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Background: Breast cancer is one of the leading causes of death in female cancer

patients. The disease can be detected early using Mammography, an effective X-ray

imaging technology. The most important step in mammography is the classification of

mammogram patches as benign or malignant. Classically, benign or malignant breast

tumors are diagnosed by radiologists’ interpretation of mammograms based on clinical

parameters. However, because masses are heterogeneous, clinical parameters supply

limited information on mammography mass. Therefore, this study aimed to predict

benign or malignant breast masses using a combination of image biomarkers and

clinical parameters.

Methods: We trained a deep learning (DL) fusion network of VGG16 and Inception-V3

network in 5,996 mammography images from the training cohort; DL features were

extracted from the second fully connected layer of the DL fusion network. We then

developed a combined model incorporating DL features, hand-crafted features, and

clinical parameters to predict benign or malignant breast masses. The prediction

performance was compared between clinical parameters and the combination of the

above features. The strengths of the clinical model and the combined model were

subsequently validated in a test cohort (n = 244) and an external validation cohort

(n = 100), respectively.

Results: Extracted features comprised 30 hand-crafted features, 27 DL features,

and 5 clinical features (shape, margin type, breast composition, age, mass size). The

model combining the three feature types yielded the best performance in predicting

benign or malignant masses (AUC = 0.961) in the test cohort. A significant difference

in the predictive performance between the combined model and the clinical model was

observed in an independent external validation cohort (AUC: 0.973 vs. 0.911, p= 0.019).

https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org/journals/oncology#editorial-board
https://www.frontiersin.org/journals/oncology#editorial-board
https://www.frontiersin.org/journals/oncology#editorial-board
https://www.frontiersin.org/journals/oncology#editorial-board
https://doi.org/10.3389/fonc.2021.629321
http://crossmark.crossref.org/dialog/?doi=10.3389/fonc.2021.629321&domain=pdf&date_stamp=2021-03-22
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org
https://www.frontiersin.org/journals/oncology#articles
https://creativecommons.org/licenses/by/4.0/
mailto:zhujian.cn@163.com
https://doi.org/10.3389/fonc.2021.629321
https://www.frontiersin.org/articles/10.3389/fonc.2021.629321/full


Cui et al. Prediction of Breast Masses

Conclusion: The prediction of benign or malignant breast masses improves when image

biomarkers and clinical parameters are combined; the combined model was more robust

than clinical parameters alone.

Keywords: mammography, image feature, deep learning, clinical prediction, radiomics

INTRODUCTION

Breast cancer is one of the leading causes of death in female
cancer patients. Early diagnosis of the condition is crucial to
improve the survival rate and relieve suffering in patients (1).
Mammography is an effective X-ray imaging technology that
detects breast cancer early. Classically, benign or malignant
breast tumors are diagnosed by radiologists’ interpretation of
mammograms based on clinical parameters. However, because
masses are heterogeneous, clinical parameters supply limited
information on mammography mass (2). There is, therefore, an
urgent need to find new tools that can identify patients with
breast cancer.

Machine learning (3) from artificial intelligence (AI) has
made progress in automatically quantifying the characteristics
of masses (4). Radiomics is an emerging field in quantitative
imaging; it is a method that uses machine learning to transform
images into high-dimensional and minable feature data (5, 6).
With radiomics, clinical decision support can be improved.
Exploratory research using this method has shown great promise
in the diagnosis of breast masses (7). Radiomics can quantify
large-scale information extracted from mammography images,
which makes it a tool with better diagnostic capabilities for
benign and malignant breast masses, and this method also
provides radiologists with supplementary data (8). Analysis
by radiomics requires machine learning methods with high
levels of robustness and statistical power. This extraction
method continues to be developed to improve its performance
in evaluating masses, and this improvement, in turn, assists
radiologists in accurately interpreting mammography imaging.

Hand-crafted-based radiomics extracts low-level features
(texture features and shape features) as image biomarkers and
estimate the likelihood of malignant masses based on extracted
image biomarkers (9–11). In recent years, there has been
significant progress on the subject of deep learning (12) (DL)
and computer vision, with DL radiomics attaining remarkable
heights in various medical imaging applications (13–15); DL
directly learns unintuitive hidden features from images. DL
features acquire more information and superior performance
than hand-crafted image features (16). DL has only been used in
a few studies in the field of mammography automatic diagnosis
(17). Classifying benign or malignant masses, as compared to
normal and abnormal areas, for the lack of obvious features is
more complex. With the shift from hand-crafted to DL-based
radiomics, combining deep learning and hand-crafted features
have become more popular in radiomics most recently (18, 19).

