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A B S T R A C T

Fires are important responsible factors to cause catastrophic events in the process industries, whose consequences
usually initiate domino effects. The artificial neural network has been shown to be one of the rapid methods to
simulate processes in the risk analysis field. In the present work, experimental data points on jet fire shape ratios,
defined by the 800 K isotherm, have been applied for ANN development. The mass flow rates and the nozzle
diameters of these jet flames have been considered as input dataset; while, the jet flame lengths and widths have
been collected as output dataset by the ANN models. A Bayesian Regularization algorithm has been chosen as the
three-layer backpropagation training from Multi-layer perceptron algorithm. Then it has been compared with a
Radial based functions algorithm, based on single hidden layer. The optimized number of neurons in the first and
second hidden layers of the MLP algorithm, and in the single hidden layer of the RBF algorithm has been found to
be twenty and fifteen, respectively. The best MSE validation performance of MLP and RBF networks has been
found to be 0.00286 and 0.00426 at 100 and 20 epochs, respectively.
1. Introduction

Fires are one of the main causes of accidental events in the oil and gas
industries. The jet fire scenario is one of the basic root causes of these
accidents, due to the domino effect, in the petroleum industries
(Gomez-Mares et al., 2008; Casal, 2017). Other fire accidents are usually
caused by jet flames heat fluxes and flame impingement, due to the
proximity of jet fires to structures of process and equipment (Casal,
2017). Jet fires can lead to catastrophic events such as the Piper Alpha
accident, caused by heat fluxes generated by a continuous jet fire
(Chamberlain, 2002). Jet fires can also cause other accidents, through
domino effects, such as releases of toxic gases and explosions (Sonju and
Hustad, 1984; Cowley et al., 1990; Davenport, 1994; Delvosalle, 1996;
Chamberlain, 2002; Gomez-Mares et al., 2008; Palacios et al., 2009;
Assael and Kakosimos, 2010; Reniers, 2010; Lilley, 2013). The study of
the behavior and shape of a jet flame can provide an in-depth look in the
risk analysis in the chemical industries. Thus, the simulation and
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prediction of jet fire geometry, via jet flame length and width, can be a
great help in the assessment of accurate quantitative industrial risk
analysis.

Several authors have investigated the jet flame shape; some of these
studies have been focused on the thermal factor of jet flames (Brzus-
towski et al., 1975; Becker et al., 1981; Pfenning, 1985; McCaffrey, 1989;
Santos and Costa, 2005; Palacios and Casal, 2011; Mashhadimoslem
et al., 2020a,b). The jet flame shape has also been found to depend on the
mass flow rates and the exit nozzle diameters. For example, some authors
have provided equations correlating the jet flame shape with the mass
flow rates and exit nozzles (Hawthorne et al., 1948; Baron, 1954; Stew-
ard, 1970; Suris et al., 1977; Kalghatgi, 1983; Sonju and Hustad, 1984;
Hustad and Sonju, 1986; Chamberlain, 1987; Bagster and Schubach,
1996; Wen and Huang, 2000; Schefer et al., 2004, 2007; Cumber and
Spearpoint, 2006; Smith et al., 2006; Brennan et al., 2009; Palacios and
Casal, 2011; Palacios et al., 2012, 2016; Zhang et al., 2014; Schmidt
et al., 2015; Zhou et al., 2016; Gopalaswami et al., 2016; Laboureur et al.,
2016; Liu and Hu, 2019; Palacios and Rengel, 2020). Concerning the jet
. Palacios).
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Table 1. Summary of experimental and numerical works on jet fires.

References Nozzle diameter (mm) Fuel Jet Orientation Remark

Hawthorne et al. (1948) 3–8 Propane, acetylene,
carbon monoxide, city gas, hydrogen,
mixtures of CO2-city gas and H2-propane

Vertical Jet flame length correlated with mole fraction.

Suris et al. (1977) 1.5–11 Methane, propane and hydrogen Horizontal,
Vertical

Jet flame length correlated with Froude number.

Sonju and Hustad (1984) 2–80 Propane and methane Vertical Subsonic jet flame lengths analysis.

