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Abstract

Tessellations emerge in many natural systems, and the constituent domains often contain

regular patterns, raising the intriguing possibility that pattern formation within adjacent

domains might be correlated by the geometry, without the direct exchange of information

between parts comprising either domain. We confirm this paradoxical effect, by simulating

pattern formation via reaction-diffusion in domains whose boundary shapes tessellate, and

showing that correlations between adjacent patterns are strong compared to controls that

self-organize in domains with equivalent sizes but unrelated shapes. The effect holds in sys-

tems with linear and non-linear diffusive terms, and for boundary shapes derived from regu-

lar and irregular tessellations. Based on the prediction that correlations between adjacent

patterns should be bimodally distributed, we develop methods for testing whether a given

set of domain boundaries constrained pattern formation within those domains. We then con-

firm such a prediction by analysing the development of ‘subbarrel’ patterns, which are

thought to emerge via reaction-diffusion, and whose enclosing borders form a Voronoi tes-

sellation on the surface of the rodent somatosensory cortex. In more general terms, this

result demonstrates how causal links can be established between the dynamical processes

through which biological patterns emerge and the constraints that shape them.

Author summary

Patterns can form in biological systems as a net effect of dynamical interactions that are

excitatory over short distances and inhibitory over larger distances. Patterns that form in

this way are known to reflect the shape of the boundary conditions that contain them. But

observing that a particular pattern is contained by a boundary is not enough to determine

whether or not that boundary was a constraint on pattern formation. Here we develop a

novel test for the influence of boundary shape on pattern formation, based on comparing

patterns contained by boundaries whose shapes tessellate and thus are geometrically

related. Applying this test to patterns of cell density measured in the developing neocortex

confirms that cortical column boundaries constrain pattern formation during the first
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postnatal weeks. In more general terms, our analysis reveals that strong relationships

between patterns that form in adjacent biological domains are to be expected based purely

on geometrical effects, even if no information is exchanged between those domains during

the process of pattern formation. Our analysis provides a means for testing current theo-

ries about the fundamental role that constraints play in organising biological systems.

Introduction

Central to current theories of biological organisation is a distinction between constraint and

process. A constraint exerts a causal influence on a dynamical process and is not itself influ-

enced by that process, at the spatial or temporal scale at which those dynamics take place. This

definition permits a description of biological function in terms of constraint closure, i.e., the

reciprocal interaction of constraints between processes operating at different timescales [1–3]

(see also [4, 5]). A step towards falsifying such high-level descriptions of biological organisa-

tion is to formulate predictions at the level of specific biological systems, in which those predic-

tions may be tested directly. To this end, our objective here is to operationalize the definition

of constraint as causal influence on dynamical process.

The distinction between constraint and process is made explicit in the reaction-diffusion

modelling framework [6], which has been successful in accounting for a wide range of biologi-

cal (and other) phenomena, from the growth of teeth to the spread of tumors and the healing

of skin [7, 8]. Reaction-diffusion models describe biological pattern formation in terms of

local interactions amongst molecules or cells, which collectively amplify specific modes in an

initially random distribution, with those modes determined by the relative size and shape of

an enclosing boundary. Hence, the boundary shape is a constraint on the processes of short-

range excitation and long-range inhibition from which pattern emerges.

Observing pattern contained by shape therefore suggests that the shape constrained pattern

formation. But, alternatively, the enclosing shape may have emerged subsequently to, simulta-

neously with, or independently of, the formation of the pattern, and it is not obvious how to

discriminate between these possibilities. One approach to establishing a causal influence of the

boundary on the pattern is by synthesis. If the observed shape is imposed as a boundary condi-

tion for a reaction-diffusion model, and the evolution of that model gives rise to a similar pat-

tern in simulation, we might infer a causal influence of the shape on the pattern. While

compelling and important, such evidence is indirect, as computational modelling is limited to

establishing existence proofs for the plausibility of hypotheses, rather than testing them

directly. We seek therefore a complementary approach by analysis of the pattern, i.e., a direct

means of testing between the hypothesis that the shape causally influenced the pattern and the

null hypothesis.

To analyse an individual pattern in these terms, one could look for an alignment between

the pattern and the boundary shape. For example, incrementing the diffusion constants from

an initial choice that amplifies modes of the lowest spatial frequency will, on an elliptical

domain, typically produce a sequence of patterns that is first aligned to the longer axis, and

subsequently to the shorter axis. Indeed, for a well-defined boundary shape and a simple reac-

tion-diffusion system generating a low spatial-frequency pattern, the alignment of an observed

pattern to a hypothetical boundary constraint may be compared with a set of eigenfunctions

derived from the linearized equations (i.e., using Mathieu functions for an elliptical domain;

[9]). But such methods break down for more complex boundary shapes, for higher-mode
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solutions, and for reaction-diffusion dynamics described by increasingly non-linear coupling

terms.

In search of a more practical and robust method, the possibility we explore here is to exploit

the fact that the shapes of adjacent biological domains are often related to one-another. That

is, the processes that determine the shapes of adjacent domain boundaries may themselves be

subject to common constraints, or indeed serve as constraints on one-another. Consider the

following concrete example. In the plane tangential to the surface of the rodent cortex, the

boundary shapes of large cellular aggregates called ‘barrels’ form a Voronoi tessellation across

the primary somatosensory area [10] (see Fig 1). The barrel boundaries are apparent from

birth, and from the eighth postnatal day develop ‘subbarrel’ patterns reflecting variations in

thalamocortical innervation density [11] (Fig 1). A reaction-diffusion model, specifically the

Keller-Segel formalism with its additional non-linear chemotaxis term, has been used to

Fig 1. Tessellating domains and sub-domain structure in biological systems. At markedly different length scales, the

skin of giraffes and the stained neocortices of rodents display similar arrangements of polygonal domains, many of

which appear further divided into sub-structures. A Image of the skin of a giraffe (Giraffa camelopardalis reticulata),

credited to O. Berger, and described by Koch & Meinhardt (1994; [56]) as a Voronoi tessellation. The dark panels

overlap with a vascular structure that is important for thermoregulation. B Image of a tangential section of the

cytochrome oxidase stained primary somatosensory cortex of an adult laboratory rat (Sprague-Dawley), revealing a

pattern of large cortical columns known as ‘barrels’, which have also been described formally as a Voronoi tessellation.