In this study, we explore a DL fusion network of two different
transfer-learning models combined with data augmentation,
aimed at improving the classification accuracy. We hypothesized

that image biomarkers (DL features and hand-crafted features)
and clinical parameters could express intrinsic information on
mass thoroughly when combined. We built a classification model
that combines image biomarkers with clinical parameters and
called it a combined model. Using clinical characteristics as
the diagnostic information from mammography, we sought to
determine the classification performance of the combined model
and its clinical predictor. We evaluated predictive performance
in two validation cohorts: the absence of mammography
in the training cohort as the test cohort (inner-validation)
and mammography from other hospitals as the external
validation cohort.

MATERIALS AND METHODS

Patients
Mammography produces two images on both Cranio-
Caudal (CC) views and the Medio-Lateral Oblique (MLO)
(Figure 1). Five hundred and twenty-four patients were
enrolled prospectively (confirmed by pathology) with digital
mammography masses, including 988 mammography images
(malignant: 494, benign: 494). Inclusion criteria: mammography
images classified as Breast imaging reporting and data system
(BI-RADS) 3, 4, and 5; BI-RADS 3 means probably benign,
BI-RADS 4 means suspected malignancy, and BI-RADS 5
means highly suspected malignancy (20). Mass areas were
labeled on MLO and CC views, respectively, in rectangular
frames. Images were saved as 2-dimensional Digital Imaging
and Communications in Medicine (DICOM) files with a 16-bit
gray level.

Data Preprocessing
Allmammography images were preprocessed per the steps below:

Step 1: background removal. Regions of interest (ROIs) were
obtained using a cropping operation on the mammography in
order to remove the unnecessary black background.

Step 2: image normalization. ROIs were converted to a range
[0, 1] with the linear function below (Func.1), which revealed
that the original data were scaled in proportion. X_(norm)
normalized data, X is the original data of mammography image,
X_(max) and X_(min) are the maximum andminimum values of
the original data, respectively.

X_(norm)= (X-X_(min))/(X_(max)-X_(min)) (Func.1).
Step 3: ROI size normalization. To meet standard input

dimension requirements for most CNN, zero-filled images were
achieved under no deformation conditions, and adjusted to 224
× 224 (The right of Figure 1).
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FIGURE 1 | (A) Example cases on CC and MLO views. The yellow square represents the suspicious area labeled by the radiologist. (B) 8 benign and 8

malignant masses.

Step 4: data sets separation. Training cohort (n= 744) and test
cohort (n = 244) were created via random splitting. ROIs of test
cohort were not enrolled into the training cohort.

Step 5: data augmentation. For each ROI in the training
cohort, we used a combination of flipping and rotation
transformations (90, 180, and 270 degrees), aiming at generating
seven new label-preserving samples.

Transfer-Learning and DL Fusion Network
DL architectures have three main components including
convolutional layer, pooling layer, and fully connected (FC)
layer. It is assumed that transfer of such sets with some fine
tuning for the target network would be robust. Therefore, Vgg16
(21) network-based transfer-learning was used for this study.
The VGG16 network has been pre-trained on the ImageNet
dataset (22). Learned weights of the network gained during pre-
training were applied to the target network. We proposed a DL
fusion network combining the Vgg16 and Inception-V3 (23)
networks based on transfer-learning aimed at strengthening the
ability of transfer-learning. The learned weights of the network
were transferred to the DL fusion network shown in Figure 2A.
GlobalMaxPooling was used separately on the two networks to
retain more information. The two networks were connected, and
three FC layers were added to the fusion network. Additionally,
the robustness of the DL fusion network was compared with that
of the Vgg16 network.

The architecture of the Vgg16 fine-tuned network is shown
in Table 1. The input layer of the image consisted of three parts:
width, height, and channel. The input image size was 224 × 224
× 3. The number of layers after the first 12 layers were used

for training. The epoch and the learning rate of the network
were set to 200 and 1e-4, respectively. The Stochastic Gradient
Descent (SGD) was used as the optimization algorithm (24).
The momentum was set at 0.9, and the weight decay was set at
5 × 10−4. The fully connected layer was regularized using the
dropout (25), with the last layer corresponding to the soft-max
classifier. DL fusion network parameter settings referred to the
VGG16 fine-tuned network. We performed a simulation of the
python environment. The DL network training was performed
on one GeForce GTX 1080Ti GPU.

