crosslinking, as demonstrated by its similar gel and rubber contents. The improved intraphase
entanglements between NR and PHBV molecular chains were shown by FTIR and NMR analyses,
discussed later. The rheological behavior of the PHBV/NR/P/C blend is consistent with its improved
mechanical properties, which will be discussed below.Polymers 2019, 11 FOR PEER REVIEW  8 
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3.3. Mechanical Properties

Rubber addition decreased PHBV secant modulus, i.e., increased the flexibility, and increased
tensile elongation (ductility) (Figure 4) by 40–100%. This is mainly due to NR’s liquid-like structural
characteristic: the NR structure has no polar constituents. The van der Waals interactions between
linear NR molecules cause coiled structures, leading to high flexibility and ductility [66,67]. The tensile
strength of the blends was lower than that of pristine PHBV, mainly due to the low rubber modulus
and strength (~0.3 MPa and 0.25 MPa, respectively [68]). Similar results were observed in most of the
NR-toughened systems, such as PLA/NR and PP/NR blends [69,70]. Although the blend strength can
be improved by enhancing interfacial adhesion between the two phases [18], rubber-addition-caused
strength loss of the plastic matrix seems unavoidable. PHBV/NR/P/C was stronger than PHBV/NR
and PHBV/NR/P, probably due to (1) coagent-induced rubber crosslinks and improved rubber
modulus and strength, evinced by the high gel content and the high viscosity of PHBV/NR/P/C,
respectively; and (2) increased intraphase entanglements between NR and PHBV, as discussed
in the van Gurp–Palmen plots. Notched impact strength, i.e., toughness, was similar in PHBV,
PHBV/NR, and PHBV/NR/P, but was 75% higher in PHBV/NR/C/P. This is probably again due
to coagent-induced improvement in rubber crosslinks and interfacial bonding between PHBV and
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rubber, which helps absorb more energy and allow more stress transfer between the two phases during
the fracture process [71,72]. In contrast, peroxide alone improved the notched impact strength of
PLA/NR (60/40) and PP/NR (85/15) blends [53,70,73]. This difference may be attributed to PHBV
having a significantly lower thermal stability than PLA and PP, and it undergoes substantial chain
scission, which can be enhanced by the presence of peroxide, during melt blending, as proved by gel
permeation chromatography (GPC), NMR, and mass spectrometry [59–61].
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To summarize, the PHBV/NR/P/C blend had a combination of mechanical properties, i.e., tensile
elongation of 6%, strength of 28 MPa, and notched impact strength (toughness) of 28 J·m−1, comparable
to those of commercial thermoplastics such as general purpose polystyrene (tensile elongation of
3–9% [74,75], tensile strength of 25–34 MPa [76,77], and notched impact strength of 16–21 J·m−1 [78]),
suggesting it could be used as a bio-substitute for conventional plastics.

3.4. Morphology

The morphology of the different samples (Figure 5) was as predicted from their mechanical
behavior. PHBV had a fairly smooth surface, which is typical of brittle materials [79], yet NR also
displayed a smooth surface although it is a ductile polymer [80–82]. The observed smooth surfaces
can be ascribed to the different fracturing mechanisms of the two polymers, i.e., the innately ductile
rubber mainly fails through yielding while the inherently brittle PHBV fails through crazing [83–85].
The three blends had much rougher surfaces than pristine PHBV, indicating improved ductility [86]
as supported by their increased tensile elongation. Although it is not possible to distinguish NR and
PHBV in the blends from the images, the lack of the “pulling out” phenomenon on the cross sections
of the blends suggested adhesion between the two phases [86,87]. PHBV/NR/P and PHBV/NR/P/C
had rougher fracture surfaces than PHBV/NR, corresponding to their higher ductility, supported by
their increased tensile elongation, increased viscosity, and improved elastic behavior (Figures 2 and 3).
Such behavior is likely due to the peroxide and coagent enhancing interfacial adhesion between PHBV
and NR.
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Figure 5. SEM images of the fracture surfaces of PHBV, NR, and the blends.