C Sub-structures apparent in larger barrel columns have been described in terms of the four categories depicted below,

which correspond to the stable patterns generated by a reaction-diffusion model parameterised to amplify modes of

increasing spatial frequency. Images in B and C are from Land & Erickson (2005; [57]) and are shown at a common

scale. Photograph in A reprinted with permission from Koch A.J. & Meinhardt H., Reviews of Modern Physics, 66,

1481 (1994). Copyright (1994) by the American Physical Society (http://dx.doi.org/10.1103/RevModPhys.66.1481).

https://doi.org/10.1371/journal.pcbi.1009963.g001
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successfully recreate subbarrel structure in simulation, as well as to explain an observed rela-

tionship between the size of the enclosing barrel boundary and the characteristic mode of the

subbarrel pattern ([12]; see also [13]). A synthetic approach has also helped establish that

the barrel boundary shapes could emerge to form a Voronoi tessellation based on reaction-

diffusion dynamics constrained by the action of orthogonal gene expression gradients on the

processes by which thalamocortical axons compete for cortical territory [14]. Hence in this

system, the barrel boundary shapes that constrain subbarrel pattern formation via reaction-

diffusion are thought also to be related by the common (genetic) constraints under which

those barrel boundary shapes emerge.

Within such systems, the geometrical relationship between the shapes of adjacent domain

boundaries might be expected to align the patterns that form within those boundaries to a

degree that is reflected by the correlation between patterns in either domain. Hence measuring

the degree of correlation between adjacent patterns could serve as a proxy for the degree of

alignment to the boundary, and thus form the basis of a robust test for the hypothesis that

shape constrained pattern formation.

Given chemical, mechanical, and other physical sources of spatial coupling in biological

systems, it seems unlikely that pattern formation ever occurs completely independently in

proximal and adjacent biological domains. But, in principle, how much of a relationship

between patterns that form within adjacent domains might we expect to observe under the

assumption that no communication occurs across domain boundaries?

On face value, this question might seem misguided. If pattern formation amongst cells

within a particular domain occurs without the direct exchange of information with cells of an

adjacent domain, then on what basis should we expect to measure any relationship at all

between the patterns that form within adjacent domains? As we will show, strong correlations

between patterns that self-organize independently in adjacent domains are in fact to be

expected, if the shapes of those domains are geometrically related. Specifically, correlations are

to be expected if the boundaries of adjacent domains abut, such that the domain shapes consti-

tute a tessellation. Simulation experiments and analyses reported herein are designed to estab-

lish how relationships between domains on the basis of their shapes and common boundary

lengths contribute to this somewhat paradoxical effect.

Results

The key insight developed here is that patterns that self-organize independently in adjacent

domains of a tessellation should nevertheless be correlated. Hence, by analysing the correlations

between patterns measured in adjacent domains we can directly test the hypothesis that those

observed patterns self-organized under constraints imposed by the borders within which they

are observed to be enclosed. We will demonstrate the robustness of the (predicted) correlation

effect by examining numerical solutions to reaction-diffusion equations that have been evalu-

ated in domains that tessellate under a range of different geometrical constraints. We will begin

with an instructive toy example that will reveal the correlation effect most clearly. We will then

show by analysis that the effect holds in a specific biological case (subbarrel patterning).

The patterns on which we will base our analyses can be generated on the two-dimensional

plane x by solving reaction-diffusion equations of the form

@nðx; tÞ
@t

¼ 1 � nðx; tÞ þ Dnr
2nðx; tÞ � wr:ðnðx; tÞrcðx; tÞÞ

@cðx; tÞ
@t

¼ f ðnðx; tÞÞ � cðx; tÞ þ Dcr
2cðx; tÞ

ð1Þ
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where n and c are two interacting species, Dn and Dc are diffusion constants, and the ‘chemo-

taxis’ term χ specifies the strength of the interaction between the two species. Following [12]

we will use f ðnÞ ¼ g n2

ð1þn2Þ
with γ = 5, and set Dn� χ.

Bimodal pattern correlations amongst adjacent domains signal boundary

constraints

Consider a reaction-diffusion system (e.g., Eq 1) constrained by a boundary in the shape of an

equilateral triangle (Fig 2A). Solved for a choice of diffusion constants that yield patterns with

the lowest spatial-frequencies, this system will generate one of two basic kinds of pattern (e.g.,

in the concentration of n and/or c). In the first, one of the extreme values of the reaction, posi-

tive or negative, will collect in one of the three corners of the triangle and values at the other

extreme will be spread out across the opposite edge. Along that edge the values are essentially

constant, and along the other two edges the values vary from extreme high to extreme low. In

the second kind of pattern, values at the two extremes will collect in two corners and values

around zero will collect in the third. Along one edge the values vary from extreme high to

extreme low and along the other two they vary from zero to either extreme. Values sampled

Fig 2. The distribution of pattern correlations along common edges of tessellating triangles should be bimodal. Colour

images show typical patterns generated by a reaction-diffusion model with a large diffusivity term, using a colour map in which

red and blue mark extreme high and low concentration values, and green marks zero concentration. A Solved within the

boundary of an equilateral triangle, two basic patterns emerge, with extreme concentrations in one corner and along the

opposite edge (left) or at two corners (right). Along the edges, three pattern types are apparent. Type 1 varies between the two

extremes, type 2 varies between one extreme and zero, and type 3 does not vary. The probability of type i is given below as p(i).
The table gives the probability that the absolute correlation between patterns sampled along two randomly chosen edges will be

high (pa), medium (pb), or low (pc). As pc< pb< pa the distribution of correlations should be bimodal. B Patterns that emerge

within the boundary of an isosceles triangle will be of type 1 or 3 only, changing the distribution of correlations across random

edge pairs while retaining an overall bimodal distribution (pc< pa). However, if pairs of edges are restricted to those which may

be adjacent in a tessellation then only pairs of type 1 and pairs of type 3 are possible, and pa = 1. Hence, in more general terms,

the distribution of correlations between patterns measured along the edges of adjacent tessellation domains should be even

more strongly bimodal.

https://doi.org/10.1371/journal.pcbi.1009963.g002
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along the edges will vary between the two extremes in 3

6
of the edge types (type 1), they will

vary from one extreme to zero for 2

6
of the edge types (type 2), and they will not vary along the

edge for 1

6
of the edge types (type 3). Assuming (for simplicity) that the two kinds of pattern

occur equally often, and that pairs of edges are drawn at random from a large enough sample,

two of the same edge type will be drawn with a probability that tends toward pa !
1

22 þ
1

32 þ
1

62 ¼
7

18
(‘tends to’ denoted by!). A type 1 and type 2 edge will be paired with a probability of

pb ! 2 1

6
¼ 6

18
. And a type 3 edge will be paired with a type 1 or 2 for the remaining pc !