Feature Extraction
Handcrafted-Based Features

Texture contains important information from many types of
images (26), and this information was used for classification
and analysis. Four different types of hand-crafted features
are extracted separately from first-order histogram features,
second-order texture features, Hu’s moment invariants features,
and high-order Gabor features (a total of 455 features). The
second-order texture features include gray-level co-occurrence
matrix (GLCM), gray-gradient co-occurrence matrix (GLGCM),
gray-level difference statistics (GLDS), gray run-length matrix
(GLRLM), local binary pattern (LBP), and Gaussian Markov
random field (GMRF) features. Hand-crafted feature extraction
algorithms were implemented on MatLab 2018a.

Clinical Features

The clinical features of the patients are shown in Table 2.
Morphological descriptions of mass are encoded as numerical
values to obtain true feature values.
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FIGURE 2 | Framework of the proposed model structure. (A) DL fusion network, (B) combined model. FC, fully connected; SVM, Support Vector Machine; DL,

deep learning.

DL-Based Features

A trained DL model can be used as a feature extractor to extract
features of different layers in the model. We proposed a DL
fusion network to extract deep feature information on masses.
The DL fusion network converts the image of the mass into a
1024-dimensional feature vector. In this study, we referred to this
high dimensional vector from the second FC layer of the network
as the DL feature.

Feature Selection
Feature selection is another key step in radiomics, which means
selecting a subset of relevant features based on the evaluation
criterion. To reduce the training time of the model and improve
its robustness and reliability, we used the minimal-redundancy-
maximal-relevance (mRMR) (27) method to select the most
significant feature sets. Through feature selection, 30 hand-
crafted features (shown in Table 3) and 27 DL features were
selected for input into the classifier.

Model Construction
Because clinical features and mammography imaging express
different types of information of a mass, we combined two

types of information for exploratory analysis. Image biomarkers
and clinical parameters were then processed using Min-
Max normalization (as shown in Figure 2B). The support
vector machine (SVM) (28, 29) with a linear kernel was
used in the classification of breast masses. The SVM model
aims to provide an efficient calculation method of learning
by separating hyperplanes in a high dimensional feature
space. A systematic review of machine learning techniques
revealed that the SVM model is widely applied in breast
tissue classification (30). In this study, the SVM hyper-
parameters were fine-tuned through an internal grid search
with 10-fold cross-validation.

Training, Testing, and External Validation
We trained the proposed model using data (image biomarkers
and clinical biomarkers) from the training set (744 ROIs). The
prediction performance and model stability of the clinical model
and the combinedmodel were evaluated in the test set (244 ROIs)
and verified in the external validation set (100 ROIs from 58
patients). The 58 patients in the external validation set came from
the Yantai Yuhuangding Hospital.
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TABLE 1 | CNN network structure parameters.

Vgg16 fine tuning Out

learning layer type

Conv1-2 (224 × 224 × 64)

Max_Pooling (112 × 112 × 64)

Conv3-4 (112 × 112 × 128)

Max_Pooling (56 × 56 × 128)

Conv5-7 (56 × 56 × 256)

Max_Pooling (28 × 28 × 256)

Conv8-10 (28 × 28 × 512)

Max_Pooling (14 × 14 × 512)

Conv11-13 (14 × 14 × 512)

Max_Pooling (7 × 7 × 512)

GAP (1 × 1 × 512)

FC_1 (1 × 1 × 1024)

Dropout (1 × 1 × 1024)

FC_2 (1 × 1 × 2)

Soft-max output P

Conv, convolutional layer; GAP, Global Average Pooling; FC, fully connected; P, Probability.

TABLE 2 | Clinical features description of patients.

Clinical features Feature coding

Shape 1-round, 2-oval, 3-irregular

Margin type 1-clear, 2-shadow, 3-differential leaf, 4-fuzzy,

5-glitch

Breast composition 1-The breasts are almost entirely fatty.

2-There are scattered areas of fibro glandular

density.

3-The breasts are heterogeneously dense, which

may obscure small masses.

4-The breasts are extremely dense, which lowers

the sensitivity of mammography.