Bagster and Schubach (1996) 25, 50 Propane Vertical Jet flame length correlations, based on molecular
weight and temperature.

Wen and Huang (2000) 380, 620 Propane Vertical CFD simulation based on Magnussen's soot model.

Santos and Costa (2005) 5–8 Propane and ethylene Vertical Jet flame length correlations, based on Froude Number.

Smith et al. (2006) 1 Propane Horizontal Jet flame length correlations, based on buoyancy effects.

Cumber and Spearpoint (2006) 10, 20 Propane Horizontal Jet flame length simulated by a CFD approach.

Schmidt et al. (2015) 2.2 LPG Vertical Jet flame length correlation, based on Froude Number.

Palacios et al. (2009, 2011, 2012) 10–43 Propane Vertical Jet flame shape suggested by a cylindrical shape.

Zhang et al. (2014) 19 Propane Vertical Jet flame shape proposed by cylindrical and elliptical shapes.

Zhou et al. (2016) 19 Propane Horizontal Jet flame shape proposed by a line source model.

Gopalaswami et al. (2016) 19 LPG Horizontal Jet flame shape correlated with Froude Number.

Laboureur et al. (2016) 19 LPG Horizontal Jet flame shape investigated by an image processing approach.

Palacios et al. (2016) 1–51 Propane and methane Vertical Jet flame shape correlated with mole concentrations.

Liu and Hu (2019) 3–6 Propane Vertical Jet flame shape correlated with Froude number.

Palacios and Rengel (2020) 1.63–3.67 Propane Vertical,
Horizontal

Jet flame geometry simulated by a CFD approach.

Mashhadimoslem et al. (2020a) 12.75 Propane Vertical Jet flame shape simulated by a CFD approach.

Mashhadimoslem et al. (2020b) 12.75 Propane and hydrogen Vertical Jet flame length and radiation simulated by a CFD approach.

Sun et al. (2019) - 35 flammable chemicals - Jet flame radiation distance predicted by an ANN approach.
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flame thermal boundary, (Palacios and Casal, 2011) determined the
propane jet flame boundary, by visible and infrared images, to corre-
spond to a temperature of 800 K. The jet flame shape has also been
predicted through models, based on experimental studies and computa-
tional fluid dynamic (CFD) approaches (Mashhadimoslem et al., 2020a,
b). Nowadays various methods, such as CFD simulation methods and
commercial software, are also used to predict jet fire's behavior. The
experimental models need open field and/or laboratories with instru-
mental facilities, and the CFD studies require the processor system and
computational time, depending on the size of the analyzed physical ge-
ometry. Machine learning has been shown to be one promising tool to
develop a predictive approach (Franke et al., 2017; Sun et al., 2019;
Lattimer et al., 2020). Machine learning can be used to predict jet flame's
Figure 1. A schematic view o
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shape and behavior. The artificial neural networks (ANN), called ‘deep
learning’, can be applied to predict a jet fire in the process safety field.
Rapid computational, saving computational time and high accuracy are
the hallmarks of neural networks for predicting processes. The experi-
mental and CFD methods require more computational time and cost
impact than neural networks. There are few studies that have applied
ANN to predict and model jet fires scenarios. Some of them have
reviewed risk assessment in process industries and developed numerical
computational studies. Shultz and Fischbeck (1999) prepared the risk
assessment of accidents, occurred in offshore platforms during 1986 and
1995, using ANN models. Sun et al. (2019) developed an ANN approach
to accurate predict the thermal radiation consequences of jet fire and
pool fire scenarios occurred in process industries. Lattimer et al. (2020)
f the experimental set-up.