3.5. Thermal Properties

The three blends degraded in two stages (Figure 6), reflecting the different thermal stability of
NR and PHBV. The first thermal degradation, between 285 and 310 ◦C, was associated with PHBV
degradation, while the second stage, between 310 and 450 ◦C, was related to NR degradation [38].
The gels from PHBV/NR/P and PHBV/NR/P/C blends had TGA thermograms similar to that
of NR, indicating that the gels from the two blends mainly contained rubber, while the slight
decomposition around 300 ◦C may be associated with grafted PHBV. The similar onset thermal
degradation temperatures (To) of pristine PHBV and the PHBV phase in the blends indicate that some
of the PHBV was not grafted to NR. However, grafted PHBV/NR was clearly observed due to its
intermediate peak degradation temperatures (Tp, Table 4). The presence of NR (both grafted and
ungrafted) limited PHBV degradation during heating and rotational stresses of extrusion due to rubber
dissipating heat more efficiently than PHBV. Tp − Tm of PHBV increased from 127 ◦C to 142, 138, and
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139 ◦C in PHBV/NR, PHBV/NR/P, and PHBV/NR/P/C (Table 4), respectively, expanding the range
of PHBV processing temperatures and broadening the processing window [9,88].
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Figure 6. (a) Weight loss TGA thermograms; (b) Derivative weight loss TGA thermograms of pristine
PHBV, pristine NR, blends of PHBV and NR, and the gels from PHBV/NR/P and PHBV/NR/P/C.

Table 4. Melting, crystallization, glass transition, peak thermal degradation temperatures and degree
of crystallinity of PHBV and NR and the blends determined from 2nd heating and 1st cooling of DSC
at 10 ◦C min−1, respectively.

Sample Tm (◦C) Tc(peak) (◦C) Tg(NR) (◦C) Tg(PHBV) (◦C) Tp (◦C) Xc (%)

PHBV 172.0 ± 0.04 120.8 ± 0.17 - 5.6 ± 0.30 299.4 ± 0.93 74.7 ± 0.02
PHBV/NR 171.9 ± 0.56 119.4 ± 0.59 −64.5 ± 0.52 6.0 ± 0.30 313.7 ± 1.49 61.6 ± 0.02

PHBV/NR/P 171.7 ± 0.26 117.2 ± 0.30 −65.2 ± 0.41 6.2 ± 0.30 309.5 ± 2.74 58.8 ± 0.02
PHBV/NR/P/C 169.8 ± 0.54 116.8 ± 0.33 −65.8 ± 0.54 4.3 ± 0.30 308.7 ± 1.63 56.8 ± 0.02

NR - - −66.8 ± 0.08 - 394.7 ± 1.16 -

The column headings are Tm, melting temperature; Tc(peak), peak crystallization temperature; Tg(NR), glass transition
temperature corresponding to NR component; Tg(PHBV), glass transition temperature corresponding to PHBV
component; Tp, peak thermal degradation temperature; and Xc, degree of crystallinity.

3.6. Crystallization Properties

3.6.1. DSC

The three blends had two glass transition temperatures (Tg) which corresponded to the Tg values
of NR (−67 ◦C) and PHBV (5 ◦C), respectively (Table 4). The polymer melt temperature (Tm) and
degree of crystallinity (Xc) decreased with increasing blend complexity. These changes, together
with the slightly decreased crystallization temperatures of PHBV in the three blends, are consistent
with the formation of imperfect crystallites, as observed previously in PHBV/nitrile blends [52,89].
These changes were likely due to two reasons: (1) the peroxide and coagent induced the formation
of polymer networks, restricting PHBV crystallization, and (2) rubber particles migrating into the
inter- and intra-spherulitic regions of crystalline PHBV, retarding crystal growth. Similar results were
found in PP/EPDM/NR blends, where peroxide increased polymer chain crosslinks, particle size, and
viscosity and interrupted the ability of PP molecules to align, further lowering the melt temperature
and crystallinity [90]. All blends in this study were more flexible and less crystalline than pristine
PHBV, but only PHBV/NR/P/C was tougher, even though both flexibility and toughness result from
reduced crystallinity in brittle polymers [91,92].

3.6.2. XRD

When the crystallization behavior of PHBV, alone and in the blends, was investigated by XRD,
similar diffraction peaks [(020), (110), and (121)] indicating highly crystalline structures were observed
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(Figure 7a). However, the intensity of peaks (121) and, therefore, the degree of crystallinity dramatically
decreased in the blends, confirming the DSC observations. No new peaks were observed in the XRD
patterns of the blends, indicating that no new crystalline phases formed [93]. The (020), (110), and (121)
peaks of PHBV shifted to higher angles in the blends, indicating decreased d-spacing (distance between
atomic layers in a crystal), which was probably caused by lattice parameter changes [94], such as the
formation of thinner crystals. PHBV/NR/P/C had the smallest d-spacing among the three blends,
since increased crosslinks caused the greatest inhibition of crystal growth. PHBV crystal size, which
was not related to the d-spacing but was inversely proportional to the FWHM of the peak [46–48],
decreased from 25.5 to 23.5 nm in PHBV/NR/P/C while it was unchanged in the other blends.
The small crystals may contribute to improved PHBV/NR/P/C toughness because they can reduce
stress concentration. Highly concentrated stress is not desirable as it induces premature fracture, which
increases the size of crystalline/amorphous phase interfaces and causes crack propagation [95,96].
Thus, small crystals improve toughness because they can enhance stress propagation and facilitate
shear yielding of the plastic matrix [97,98].
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pattern of diffraction peak (121).