Age 20–80 years old

Mass size The diagonal pixel values of the ROI extracted can

be roughly used as a method of measuring the size

of the mass.

Evaluating Predictive Performance
Verifying the stability of the generated model using
corresponding evaluation indicators is a key step to evaluating
predictive performance. We established a confusion matrix to
evaluate the proposed approach. We calculated the AUC (areas
under the curve), accuracy, sensitivity, specificity, precision, and
F_score from the confusion matrix to estimate the discriminant
performance and stability of these models. Delong’s test (31) was
performed to evaluate the statistical significance of the AUC of
the results. P < 0.05 was considered significant.

RESULTS

A total of 744 and 244 ROIs were randomly selected for the
training cohort and test cohort, respectively. Figure 3 presents
the convergence process and the training result of the Vgg16

TABLE 3 | Hand crafted-based radiomics features after feature selection.

Texture type Texture descriptors Number of

features selected

Second-order Gray gradient co-occurrence 1

texture features matrix features

Gray run-length matrix 2

Gaussian Markov random field 4

Gray-level difference statistics 1

Local binary pattern 1

Higher-order Gabor features 21

features

fine-tuned network and the DL fusion network. The loss of
the Vgg16 fine-tuned network fluctuated considerably for the
worse convergence. The DL fusion network yielded better
performances, as illustrated in Table 4. The accuracy of the DL
fusion network improved to 87.30%, a 0.83% increase, compared
to the Vgg16 fine-tuned network.

Using the mRMR feature selection method, 30 hand-crafted
features (9 texture features, 21 higher-order features) and 27 DL
features (1024 reduced to 27 dimensions) were selected (Table 3).
A comparative view of seven feature combination schemes used
for the classification of SVM is illustrated in Table 5, while
the ROC curves for the evaluated representations of the seven
schemes in the test cohort are shown in Figure 4A.

In the test cohort, the clinical model attained a classification
accuracy of 0.889, a specificity of 0.885, and an AUC of 0.944.
Compared with clinical models or other models, the progress
made by the combined model in discriminative performance was
more significant (accuracy = 0.910, specificity = 0.934, AUC
= 0.962). The accuracy of the combined model rose by 3–11%,
compared to models with a standalone image feature.

In the external validation set, the combined model was
also proven to have better robustness and reliability (Table 5).
The combined model yielded an improved accuracy and AUC,
compared to the clinical model (accuracy: 0.900 vs. 0.830;
specificity: 1.000 vs. 0.940; AUC: 0.973 vs. 0.911; P = 0.019). The
ROC curves of the two models in the external validation cohort
are shown in Figure 4B.

DISCUSSION

We conducted this study to develop an approach that combines
radiomics features (Handcrafted-based and deep learning-based
features) with clinical parameters for the assessment of the
effects of classification in clinical practice. We also sought to
reveal the classification performances of both the combined
model and clinical parameters. As a result, we demonstrated
the significance of combining image biomarkers with clinical
parameters. Additionally, we observed a significant difference
between the combined model and the clinical model; the former
was more robust than the latter.

Interpreting the prediction performance of the combined
model is not easy and must be done with caution to avoid
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FIGURE 3 | Loss and accuracy over epochs of training/ validation process. (A) Vgg16 fine-tuned network, (B) DL fusion network.

TABLE 4 | Classification performance of Vgg16 fine-tuned network and DL fusion

network.

Trained networks Sensitivity (%) Specificity (%) Accuracy (%) F-score

Vgg16 fine-tuned 82.79 90.16 86.47 85.96

network

DL fusion 84.43 90.16 87.30 86.92

network

drawing shallow conclusions. As shown by our results, the
predictive performance improved when clinical data were added.
The results of the combined model were improvements on those
of the clinical model or other models, as illustrated in Table 5.
Moreover, in the external validation cohort, the prediction
performances of the combined model for benign and malignant
masses were better than those for the clinical model (accuracy:
0.900 vs. 0.830; specificity: 1.000 vs. 0.940; AUC: 0.973 vs. 0.911;
P = 0.019). There are potentially two major reasons for this
outcome: first, the DL network design. The DL fusion network
tries to encode breast mass images into deep features reflecting
the internal information of masses. The neural network extracted
abstract and complex features from the convolutional layers to
the FC layers; second, clinical parameters are descriptive and
distinguishable as a reference for BIRADS classification, which
makes the results acceptable. But, because of the heterogeneity of
breast masses, clinical parameters can indicate only limited mass
information; the combined model carries information on intra-
tumor heterogeneity, capturing the spatial relationships between
neighboring pixels. Thus, performance largely depends on the
ability of image biomarkers to distinguish between benign and
malignant lesions.