5

18
.

Now consider that along the edge, the magnitude of the correlation between the values sam-

pled will be high for pa pairs, low for pc pairs, and intermediate for pb pairs. Given that pc< pb
< pa, that the magnitude of each correlation level increases with its probability of occurring,

and that correlations and anti-correlations at each level are equiprobable given the symmetries

within each kind of pattern, the distribution of correlations should be (overall) bimodal. Note

that we describe the distribution as overall bimodal because smaller secondary peaks are

expected to emerge around each distinct correlation level.

Consider next what happens when we substitute equilateral triangles with isosceles triangles

(Fig 2B). Reducing the number of axes of symmetry from three to one further constrains the

kinds of patterns that are possible, causing (low spatial-frequency) solutions of the reaction-

diffusion system to align with the perpendicular bisector of the base, and reducing the pattern

along the edges to two types only. For example, if the base is the shorter side then 2

3
of the edges

will be of type 1 and 1

3
will be of type 3. Pairs of the same type constitute pa !

10

18
and pairs of

different types constitute pc !
8

18
, so again pc< pa and the distribution should again be (over-

all) bimodal. We note two important differences between the equilateral and isosceles cases.

First, as pattern formation is more constrained by the isosceles boundary shape, and so the

number of different kinds of patterns that are possible is reduced, the proportion of extreme

correlations (and anti-correlations) has increased, from pa !
6

18
¼ 0:333 to pa !

10

18
¼ 0:556.

Second, the number of secondary peaks in the distribution of correlations has reduced to just

two, around the positive and negative correlations corresponding to pc.
Because the pattern in each triangle is independent, any equilateral triangle in a tessellation

can be substituted or rotated so that a given edge is adjacent to any other. Hence we expect to

sample from the same distribution of correlations whether we choose pairs at random, or limit

our choices to those edges that are adjacent. This is not the case for the isosceles triangles,

which only tessellate by arranging neighbours base-to-base or with the bases’ perpendicular

bisectors antiparallel. A base cannot be adjacent to a non-base, and hence the distribution of

correlations obtained from sampling adjacent pairs will lose its secondary peaks to display

only the highest correlations and anti-correlations. So correlations sampled from adjacent

rather than randomly selected edge pairs should be even more strongly bimodal.

Further, imagine randomly displacing each vertex of the tessellation of equilateral triangles

in order to construct an irregular tessellation of scalene triangles (Fig 3C). As each vertex is

common to three triangles, each displacement changes the constraints on pattern formation in

three triangles, from an initial minimally constraining configuration, and as such, increases

the overall bimodality of the distribution of correlations. The irregular tessellation permits no

substitution of domains, and hence, as in the isosceles case, we expect the overall bimodality of

the distribution of correlations to be greater when comparing patterns amongst adjacent edges

compared to randomly chosen edges.

An overall bimodal distribution of correlations amongst values sampled along pairs of

edges from adjacent domains is therefore to be expected for domains that tessellate either regu-

larly or irregularly. This property indicates that the domain boundaries constrained pattern

formation. As a final thought experiment, consider that a jigsaw puzzle, i.e., an image into
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Fig 3. Correlated pattern formation in adjacent tessellation domains without communication. A system of reaction-diffusion equations (Eq 1; Dn =

χ = 36) was solved using boundary shapes that tessellate in different ways (left column), with blue and red corresponding to extreme positive and

negative values, and black lines delineating the domains. Values were sampled along the individual vertices of each domain and samples were correlated

between edges of different domains, either amongst pairs of edges that are adjacent in the tessellation (center column) or randomly selected (right

column). Histograms show the distributions (f) of correlation coefficients (r) obtained in either case, which were fit by the beta-distribution (dotted

line) parameterized by α (see text for details; q is the sum of squared differences between the data and the fit). Rows A-E show data obtained from

tessellations comprising domains with different shapes: A equilateral triangles; B isosceles triangles; C scalene triangles; D a Voronoi tessellation; E a

Voronoi tessellation with rounded vertices. Peaks at ±1 in the histograms indicate that while pattern formation occurs entirely independently within

each domain, patterns may become correlated between (adjacent) domains due to common constraints that derive from the fact that their boundary

shapes tessellate.

https://doi.org/10.1371/journal.pcbi.1009963.g003
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which borders are subsequently cut, will display perfectly strong positive correlations across

adjacent edges and no anti-correlations. But our considerations thus far suggest that strong

correlations and anti-correlations should be equally likely when the tessellation boundaries

constrain subsequent pattern formation. Thus it is really the presence of strong anti-correla-

tions in the distribution that evidences a causal influence of domain shape on pattern

formation.

Correlated pattern formation in adjacent domains of naturalistic

tessellations

To test our reasoning we solved the reaction-diffusion system defined by Eq 1 numerically,

using a dense hexagonal lattice of grid points, in domains with boundary shapes that were

either equilateral triangles (Fig 3A), isosceles triangles (Fig 3B), or scalene triangles (Fig 3C),

which in each case could be fit together to form a tessellation. Pattern formation was simulated

independently in each triangular domain using no-flux boundary conditions (Dn = χ = 36, Dc

= 0.3Dn), and settled values of n were sampled along the edges of each boundary, one hexago-

nal grid point in from the edge. Pearson correlation coefficients were then calculated from

samples taken either along the edges of domains that were adjacent on the tessellation, or from

randomly chosen edge pairs. The distributions of correlation coefficients obtained from ran-

dom and adjacent edges were compared in each case using a Kolmogorov-Smirnov test (see

[15]). For equilateral triangles this analysis revealed no significant difference, and for isosceles

triangles (p< 0.001) and scalene triangles (p< 0.001) the difference was highly significant, as

anticipated.

Considering pattern formation on tessellations of triangles is instructive, but to what extent

do the considerations developed here apply to the kinds of tessellation observed in natural

systems?