Figure 2. A feedforward neural network.
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compared accidental fire scenarios predictions using ANN and CFD
studies. These studies showed ANN could provide full-field predictions of
2–3 orders of magnitude faster than the CFD simulations. Sarbayev et al.
(2019) proposed an ANN method to analyse a system failure in the
Tesoro Anacortes Refinery accident. Raeihagh et al. (2020) proposed an
Figure 3. A neural network, using a feedforward MLP method with backpr

Figure 4. A neural network, using a RBF method, to desc
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ANN model to give a higher level of accuracy and reliability, in terms of
pipe risk assessment, in a gas refinery. Mashhadimoslem et al. (2020a,b)
compared hydrogen and propane jet fires radiation using CFD studies.
The results were used to develop a fire consequence model for risk
assessment in process industries. Some scholars have successfully applied
ANN to predict combustion factors under many conditions. For example,
Emami and Fard (2012) applied ANN to predict the steady laminar
flamelet model for a turbulent jet. They coupled ANN results in a CFD
code to reduce computational time, compared with the employed time in
the numerical integration for CFD calculations, obtaining good accuracy.
Franke et al. (2017) utilized ANN to tabulate a combustion chemical
mechanism and simulate a combustion model, providing significant
savings in computational time. Sinaei and Tabejamaat (2017) introduced
a large eddy simulation model for methane jet flames, using an ANN
approach. They showed the potential savings of the ANN method in
computational costs in comparison with other methods. Pereira and De
Bortoli (2018) developed a new combustion mechanism for an ethanol
jet flame, using ANN approach. Owoyele's et al. (2020) suggested method
used an ANN approach to improve CFD code computational time for
opagation to describe the jet fire shape defined by the 800 K isotherm.

ribe the jet fire shape defined by the 800 K isotherm.



Figure 5. A schematic view of an ANN work cycle model design.
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Figure 6. Optimization of the number of neurons, using MLP and RBF struc-
tures, to predict the shape of a vertical jet fire of propane.
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combustion simulations. Seltz et al. (2019) developed stoichiometric
predictions for turbulent premixed jet flames of methane and air, based
on ANN approach. Si et al. (2020) optimized a methane combustion
Table 2. Backpropagation MLP training algorithms for the prediction of the shape of

Backpropagation algorithms Function Testing mean square error (M

Levenberg-Marquardt trainlm 0.0037361

Bayesian Regularization trainbr 0.0028691

Scaled Conjugate Gradient trainscg 0.0064836
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chemical mechanism using an ANN approach for the CFD simulations. In
the present study, the experimental geometrical data (i.e. flame shape) of
vertical jet fires of propane have been used as input and output data for
the development of the learning of a network. Table 1 shows a summary
of several experimental and numerical studies on jet fires of various fuels.

2. Experimental set-up

The jet flame shape boundary experiments concern vertical jet
fires, obtained with circular nozzles ranging between 12.75 mm and
43.1 mm, under subsonic and sonic velocities in the open field. Pro-
pane was used as a fuel and the experiments were recorder by visible
and infrared cameras. Further details of the experimental set-up and
results data can be found in (Palacios and Casal, 2011). The jet flame
boundary was defined by the 800 K isothermal, obtaining jet flame
lengths (L) and jet flame diameters as “equivalent diameters” (Deq).
For all the data, Deq was calculated as the ratio of the jet flame area (A)
to the radiant jet flame length (L):
a vertical jet fire of propane.

SE) Regression R2 value Epoch Run Time (min)

0.99244 15 0.35

0.99315 100 0.52

0.98842 62 0.23



Figure 7. MSE values for the (a) MLP and (b) RBF models, during the validation performance.

Figure 8. An artificial neural network using (a) MLP and (b) RBF structures to predict the shape of a vertical jet fire of propane.

Figure 9. Predicted propane jet flame shapes data with a MLP model, during (a) the training step; (b) the validation step; (c) the test step and (d) all the data.
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Deq ¼A
L

(1)
The mass flow rates, jet flame lengths and jet flame diameters ranged
5

between 0.01 kg/s to 0.54 kg/s, 0.8 m–10.14 m, and 0.24 m–1.44 m,
respectively. The above-mentioned variables were applied as input (i.e.
mass flow rates and nozzle diameters) and target data (i.e. jet flame



Figure 10. Response surfaces plots, obtained with artificial neural networks, using MLP (a1, a2) and RBF (b1, b2) models to predict propane jet flame shapes, defined
by the 800 K isotherm.
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lengths and equivalent diameters), respectively, to study the jet flame
shape ratio. The schema of the experimental set-up is shown in Figure 1.