Past studies have documented radiomics features’
representation of valuable information from mass images
(9–11). Radiomics features have been widely identified as reliable
and useful biomarkers in clinical practice (8). The final goal
of this extraction method is to generate image biomarkers to

build a model for the improvement of clinical decisions. With
the shift from hand-crafted to DL-based radiomics, combining
deep learning features with hand-crafted features has become
a popular approach in radiomics most recently (18, 19). The
importance of clinical parameters has been reported in an
experimental study by Moura et al. (32). Our current findings
are based on expanding these results and prior works. To do this,
we quantified the characteristics of mass imaging from many
aspects using data-characterization algorithms. We extracted five
clinical parameters, 1024 DL, and 455 hand-crafted features from
each ROI. For deep learning feature extraction, we established
the DL fusion network by transfer-learning. We trained the
network through a patch-based strategy. In the past, superior
performances have been achieved in a pre-trained network,
compared to training from scratch (33), primarily because
network training from scratch is too complicated and prone to
over-fitting for small datasets (34). Hand-crafted features likely
played a role in texture characterization. Redundant features
were removed using mRMR, and features that can reflect the
essential meaningful features of masses were retained. The SVM
classification method was also chosen for comparative analysis.

Our research had three main advantages vis-à-vis previous
studies using radiomics (18, 32, 33). First, we used a DL fusion
network for feature extraction. DL fusion network can learn
the intrinsic characteristics of mass images automatically from
imaging data. Therefore, the DL fusion network does not need
hand-coded feature extraction. Second, we combined image
biomarkers with clinical parameters to assess the effects of the
classification in clinical practice. Finally, we used an external
validation set, which allowed us to extend the experimental
results to other institutions and environments, providing more
credibility to our inference.

Despite the promising outcome of this investigation, we had

some limitations. The specific characteristic difference between

the convolutional layer and the FC layer was not explored.

Furthermore, because of the few medical image datasets,
the model validation cohort in this study did not reach an
optimal level. In future work, we intend to use more samples
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TABLE 5 | Classification performance of different feature combination schemes in test cohort and validation cohort.

Feature combination schemes Sp (%) Acc (%) Sn (%) Pre (%) F-score (%) AUC

Hcr 83.61 79.92 76.23 82.30 79.15 90.06

Clinical 88.52 88.93 89.34 89.61 88.98 94.48

Hcr+Clinical 90.16 89.34 88.52 90.00 89.26 95.99

Deep 27 90.16 88.11 86.07 89.74 87.87 93.95

Deep 27+Hcr 90.98 87.70 84.43 90.35 87.29 94.28

Deep 27+Clinical 91.45 89.75 87.70 91.80 89.54 95.53

Deep 27+Clinical+Hcr 93.44 91.00 88.53 93.10 90.76 96.16

clinical model 94.00 83.00 72.00 92.31 80.90 91.12

combined model 100 90.00 80.00 100 88.89 97.32

Deep 27, 27 deep learning (DL) features; Sp, specificity; Acc, accuracy; Sn, Sensitivity; Pre, Precision; Hcr, hand crafted-based radiomics features; AUC, area under the receiver

operating characteristic curve. Clinical model and combined model are validated in the validation cohort (n = 100).

FIGURE 4 | (A) ROC curve for evaluated predictive performance of seven methods in test cohort. (B) ROC curve for evaluated predictive performance of the external

validation (EV) set. Deep represents 27 deep learning (DL) features. Hcr, hand crafted-based radiomics features; Cli, Clinical.

from other publicly available datasets, such as Mammographic
Image Analysis Society (MIAS) and Database for Screening
Mammography (DDSM) datasets. This will provide data diversity
in terms of feature representation and may also improve
overall architecture and network performance. Additionally,
we plan to explore the predictive performance of different
layer features.

In conclusion, combining radiomics features with clinical
parameters can potentially serve a role in the prediction
of benign or malignant breast masses. Additionally, this
combination has stronger prediction performance, compared
with clinical parameters. This study, therefore, developed a
strategy that combines deep learning with traditional machine
learning approaches to assist radiologists in interpreting
breast images.
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