Examples of Voronoi tessellations are commonly found in the natural world [16–18],

including the packing of epithelial cells, the patterning of giraffe skins, and modular structures

in the functional organization of the neocortex. The domains of a Voronoi tessellation enclose

all points that are closer to a given ‘seed point’ than any other. As such, the polygonal structure

of the tessellation is completely specified by a collection of seed points, with points along the

polygonal boundaries equidistant to two seed points and points at the vertices equidistant

from three. To test whether the predicted bimodal correlation is also to be expected in these

naturally occurring tessellation structures, we generated random Voronoi tessellations from

randomly chosen seed point coordinates, and solved the reaction-diffusion system (indepen-

dently) within each domain. As shown in Fig 3D, the distribution of correlations sampled

from along adjacent edges is again clearly overall bimodal. Hence, the effect is not specific to

the case of triangles, and is to be expected for irregular tessellations of polygons that have a

range of different numbers and arrangements of vertices.

The domains that comprise naturally occurring tessellations are often “Dirichletiform”

([10], p. 350), but may not be strictly polygonal, with rounded corners rather than definite

angles at the vertices [19]. And it is known that patterns formed by reaction-diffusion systems

tend to be strongly influenced by the presence of definite angular intersections at the vertices

[20]. Therefore, to establish whether bimodality is also predicted for such natural structures,

we re-constructed the random Voronoi tessellation and rounded the corners of the domains

by joining the midpoints of each edge with quadratic Bezier curves whose first derivatives fit

continuously at the midpoint. We then reconstructed the edges that corresponded to those of

the original polygon by recording the points where the radial segments joining the centroid of

the original polygon to its vertices cut the new shape. The reaction-diffusion system was solved
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again on the resulting domains, and (rounded) edges in the same locations as for the analysis

of the original (polygonal) tessellation were correlated for a direct comparison. As shown in

Fig 3E, the distribution of correlations along adjacent edges is again predicted to be bimodal.

Hence, the effect is not specific to polygonal domains and indeed is to be expected in this more

general case.

Kolmogorov-Smirnov tests revealed that the distributions of correlations sampled from

adjacent versus random edge pairs were not significantly different when Voronoi domains

were strictly polygonal or when the domain edges were rounded.

Measuring the effect of boundary constraints on pattern formation and

alignment

In order to measure the degree to which the boundaries constrain pattern formation, we con-

sider the known result (see e.g., [21] Ch. 4) that the scalar products of vectors that are uni-

formly randomly distributed on a unit hypersphere of dimension D − 1 (i.e., embedded in a

space of dimension D) follow the beta distribution, μB(u), on u 2 (0, 1),

mBðuÞ ¼
ua� 1ð1 � uÞb� 1

Bða; bÞ
; ð2Þ

with α = β = (D − 1)/2, and B(α, β) the standard beta function [9]. It can be seen that the beta

distribution diverges at u = 0 and at u = 1 if D = 2, i.e., when the vectors are uniformly distrib-

uted on the unit circle, but that it conforms to a uniform distribution for a sphere in 3 dimen-

sions (D = 3). Note that these dimensions pertain to the abstract vector space of all normalised

edge vectors, and hence the dimension can in principle be as large as the numerical discretiza-

tion that the tessellation permits. However, the coherence of the vectors derived from the

smoothness of the solutions of Eq 1 ensures that they lie in subspaces of much lower dimen-

sion. We measured correlations using the Pearson correlation coefficient, which is equivalent

to calculating the dot product of two unit vectors, and thus we can use simple algebra to map

from the domain [−1, +1] to [0, 1]. If the edge vectors are not ‘pinned’ to the tessellation we

expect them to be able to ‘slip’ relative to each other so they become uniformly distributed on a

circle, and consequently α! 0.5 (see Methods for a proof). Estimates of the corresponding

symmetric (α = β) beta distribution fits are shown with the histograms in Fig 3, where α< 0.5,

from which we deduce that they are not uniformly distributed, exactly as expected if the influ-

ence of the tessellation on pattern formation were to preferentially select certain mutual orien-

tations along adjacent edges. For completeness we note that replacing the coherent fields

generated by reaction-diffusion with fields that have random values, and thus no spatial pat-

tern, instead gives a distribution that approaches a normal distribution (α!1).

Correlations are not bimodally distributed if borders are imposed after

pattern formation

So far we have considered only the lowest mode solutions produced by a reaction-diffusion

system. To explore whether the results should hold for the more complicated patterns that

may be produced by more complex pattern-forming systems, we conducted a sweep of the

parameter space, varying the diffusion parameter Dn and the parameter in Eq 1 that weights

the contribution of the non-linear coupling term, χ, while keeping Dc = 0.3Dn throughout

(Fig 4). For each parameter combination we solved the reaction-diffusion equations on ensem-

bles of domains from randomly seeded Voronoi tessellations.
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It was conceivable to us that a degree of correlation (and anti-correlation) may be expected

due to chance for patterns of low spatial frequency, even without the boundary shape con-

straining pattern formation. So we also solved each system of equations on an ensemble of cir-
cles, centred at locations derived from the original Voronoi tessellation seed points, but

Fig 4. Analysis of control patterns formed without shaped boundary constraints registers only very weak correlations. Combinations of eight

values of the diffusion constant Dn and eight values of the constant χ that weights the non-linear coupling term were evaluated on domains of a Voronoi

tessellation generated from random seed points. The remaining free parameter, Dc was set to 0.3Dn, and increments in χ were expressed as proportions

of Dn to cover a large parameter space. In the ‘constrained’ condition, the shapes of the domain boundaries were a constraint on pattern formation. In

the ‘control’ condition, solutions were obtained in circular domains, and the tessellation boundaries were imposed only after pattern formation, to allow

a corresponding set of correlations to be measured for comparison. A Values of α were obtained in each condition and for each parameter combination

by fitting the resulting distribution of adjacent-edge correlations. Only weak bimodality (high α) was observed in the control condition. Following a log

transformation to each axis, α values were clearly linearly separable, as confirmed by the success of a perceptron in discriminating the two conditions

(perceptron decision boundary shown in green). Example solutions in the constrained and control conditions are shown in B and C, respectively, for

the combination of parameters (Dn = χ = 36) that yielded the lowest α values in the control condition (α = 0.64).

https://doi.org/10.1371/journal.pcbi.1009963.g004
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subjected to additional random displacement by vectors whose radii and polar angles were

chosen from a uniform distribution, normalised so that the new centres remained inside the

original polygons. The size of each circle was chosen so that it minimally overlapped with the

corresponding polygon from the original tessellation. We then overlaid the original tessellation

onto the ensemble of circles, extracted the field values along the overlaid edges, and obtained

the distribution of correlations for each case as previously described. The purpose of this pro-

cedure was to remove any possible influence of domain shape while ensuring that the data sub-

jected to analysis were sampled from regions that tessellated precisely.