3. Mathematical methodology

3.1. Artificial neural network (ANN) theory

The neural network method follows the structure of the human brain
and nerves, and it is perhaps the most popular method among network
classifiers, over the past two decades (Dixon and Candade, 2008). An
ANN (or neural network) is a mathematical or computational model that
simulates the structural or functional aspects of biological neural net-
works. In the past, ANNs have been very attractive to computer scientists.
In fact, studies on the network began in the early 1940s. The structure of
ANNs was used to analyze and classify data for various subjects in the
1940s (Hebb, 1949). Due to the impossibility of overcoming theoretical
obstacles, neural networks were forgotten between the 1960s and 1980s.
In the 1980s, Hopfield, Rumelhart, Grossberg and Widrow developed
again this method (Hopfield, 1982; Rumelhart et al., 1986; Widrow et al.,
1987; Grossberg, 2012). Today, these theoretical obstacles have been
removed, and neural networks are one of the most widely used tools to
achieve many different goals (Debar et al., 1992). One of the benefits of
the neural network is less computational time to solve complex problems.
If there is no relationship between the data, artificial neural networks are
used to find the connection between them, based on the patterned from
human neural networks. Neural network's features include parallel pro-
cessing (high speed), generalizability, nonlinear calculations, communi-
cation of input and output data, adaptability, response to noise data, fault
tolerance and learning (Siddique and Adeli, 2013). The smallest unit of
processing data is a neuron. A neuron is a computational unit, whose
input and output are numbers. A number of signals enter into a cell and
collect them. In neural networks, the target is to obtain the appropriate
values of weights (w) for given (f) functions. At first, each input (xi) is
6

multiplied by the corresponding weight (w), then all the values are added
together, and the threshold or bios value (b) is added to the sum of the
values. A summary of this process is shown for inputs data in Eq. (2):

net¼
 Xn

i¼1

wixi

!
þ b (2)

At the end of this step, the results are entered into a transfer function
(f) and the output values (y) are obtained through Eq. (3):

y¼ f ðnetÞ (3)

The transfer form functions are usually ramp, linear and step or sig-
moid (S shape). The neuron cells connect together and form a layer of
neurons. One or more neurons layers structure the network. Two
different types of neural networks can be obtained, depending on the
connection and configuration of the neurons. Figure 2 shows the feed-
forward neural network, one type of the ANN, with X1, X2… and Xn as the
model input variables, n the number of input nodes, wij the weight factor
of the neuron and input node, b the threshold value of a neuron i, and Yi
as the output of a neuron i.

3.1.1. Multi-layer perceptron (MLP)
Learning in neural networks finds algorithms to determine the

communication in the weights of neurons. The most common of these
algorithms is the multi-layer perceptron (MLP) method. The function of
this method is shown in Eq. (4):

g¼ f
�
wxki þ θ

�
(4)

where g is an output vector, θ represents the threshold limit, w represents
the weighted vector of coefficients, and xk represents an input vector
(Richards and Richards, 1999). A multilayer perceptron usually consists



Figure 11. Experimental data on propane jet flame lengths (L) and flame diameters (Deq), defined by the 800 K isotherm, and predicted by (a1, a2) MLP and (b1, b2)
RBF normalized models.
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of an input layer, one or more latent layers, and an output layer that
receives, processes, and displays information.