3.7. Reaction Mechanism

The gel and soluble fractions from chloroform extraction of the blends were characterized
through FTIR and NMR, respectively, to investigate the reaction mechanism(s) of the coagent-assisted
peroxide-induced reactive blending of PHBV and NR (Figure 8). The FTIR spectra of the gels
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were almost identical to those of pristine NR (Figure 9), indicating complete removal of free PHBV
components during chloroform extraction of the blends.
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blends obtained through chloroform extraction.

3.7.1. FTIR

Peaks at 1662 cm−1 (representing C=C bonds) were visible in NR and the gels from the blends
(Figure 9). These may reflect unreacted NR double bonds and/or that rubber crosslinking occurring
at the active α-H adjacent to the double bonds [99] (Figure 8). Peaks at 2957 cm−1 (representing
C–H asymmetric stretch in CH3 groups) [100] were more intense in the gels from PHBV/NR/P and
PHBV/NR/P/C than in NR, indicating grafting of PHBV and/or coagent onto NR backbones [101].
Peaks at 1539 cm−1 and 1576 cm−1, both representing N–H stretch, C=O, and N–H bending of
amide groups of rubber proteins [102], were weakened in the blends, which may reflect protein
degradation during the melt blending process. FTIR analysis indicated degradation of a particular
fraction of the rubber proteins, for example, water-soluble and membrane-associated proteins [103].
The water-soluble proteins are the main immunogens in latex allergy [103].
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3.7.2. NMR

1H NMR spectra of the chloroform-soluble fractions of PHBV/NR/P and PHBV/NR/P/C were
similar to that of pristine PHBV (Figure 10), indicating that the soluble fractions mainly contained
PHBV. Peaks at 2.02 and 1.65 ppm, belonging to the characteristic hydrogen protons of NR, were visible
in PHBV/NR/P and PHBV/NR/P/C spectra, suggesting the formation of soluble PHBV-grafted-NR
copolymers during the melt blending process. The peak at 1.56 ppm in the PHBV/NR/P/C sol
spectrum may be caused by the water in the samples. No peaks belonging to the coagent were
observed, indicating that most of the coagent units were in the blend gels.
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Figure 10. 1H NMR spectra of (a) PHBV, (b) NR, (c) the chloroform-soluble part of PHBV/NR/P, and
(d) the chloroform-soluble part of PHBV/NR/P/C.

Thus, peroxide and coagent crosslinked the rubber phase in the blends. Grafting between PHBV
and NR occurred during the melt blending process, forming two types of PHBV-grafted-NR structures
(PHBV-co-NR, Figure 8): one locked within the rubber gel (indicated by the TGA analysis, Figure 5,
and FTIR analysis, Figure 9) and one soluble in chloroform (indicated by the NMR analysis of the
blend sols, Figure 10). Coagent bridges between two polymer chains formed and behaved similarly to
reinforcing fillers in PHBV/NR blends (Figure 11) [37,65], improving matrix strength.
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4. Conclusions

The rubber toughening efficiency of reactively extruded PHBV/NR blends was significantly
improved through the synergistic use of coagent and peroxide, which crosslinked NR and grafted
PHBV onto NR, resulting in increased interfacial adhesion, NR modulus, and cohesive strength while
suppressing peroxide-induced thermal degradation of PHBV and decreasing PHBV crystallization.
The new PHBV/NR blend had significantly improved toughness (by ~75%) and ductility (by
~100%) with minimal strength loss (~30%). This enhanced mechanical performance was much
improved from that of other conventional dynamically vulcanized PHBV/NR blends, where rubber
addition significantly decreased PHBV strength (by 40–80%) with only slight to moderate toughness
improvement (by 10–50%) [35,38,104,105]. The new PHBV/NR material has mechanical properties
(strength of 28 MPa and toughness of 28 J m−1) and processing windows comparable to those of
some commercial plastics, such as PP and HDPE, and can replace some petroleum-based conventional
thermoplastics in cast sheets and thermoforms, including those used in food packaging. Our insights
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into the reaction and toughening mechanisms of rubber-toughened PHBV lay the groundwork for
future performance improvements.
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