First we consider the case where Dn = χ = 36 for the constrained condition (Fig 4B) and the

control condition (Fig 4C). Visual inspection of the alignment between the control patterns

appeared similar to that between patterns formed under the constraints of the polygonal

boundaries. However, histograms of the distribution of the correlations showed that they were

quantitatively different. The value of α obtained in the boundary-constrained condition was

well below the threshold value of 0.5, as expected. By contrast, the histogram obtained in the

control condition (Fig 4C) yields 0.5< α< 1.0. Since the patterns that formed in this condi-

tion were not constrained by the tessellation, the increase in the degrees of freedom of their rel-

ative orientations produced a distribution that lost most of the bimodality and which thus

approaches the uniform distribution.

Next we consider how the two distributions of adjacent-edge correlations vary across the

full range of parameters. Following log transformations of Dn, χ, and α, data obtained from

simulations run in the control and boundary-constrained conditions were linearly separable

across the full range of parameter values tested (Fig 4A). To confirm this we trained a percep-

tron to discriminate between control (target response y = 0) and boundary-constrained (y = 1)

data. Training vectors x = [ln(Dn), ln(χ), ln(α), 1] were presented in a random sequence

and the perceptron weights wi were updated following each presentation using the delta

rule: Δwi = �(y − σ(u))σ0(u)xi, where σ(u) = (1 + e−u)−1, σ0(u) = σ(u)(1 − σ(u)), and � = 0.05.

The resulting weights (w = [0.01, −0.46, −3.26, 0.21]) define a decision boundary, where

u = x � w = 0, shown as a plane in Fig 4A that clearly separates the data obtained from the two

conditions.

In Fig 5, the contour line corresponding to the analytical threshold (α = 0.5) runs approxi-

mately diagonally across the region, and is effective at distinguishing the influence of the tessel-

lation over more than two thirds of this large parameter space. Example fields and the

associated estimates of α are shown for the four extreme corners of the parameter space in Fig

5B. Two are within the region where the threshold can detect the effect of the tessellation on

the solutions. Towards the top, where Dn is low, the fields become very concentrated and the

nonlinear gradients in the region are so strong that the effects of the boundaries are not trans-

mitted to the interior. However when Dn is larger, parameters that yield complex fields that

reflect the amplification of several modes clearly support the hypothesis that the tessellation

boundaries constrained pattern formation.

It is possible that amongst the domains of a biological tessellation the control parameters

for self-organisation may show some variation. To determine the robustness of the reported

effects we therefore re-ran simulations with parameters in the mid-range of the space that was

tiled by our initial parameter sweep (Dn = χ = 6.0, Dc = 0.3Dn) and then randomly perturbed

these values in each domain by up to 10%. Compared to the unperturbed case, distributions of

(adjacent) correlations were not statistically different (Kolmogorov-Smirnov test, p = 0.997).

When the control parameters were perturbed by up to 50% in each domain, the correlations

appeared to diverge a little, but not enough to reject the null hypothesis that they were drawn

from the same distribution (p = 0.31). Moreover, the effects shown in Fig 5 are not sensitive to

the particular choice of pattern-forming system, as confirmed via a sweep through the relevant

PLOS COMPUTATIONAL BIOLOGY Biological action at a distance

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1009963 March 28, 2022 11 / 21

https://doi.org/10.1371/journal.pcbi.1009963


parameters of an alternative system that does not include a non-linear diffusion coupling term

of the type that is parameterised by χ in Eq 1 (see S1 Fig; [22, 23]).

Emergence of bimodal correlations confirms that column boundaries

constrain thalamocortical patterning in the developing barrel cortex

The emergence of subbarrel patterns of thalamocortical innervation density in the rodent

somatosensory cortex has been successfully modelled using the Keller-Segel reaction-diffusion

system [13], with the borders of individual barrels imposed as a boundary constraint on pat-

tern formation [12] (see Introduction and Fig 1). The barrel borders form a Voronoi tessella-

tion, though the edges are typically a little rounded [10]. The barrel structure is present from

birth and the subbarrel patterns are first apparent at around postnatal day 8, and become

clearly defined by around postnatal day 10, in stains for seretonin transporter and other mark-

ers for synaptic activity [11]. If subbarrel patterns emerge via reaction-diffusion dynamics

under the constraints of the barrel boundaries, our analysis predicts that we should see a

bimodal distribution of correlations along the common edges of adjacent barrels.

To test this hypothesis, we analysed three images of seretonin transporter expression

reported by Louderback and colleagues ([11]; their Figure 4). The results of the analysis are

shown in Fig 6. We developed a simple computer program to sample the average image pixel

intensity in rectangular bins pointing outward-normal to the two parallel sides of a user

defined rectangle. Using this tool we defined rectangles to coincide with line segments corre-

sponding to the septal regions that separate the barrels, then for each segment sampled from

fifty bins along the outer edge of two adjacent barrel regions, to a depth of twenty pixels (* 85

μm) into each of the barrels. Care was taken to ensure that the length of each line segment was

Fig 5. Correlated pattern formation in tessellated domains is predicted to emerge robustly across a wide range of pattern-forming systems.

Correlations between self-organized patterns in adjacent domains of randomly seeded Voronoi tessellations were measured across a wide range of

parameters. Panel A shows values of α estimated from the distribution of 1000 pairwise correlation coefficients obtained from each of sixty four

combinations of parameter values (as in Fig 4A; ‘constrained’). The overlaid contour corresponds to the threshold, α = 0.5, at or below which the

hypothesis that the domain boundaries constrained pattern formation is very strongly supported. Based on this threshold, patterns are expected to be

correlated by the tessellation boundary constraints across a large portion of the parameter space. Panel B shows example patterns for four extreme cases.

https://doi.org/10.1371/journal.pcbi.1009963.g005
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as long as possible (to include as much of the border as possible), and that the width of each

rectangle was as short as possible (to sample as close to the border of the barrels as possible),

while not sampling from the septal region itself (to avoid introducing light/dark transitions

into the sample that could cause spurious positive correlations). A small number of adjacent

edges were excluded as their edges were not clearly parallel, but overall good coverage of the

boundaries was achieved.