The structure of the MLP neural network consists of an input layer,
hidden multilayers, and an output layer, as shown in Figure 3. The pur-
pose of the training algorithm in this network is to try to reduce the
average squares of the general error, which has two parts: (i) Forward
pass, and (ii) Backward pass. In forward pass, the input vector is applied
to the network, and the network output is calculated. In backward pass,
the error is calculated as the difference between the network output and
the desired output, and according to the criterion function, an appro-
priate signal to the error is generated. Then, this signal moves backward
from layer to layer, and then modifies the weights from the input layer.
The modified weights minimized the average of the total square of the
errors. Finally, the purpose of the training algorithm in the network is to
reduce the average squares of the general error. In this work, the
Bayesian training method is used to solve the network. It has been
applied to train the neural network feedforward propagation algorithm.
This method, as in the statistical approach, firstly assumes that the values
of weights and biases are related to a function of distribution with an
unknown variance (Siddique and Adeli, 2013; Foresee and Hagan, 1997;
Nguyen, 1998). The MLP neural network output can be developed as
follows:

γjk ¼Fk

 XNk�1

i¼1

wijkγiðk�1Þ þ βjk

!
(5)

where γjk and βjk are the neuron j's outputs from the k's layer and bias
weight for a neuron j in a layer k, respectively. In the beginning of the
7

network training process, wijk are the link weights that were selected
randomly, and Fk are the nonlinear activation transfer functions. These
functions may be considered in many different forms, such as an identity
function, a binary step function, a binary sigmoid, a bipolar sigmoid, a
Gaussian, and a linear function (Fausett, 2006).

3.1.2. Radial basis function network
The Radial Based Function (RBF) network is a type of feedforward

networks with a single hidden layer, firstly introduced by (Broomhead
and Lowe, 1988). The optimization of the neurons in the single hidden
layer, involves very strong networks to simulate any continuous function
with an acceptable degree of accuracy. Themethodology used by the RBF
algorithm network is similar to theMLP algorithm, but the characteristics
of the hidden layer neurons being fully different. The hidden layer col-
lects the data from the input layers and transfers them to the Gaussian
transfer function to convert the data into nonlinear functions. The per-
formance responses are linearly integrated to generate the output layer
data. In the RBF neural network algorithm, the transfer functions be-
tween the input layer and the hidden layer are nonlinear functions; while
the transfer functions between the hidden layer and the output layer are
linear functions. The hidden neurons in the RBF networks actually take
the distance (geometric size or Euclidean size) between the input vector
and the weights. In order to achieve this goal, experimental data on jet
flame shape were obtained from (Palacios and Casal, 2011). The RBF
output layer, based on linear combiners, is given by Eq. (6):



Table 3. Characteristic parameters of the ANN-MLP model.

Neuron 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

First hidden layer wi -3.8348 5.4522 3.1679 5.1276 5.2126 4.8174 4.6505 5.0408 -3.4404 4.1241 -4.8222 3.1232 -3.7465 -3.0789 -5.3698

-3.836 0.4011 4.3925 -1.7458 1.4754 2.451 2.7845 -1.9087 4.1949 3.5267 2.6375 -4.4152 3.9108 -4.275 0.1695

b 5.4206 -4.5941 -3.8842 -3.0974 -2.3501 -1.5808 -0.691 0.1109 -0.7868 1.4991 -2.1142 3.1335 -3.8843 -4.7929 -5.4768