Examples of the variation in pixel intensity along sampling bins spanning parallel line seg-

ments of adjacent barrels are shown at the top of Fig 6A, revealing clear correlations and antic-

orrelations at postnatal day 10. In real data like this, it is conceivable that the technique could

pick up spurious correlations, for example if image artefacts appeared in the sample from both

edges of a pair, but we note that visible artefacts (e.g., circular bubbles of light or dark related

to the underlying vasculature) very rarely spanned the width of the septa and when they did

Fig 6. Emergence of correlated patterns in adjacent domains of the developing neocortex. We analysed images of immunohistochemical stains for

serotonin transporter (5-HTT) expression on the surface of the rat barrel cortex, obtained at postnatal days 5 (P5), 8 (P8), and 10 (P10). This stain

reveals the shapes of the barrel columns, each corresponding to a whisker on the animal’s snout, as large dark polygonal patches forming a Voronoi

tessellation. From P8, sub-barrel structures become apparent and by P10 they clearly identify several regions of high synaptic density within many

barrels. Panel A shows the details of the analysis method for the P10 image. Overlaid pairs of parallel red and blue lines show the extents along which

image intensity was sampled for each pairwise comparison. Each line marks a vertex of the barrel boundary, and samples were constructed by averaging

the grayscale intensity of pixels in one of 50 regularly spaced rectangular bins extending a short distance in from the line towards the corresponding

barrel center. The correlation coefficient for each pair of samples is shown in black text, and the plots above show sampled data used for three example

pairwise comparisons. Distributions of correlation coefficients obtained from pairs of edges from adjacent barrels are shown for each postnatal day in

B, showing a clear progression from a unimodal shape at P5 to a bimodal shape at P10, and supporting the hypothesis that pattern formation within the

barrels occurs postnatally and is constrained by the barrel boundary shapes. Original images from [11].

https://doi.org/10.1371/journal.pcbi.1009963.g006
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were very rarely located in or around the septa. Moreover, as noted above, anticorrelations are

not to be expected by chance.

Images obtained from rats at postnatal days 5, 8, and 10 were analysed. At postnatal day 5,

prior to when subbarrel patterns are reported to emerge, we found the distribution of adja-

cent-pair correlations in seretonin expression to be unimodal, about a mean value of

0.18 ± 0.34. At postnatal day 8, when subbarrel patterns are reported to become apparent, two

distinct peaks at a correlation of approximately ±0.5 were also apparent. At postnatal day 10,

when subbarrel patterns are reported to be well defined, and were clearly visible in the image

of seretonin expression, the distribution was clearly bimodal, with essentially all pairs showing

non-zero correlations. Only the P10 distribution failed a test of unimodality (Hartigan’s dip

test; p = 0.01). Fitting the distribution of correlations using Eq 2 yielded an estimate of α = 0.94

and β = 0.5 at postnatal day 5 (P5), an estimate of α = 0.65 and β = 0.33 at P8, and α = 0.50

and β = 0.36 at P10. While the theory predicts that the distributions should be symmetric, i.e.,

α = β, the larger estimates for α reflect a general shift in each distribution to the right due to

additional sources of positive correlation to be expected when extracting a fairly small sample

from image data, as previously noted. As α is the parameter more sensitive to the presence of

anticorrelations, we interpret its decrease, by P10, to a value that strongly supports the hypoth-

esis that the domain boundaries constrained pattern formation, as strong evidence that sub-

barrel patterns emerge postnatally under constraints imposed by the barrel boundary shapes.

Thus our analysis supports the model of subbarrel pattern formation as a product of reac-

tion-diffusion dynamics constrained by the barrel boundary shapes [12]. Moreover, this result

demonstrates how the definition of constraint as a causal influence on biological process can

practically be operationalized in terms of the distribution of adjacent pairwise pattern correla-

tions, for reaction-diffusion systems on tessellated domains.

Discussion

We have shown that because the shape of a domain boundary aligns pattern formation via

reaction-diffusion, pattern formation within adjacent domains of a tessellation gives rise to an

alignment between those patterns that can be measured as a strong (anti-)correlation between

cells located on either side of a common boundary. Our simulation results demonstrate that

the alignment of patterns in adjacent domains is predicted to be robust, with alignment occur-

ring over a wide range of length scales, as set by the diffusion constants, and in reaction-diffu-

sion systems both with and without non-linear coupling of the dynamic variables (Fig 5 and

S1 Fig). They also demonstrate that while rounding the vertices of the domains reduces the

effect, it does not destroy it, and hence alignment is likely also to occur in biological domains

where the boundary shapes may be less strictly polygonal (Fig 3E). Our results show that the

effect is not to be expected in tessellated domains whose boundaries did not constrain pattern

formation (Fig 4B). Hence they establish how bimodality in the distribution of correlations

measured across adjacent edges of a tessellation (and specifically the presence of anti-correla-

tions) can be used to test the hypothesis that the domain boundaries constrained pattern for-

mation via reaction-diffusion. This hypothesis was confirmed by the analysis of patterns of cell

density that are thought to be formed via reaction-diffusion dynamics in the rodent somato-

sensory cortex, as a specific example system (Fig 6).

The alignment effect is paradoxical, and an interesting biological example of action at a dis-

tance, because the process of pattern formation within a given domain occurs entirely inde-

pendently of pattern formation in any other, and thus it involves no communication between

cells that are located in different domains. Yet the effect is quite understandable, in geometric

terms, when we consider that the boundary conditions of a given domain implicitly contain
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information about the boundary conditions of other domains, in the knowledge (or under the

assumption) that those domains tessellate, and hence are related by a common underlying

causal structure; e.g., by the collection of seed points from which a Voronoi tessellation

originates.

Ours is not the first demonstration that biological variables can become synchronised in

spatially separate populations that do not communicate directly. For example, it is well known

that the similarity in weather patterns between two locations tends to decrease with the dis-

tance between them. And as such, population dynamics in two separate groups of conspecifics

that do not interact will tend to be correlated if their habitats are nearby, due to the effects of a

common weather pattern as a mediating ‘third’ variable. This is an example of the “Moran

effect’’ [24–27]. The effect we have described is distinct in two ways. First, it arises from com-

parisons between the structures of patterns that vary in space and time (i.e., in systems

described by partial differential equations), whereas the Moran effect describes temporal fluc-

tuations only and is thus typically modelled using systems of ordinary differential equations.

Secondly, the correlations studied here originate from the constant effect of the boundary con-

ditions on pattern formation, rather than by the common influence of any time-varying quan-

tity. We expect that both effects may yet be understood as instances of a more general class of

phenomena by which spatial relationships between environmental variables (i.e., in terms of

their proximity or boundary shapes) induce correlations between otherwise decoupled popula-

tions. To this end, future investigations may extend the analysis developed here to the study of

systems whose solutions oscillate in both space and time.

Indeed, the potential importance of the effect established here for understanding biological

organization comes into focus when we consider how such causal structures might interact at

different timescales [28, 29]. Specifically, how might the alignment of patterns by their bound-

ary constraints in turn constrain the slower processes that are involved in maintaining those

boundary constraints? We can think of two broad answers, relating to the affordances of pat-

tern alignment for material transport, and for information processing, though there may be

several more.

In terms of material transport, if the pattern of concentration produced by a reaction-diffu-

sion system corresponds to the density of cells or other physical obstacles, as it does in the

example of neocortical patterning, then correlations along a common boundary edge create, in

the regions of low concentration, channels through which other materials may flow. Uncorre-

lated patterns, such as those generated by our control simulations (Fig 4B), are discontinuous

at all borders and here create bottlenecks that restrict the flow of small materials and stop the

flow of larger materials. In these terms, the anti-correlations that come with pattern alignment

are of course bottle tops, permitting no flow at all, but with anti-correlations come correlations

and thus the opportunity for unrestricted flow of small and large materials via the emergent

channels. If transport of materials through these emergent channels participates in the mainte-

nance of the objects that constitute the borders, for example by supplying them with energy or

clearing their waste products, then the alignment of patterns by the boundary constraints in

turn becomes a (useful) constraint on those boundary constraints.

As an interesting example, the Voronoi-like tessellation of dark patches that gives the giraffe

skin its distinctive patterning is geometrically related to an underlying vascular system. Partic-

ularly large arteries running between the patches supply a network of smaller arteries within

the patches, which allow them to act as ‘thermal windows’ that efficiently radiate heat, and

thus enable giraffes to thermoregulate in warm environments [30]. We note that giraffe panel

substructures, not unlike subbarrel patterns in appearance, vary with the size of the panels,

which in turn vary with the size of the animal in a manner predicted by reaction-diffusion

modelling [8]. This raises the intriguing possibility that a relationship between the structure of
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the vascular network and giraffe panel (and sub-panel) geometry may reflect a closure of con-

straints, co-opted for the thermal advantages it affords to these particularly large endotherms.

In terms of information processing, clustering of neurons to form tessellated patterns of cell

density in and between brain nuclei constrains the transmission of signals between brain cells,

and thus affords an opportunity for new information to be derived with reference to the

underlying geometry, in turn enabling specific computations which facilitate survival [31–33].

The mammalian neocortex again provides a useful example. The arrangement of the barrels

across the somatosensory cortex of rodents reflects the layout of the whiskers on their snouts,

with cells of adjacent barrels responding most quickly and most strongly to deflection of adja-

cent whiskers. The relatively large size of the barrels, and the relatively slow velocities with

which their efferents conduct action potentials, render downstream cells differentially sensitive

to the relative timing of adjacent whisker deflections by virtue of their location with respect to

barrel boundaries [34]. Neurons close to the borders respond selectively to coincident whisker

deflections, and neurons that are closer to barrel A are selective for deflections of whisker B

that precede deflections of whisker A by larger time intervals [35]. As such, the system can use

the underlying geometry to compute the relative time interval between adjacent whisker

deflections via place-coding [36, 37].

Within the additional cellular clusters that are formed via subbarrel patterning, neurons are

tuned to a common direction of whisker movement [38], and somatotopically aligned maps of

whisker movement direction subsequently emerge, such that deflection of whisker A towards

B selectively activates neurons of barrel A that are closest to barrel B [39]. This particular align-

ment of information-processing maps is thought to occur by the specific constraints that the

barrel and sub-barrel geometry imposes on the otherwise general-purpose processes of reac-

tion-diffusion and Hebbian learning by which cortical maps self-organize [40, 41]. The rela-

tionship between these two patterns that is suggested by the present results provides a

potential geometrical basis for the integration of sensory information. The alignment of

within-barrel and between-barrel maps could render downstream cells sensitive to the coher-

ence between single-whisker deflection directions and multi-whisker deflection intervals

resulting from movement of tactile stimuli through the whisker field [42]. The net effect could

be a representation of the ‘tactile scene’ that affords new possibilities for hunting and obstacle

avoidance [43].

There are many other examples of tessellated patterns in the brain, including spots and

stripes in primate primary visual areas, and barrel-like structures in the brainstem, thalamus,

and extrasensory cortical areas in rodents, as well as in various cortical areas in moles, dol-

phins, manatees, platypus, monkeys, humans, and more (see [44] for an overview). The precise

role that these patterned modular structures (fields, stripes, barrels, blobs) might play in corti-

cal information processing is yet to be fully characterised [31, 32, 45]. However, in purely geo-

metric terms, strong relationships between the shapes of cortical modules and the functional

maps that they support have been well established. For example, iso-orientation contours radi-

ating from the pinwheel centers that characterise topological maps of orientation preferences

in primate primary visual cortex intersect with the boundaries of ocular dominance stripes at

right angles [46, 47]. And numerous features of these functional maps have been successfully

modelled in terms of reaction-diffusion dynamics (e.g., see [48–51]). Hence, considering only

neocortical patterning, it seems the opportunities for constraint closure in the brain via

computational geometry are abundant.

Montévil et al. [2] consider that reaction-diffusion dynamics introduce changes in the sym-

metries of a system that are generic, insofar as they derive from a restricted space of possibili-

ties. By contrast, they consider organized biological wholes to be additionally defined by

constraints that are specific, insofar as their dynamics depend on a history that spans
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ontogenetic and phylogenetic timescales. In these terms, they suggest that modelling focused

on deriving generic symmetries, which includes reaction-diffusion modelling, will ultimately

fail to capture the individual accumulation of idiosyncrasies that characterize biological wholes

(see also [52, 53]). While we agree with the importance of the history for understanding bio-

logical wholes, we do not agree that models formulated in terms of generic constraints are

therefore fundamentally limited to describing only biological parts. The alignment of patterns

between adjacent domains studied here constitutes a new (generic) symmetry that is invariant

to the (specific) pattern that forms in either domain. Thus the local symmetry-breaking that

generates patterns (i.e., Turing instability) also gives rise to symmetries that persist in the lon-

ger term (i.e., pattern alignment). As such, the opportunities that the alignment might afford

to other processes (structural, transport, information-processing), persist at the same timescale

at which the boundary conditions themselves persist. And if such processes can help to main-

tain the boundary conditions, for example by channeling an external supply to the cells that

form the boundary, then the system achieves constraint closure, and hence the status of a bio-

logical whole (c.f. [1]). Indeed, the alignment between reaction-diffusion processes in tessel-

lated domains, and the possibility for constraint closure that this affords, may prove to be a

useful theoretical model through which to explore, by analysis and synthesis, the fundamentals

of biological organization.