Second hidden layer wi 0.082 0.3507 -0.1512 -0.0253 0.4294 - - - - - - - - - -

-0.5066 -0.4941 0.5051 0.1918 -0.0081 - - - - - - - - - -

0.6262 0.2748 0.7067 -0.0442 -0.4482 - - - - - - - - - -

-0.0889 -0.0442 0.0758 0.909 0.1287 - - - - - - - - - -

-0.0669 0.6242 -0.3838 0.5546 0.8486 - - - - - - - - - -

0.2699 -0.3457 -0.0041 -0.3334 0.6843 - - - - - - - - - -

-0.1206 -0.4081 0.6197 0.2019 -0.2584 - - - - - - - - - -

-0.4705 -0.0118 -0.5744 -0.2166 0.2288 - - - - - - - - - -

-0.3597 -0.3911 0.4739 0.4825 -0.197 - - - - - - - - - -

0.5149 0.0294 -0.4244 0.437 0.2985 - - - - - - - - - -

0.4447 0.302 0.4126 0.3153 -0.5391 - - - - - - - - - -

-0.2374 -0.6688 -0.1229 0.075 -0.4292 - - - - - - - - - -

-0.0538 -0.3377 -0.2207 0.3147 0.6927 - - - - - - - - - -

0.5354 0.1026 -0.0822 0.4257 -0.1948 - - - - - - - - - -

0.654 0.4846 -0.538 0.6364 -0.1201 - - - - - - - - - -

b -1.6171 -0.9369 0.0292 0.4807 1.4711 - - - - - - - - - -

Output layer wl 0.1342 -0.4171 - - - - - - - - - - - - -

-0.5398 -0.2115 - - - - - - - - - - - - -

0.2912 0.3019 - - - - - - - - - - - - -

0.0618 -0.0008 - - - - - - - - - - - - -

0.6243 0.849 - - - - - - - - - - - - -

b -0.1918 -0.6996 - - - - - - - - - - - - -

wi: weights between input and hidden layers.
wl: weights between hidden and output layers.
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f
�
x
�¼ XN

wijG
�kx� cik * b

�
(6)
i¼1

where N is the number of data set for training, wij is the weight related to
each hidden neuron, x is the input variable, Ci is the center points, and b
is the bias. The centralized response from the hidden point using a
Gaussian function is obtained through Eq. (7):

G
�
kx� cik * b

�
¼ exp

��� 1
2σ2

i
ðkx� cik*bÞ2

�
(7)

where σi is the spread of Gaussian function. It represents the range of ||
x�ci || into the input space where the RBF neuron should respond. In Eq.
(7), the 1=2σ2i coefficient in the RBF activation function controls the
width of the bell curve and optimizes the fit between the activation
function and data. The structure of the RBF neural network, consisting of
an input layer, a single hidden layer, and an output layer, is shown in
Figure 4.
3.2. Work cycle for model design

The work cycle for the integrated artificial neural network model
design process includes five main steps, as shown in Figure 5. The first
step involves data gathering. Then the jet flame data, including mass flow
rates, nozzle diameters, jet flame lengths and equivalent diameters, is
defined. The input data involves the mass flow rates and nozzle di-
ameters; while the output data (target) involves the jet flame lengths and
equivalent diameters. The third step is the polarization of the data to the
network, like machine language. In the next stage, the network archi-
tecture is created with the selection of learning algorithms. The ANN
model training process is applied along with a network training valida-
tion. It includes network input and output adjustments to match the data
8

and select the training. At this stage, the model is taught to optimize the
performance of the model, by using a set of training data to set network
parameters, such as weight, bias and/or thresholds. During the training
process, the network validation data is improved using a set of data, and
then the network testing process is performed by the tested data. The
training of the network stops when generalizations improved. The per-
formance of the trained model is evaluated by statistical criteria,
involving the square of the coefficient of multiple correlation (R2) and the
mean square error (MSE), to compare the model outputs with the data
set. In the final step, the best network pattern is selected and the model is
developed. During the development of the MLP and RBF models, several
configurations are evaluated and the network performance is optimized,
by changing the number of hidden layers, the number of neurons in the
hidden layers, and the network training algorithm, in order to obtain the
best network to predict the output parameters. Finally, when the opti-
mized error from the tested trained inputs is obtained, the training al-
gorithm ends.

4. Results and discussion

4.1. Backpropagation training algorithm

Three different Learning algorithms of MLP back-propagation (BP)
algorithms (i.e., Levenberg – Marquardt (LM) (Hagan and Menhaj,
1994)), Bayesian Regularization (BR) (MacKay, 1992; Ticknor, 2013),
and Scaled Conjugate Gradient (SGG) (Møller, 1990), were applied to
find the best algorithm for the ANN. To achieve the desired architecture,
various steps were followed, according to the work cycle diagram shown
in Figure 5. After the preparation of the experimental data, the mass flow
rates and outlet nozzles of jet flames were set as input data; while the jet
flame length and width were set as output. The experimental data from
the jet flame shape were divided into three distinguished sets, including
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training, validation, and test dataset. In the next step, all the main input
data was randomly selected. The 70% of the total data points were used
as the network training (50 dataset); 15% of the total data points were
used as the network validation for the data; and 15% of the total data
points were tested with the resulting network, to provide an independent
measure of the network performance during and after training. Before
implementing the algorithms, a normalization operation was performed
to examine the various ranges to prevent that any data could not be
greater than others. The input and output dataset variables range be-
tween -1 and 1, and were normalized by Eq. (8):

Xnorm ¼ ðX � XminÞ
ðXmax � XminÞ (8)

where, Xnorm is the normalized data, X is a raw input variable and Xmax

and Xmin are the maximum and minimum of the data in the dataset,
respectively.

If the range of data variables is very wide, it is prefer that the input
and output data variables be normalized for neural network modeling.
For the definition of number of neurons in each hidden layer, the se-
lection of activation functions of network is very important in ANN
modeling development. This is determined by trial and error, through the
comparison of the architectural performance with the different networks,
after the training step. During the network training, in order to find the
appropriate values of the network parameters, the predicted network
error shall be kept to a minimum value for each step of the mean square
error (MSE) in each iteration. The MSE and the square of the correlation
coefficient (R2) were used as evaluation criteria to compare the model
outputs with the evaluation dataset. MSE and R2 were calculated as fol-
lows (Pi~neiro et al., 2008; Kobayashi and Salam, 2000):

MSE¼ 1
n

Xn
i¼1

�
Ypredicted � Yactual

�2 (9)

R2 ¼
Pn
i¼1

�
Ypredicted � Yactual

�2
Pn
i¼1

�
Ypredicted � Ymean

�2 (10)

where, Yactual and Ypredicted are the experimental and the predicted values
by the artificial neural network output development, respectively.

4.2. Optimization of the number of neurons using MLP and RBF models to
predict a jet fire

In the present work, various neuron activation functions were
applied. Sigmoid and pureline transfer functions for hidden and output
layers were selected, respectively. The optimum number of neurons was
selected based on the minimum value of MSE, during the training process
of the algorithm, and the maximum value of R2. Figure 6 shows the
number of neurons in MLP, varying from 1 to 30. It was found that the
Bayesian Regularization backpropagation algorithm have the lowest MSE
value for the vertical jet fire parameters (Table 2). The above-mentioned
algorithm with fifteen neurons was found to be and selected as the best
MLP model. Figure 6 also shows the optimal number of neurons for the
RBF model, with a Gaussian function, be 20 neurons with a single layer.
The best MSE validation performance of MLP and RBF networks models
were 0.00286 and 0.00426 at 100 and 200 epochs, respectively
(Figure 7).

4.3. ANN setup for prediction of jet fire shape

A general picture of MLP and RBF structure methods have been
depicted in Figure 8. The MLP and RBF networks were structured with
two hidden layers of 15 and 5 neurons and single hidden layer of 20
neurons, respectively. In the MLP structure, the multilayer feed forward
9

network consisted of four layers. The first one was the input layer,
through which the experimental data of vertical jet fires (i.e. the mass
flow rates and the nozzle diameters, as input parameters data), were
imported into the network; then two hidden layers were used. The last
layer concerns the target data, which was calculated through the output
data (i.e. the jet flame heights and the jet flame diameters). Between
these two mentioned layers, there were other hidden layers. The number
of hidden layers depends on the accuracy that is required for a particular
problem. In this research, the number of hidden layers was set to two,
providing reasonable accuracy. According to the neurons optimization
process in the MLP structure, the number of neurons at the second hidden
layer was set to be five. The transfer function applied in this layer was a
tangent sigmoid transfer function; while in the output layer, the number
of neurons had to be two, with a purelin (linear) transfer function.