Methods

Numerical methods

Solutions to the reaction-diffusion equations (Eq 1) were obtained numerically on a discretized

hexagonal lattice of grid points using the finite volume method described by [54], and a

fourth-order Runge-Kutta solver was used to advance the solutions to a steady state (parameter

values were chosen so that all solutions were eventually constant in time, i.e., patterns were sta-

tionary). Simulations were written in C++ with the help of the support library morphologica
[55] (see also [14]). We verified that all simulation results reported were insensitive to the

choice of spatial discretization (i.e., to the lattice density). A hexagon-to-hexagon distance of O
(10−3) on a domain whose spatial scale was normalized to be O(100) was found to be sufficient.

At this scale, domains contained O(102) hexagonal grid-points and edge vectors with length O
(101).

No-flux boundary conditions were applied at the edges of the domains derived from a

given tessellation, by setting all the normal components of the spatial gradient terms in Eq 1 to

zero. Importantly, the tangential gradients at the boundary were not constrained, allowing the

patterns on either side of the boundary to represent the pattern in the whole domain while pat-

terns across adjacent boundary edges had no constraints that might be correlated. Solutions

were considered to have converged when the mean of the absolute differences in field values

sampled at intervals of 1000 timesteps fell below * 10−10.

To compare the solutions along pairs of boundary vertices picked from two domains, the

Pearson correlation coefficient was calculated. Vectors x1 and x2 each contained the solution

values in the hexagonal grid points along (and one hexagon-to-hexagon distance inside) a

boundary vertex from either domain. The boundary lines are shown in black in Figs 3–5, and

the samples xi were taken immediately adjacent to these boundary lines on either side. The

field values of the solutions were always observed to vary smoothly along the edges and sam-

ples were thus not distorted by any boundary-related artefacts. These vectors were combined

to compute the correlation coefficient, as rðx1; x2Þ ¼
<x1 ;x2>

kx1kkx2k
, where the numerator represents

the Euclidean scalar product and the denominator gives the product of the Euclidean norms.

This operation can be thought of as measuring the angle between two unit normal vectors. As
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such, the distribution of the correlations may be considered a property of their distribution

in a surrounding space—correlations lie on a hypersphere whose dimension is between 1 and

D − 1, with D the dimension of the containing space.

When comparing randomly matched edge vectors, the length of the shorter vector was

increased to match that of the longer vector by linear interpolation. For all such results, the dis-

tances between interpolation points, even for the shorter vectors, were far smaller than the

wavelengths that were observed to be amplified by pattern formation. Interpolating along the

shorter vector was therefore appropriate, and preferable to downsampling along the longer

vector, to avoid discarding information.

Code for running the simulations reported in this paper is available at https://github.com/

ABRG-Models/Tessellations.

Derivation of a test for the influence of boundary shape

Using α< 0.5 as a threshold value for determining whether a set of patterns was constrained

by the boundary shape can be justified analytically as follows. Consider a collection of edge

patterns that are pinned to the vertices so that the maximal and minimal field values always

appear at the two ends of each edge. The simplest (lowest mode) pattern that can be fitted to

this constraint is a wave function cos(θ), where θ ranges from [0, π]. The correlation r between

two such functions is given by their dot product

r ¼ �
R p

0
cos2ðyÞdy

ffiffi
ð

p R p
0
cos2ðyÞdyÞ

ffiffi
ð

p R p
0
cos2ðyÞdyÞ

; ð3Þ

where the denominator gives the normalisation so that the vectors are of unit length, and

hence Eq 3 returns either r = 1 or r = −1. If we relax the constraint that the patterns must be

pinned to the vertices and allow the pattern along each edge to shift by ϕ 2 [−π, π], where ϕ is

drawn from a uniform distribution, then we need to evaluate

r ¼
R p

0
cosðyÞ cosðyþ �Þdy

ffiffi
ð

p R p
0
cos2ðyÞdyÞ

ffiffi
ð

p R p
0
cos2ðyþ �ÞdyÞ

: ð4Þ

By the simple change in variables, θ = θ + ϕ, we can see that the denominator in Eq 4 is the

same as in Eq 3. Expanding the numerator gives

Z p

0

cos2ðyÞ cosð�Þdy �
Z p

0

cosðyÞ sinðyÞ sinð�Þdy: ð5Þ

Either by explicitly evaluating the integral or by noting that cos(θ) and sin(θ) are anti-symmet-

ric and symmetric about the midpoint of the range of integration, we can see that the second

term vanishes, and hence that Eq 4 becomes

r ¼
cosð�Þ

R p
0
cos2ðyÞdy

R p
0
cos2ðyÞdy

¼ cosð�Þ: ð6Þ

Therefore the distribution of correlations consists of values given by cos(ϕ), where ϕ is a ran-

dom variable drawn from a uniform distribution over [−π, π]. This is exactly equivalent to the

distribution of the dot product between two vectors on the unit circle with an angle between

them that is chosen from a random uniform distribution. Thus it gives a symmetric beta distri-

bution with α = 0.5 (see e.g. [21] Ch. 4).
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Supporting information

S1 Fig. Correlation of patterns in a system with the Turing mechanism. We conducted a

parameter sweep comparable to that presented in Fig 5, instead using the Schnackenberg reac-

tion-diffusion system [22], whereby patterns form via the Turing mechanism. This system has

no nonlinear diffusion term and its dynamics are driven by the magnitudes and ratios of two

parameters that scale the linear diffusion operators, DA and DB (see [23]). A shows values of α
obtained across a large portion of the parameter space, with the ratio of the two diffusion

parameters, DB/DA, decreasing along the horizontal axis. The gradient in α corresponds well to

that shown in Fig 5 using the Keller-Segel model. B shows examples of the field patterns for

parameter values corresponding to the four corners in A.

(TIF)
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