The designed network regression R2 values for the MLP model in all
the figures shown in Figure 9 (i.e. training step, validation step, test step,
and all the data) were close to one (R2 ¼ 0.99315). Figure 9 also shows a
close accurate correlation between the MLP model of ANN outputs and
the target values from the prepared propane jet flame dataset. The 3-D
curves of the MLP and RBF model algorithms are shown in Figure 10.
They have been obtained to understand the interaction between the ef-
fects of the jet flames variables (i.e. mass flow rates and nozzles di-
ameters), and to determine the jet flame variables of propane jet flames,
through the drawn surfaces. The spectrum color in the plots and the
response surfaces represent the interaction between the propane mass
flow rates and the nozzle diameters. Figure 10 (a1, a2) and (b1, b2) also
identify the vertical propane jet flame length and jet flame diameter,
using two variables factors, such as the mass flow rate and nozzle
diameter. Thus, the slope curved in the 3-D response surfaces in Figure 10
(a1, a2) and (b1, b2), show the jet flame length and the jet flame diameter,
depending on the mass flow rates. The 3-D surface curves evaluate the
effect of the two above-mentioned parameters (i.e. mass flow rates and
nozzle diameters), by considering a third parameter being a constant,
such as the jet flame length and jet flame diameter parameters. The
predicted and experimental normalized data of the MLP and RBF models
was fitted in Figure 11 for propane jet fire shapes. As shown in Figure 11
(a1, a2) and (b1, b2), the agreement between the simulated results and the
experimental parameters was found to be better using the MLP model (R2

¼ 0.993) than the RBFmodel (R2¼ 0.991). These results have also shown
the predicted models to match accurately to the experimental data.

The optimized ANNweights matrix of propane jet fire shapes, defined
by the 800 K isotherm, have been predicted by the MLP model and
summarized in Table 3.

5. Conclusions

In this research, propane vertical jet fire shapes have been used for the
development of artificial neural networks. This research analyses a
database on vertical propane jet fire shapes, defined by the 800 K
isothermal temperature, involving 70 data sets and predicting the jet fire
shapes through ANN. The ANN results have shown good agreement with
the experimental propane jet flame shapes, when the jet flame length and
the jet flame diameter are considered as output data, and the dimen-
sionless mass flow rates and nozzle diameters are considered as input
data of the network. In the present study, the MLP model, using three
functions with backpropagation algorithms, and the RBF model, using
the Gaussian function, have been developed to predict the output pa-
rameters (i.e. jet flame lengths and jet flame diameters). The minimum
square error (MSE) and the coefficient of determination (R2), as statistics
values, have been calculated for the two above-mentioned models to
choose the best model and assess the fitting performance. The Bayesian
Regularization backpropagation algorithm, with a tangent sigmoid
transfer function (trainbr) in hidden layers and a linear transfer function
(purelin) in the output layer, has given the best performance among other
MLP models. The best validation performance of the MLP and RBF
models, with an optimized number of neurons, has given an overall R2
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value of 0.993, MSE ¼ 0.00286 at 100 epochs; and an overall R2 value of
0.991, MSE¼ 0.00426 at 20 epochs, respectively. The optimal number of
neurons for the MLP and RBF models has found to be 20 for the two
hidden layers in the MLP model, and single layer for the RBF model. A
comparison between two networks has shown negligible discrepancies
between the results of the RBF and MLP models (with 20 neurons). The
contribution of the present work has been to simultaneously simulate and
accurately predict, through two ANN performed algorithms, the jet fire
shape with significantly reduced computational times. The CFD compu-
tational time for a simulated propane jet fire, defined by the 800 K
isotherm, has been 1100 min per run (Mashhadimoslem et al., 2020a,b);
while in the present study, the propane jet flame geometry, defined by
the 800 K isotherm, has been determined in 2115 s, a reduced time,
compared with previous CFD works. This work has presented a robust
and efficient hybrid approach, to simulate the jet fire shape and optimize
the training of feedforwardMLP and RBF neural network algorithms. The
ANN weights matrix, developed in the present work, could be easily
incorporated into another related software for a bigger ANN related
project. This work has also offered reliability on the ANN architectures,
as prediction deep learning using experimental data, to provide more
accurate predictions for jet fire accidents in the process industries. The
current obtained models could be improved by adding more training
datasets, to cover more jet fire scenarios in different operational condi-
tions. The ANN development, based on various hydrocarbon fuels with
extended different conditions (i.e. nozzle diameters and mass flow rates),
could be relevant in future studies, to attempt to improve safety, spe-
cifically in the safety and risk engineering domain.
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