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Abstract: Aflatoxins (AFTs), as a group 1 carcinogen, could lead to hepatocellular carcinoma (HCC).
Dietary intake is the primary way of AFT exposure in humans. However, the contribution of
foodborne AFT intake to the HCC burden remains unknown in recent years in China. Hence, the
present study was conducted to estimate the burden of HCC attributed to foodborne AFT exposure by
using disability-adjusted life years (DALYs). The risk assessment was used to estimate the incidence
of HCC related to AFT exposure. Concentrations of AFTs in peanuts, peanut oil, corn, and corn
products were retrieved from literature published between 2010 and 2020 in China. Corresponding
daily food consumption data were obtained from two nationwide Chinese surveys. A direct approach
was used to calculate DALY and DALY rates to quantify the HCC burden attributed to dietary AFT
exposure. The total amount of AFT intake through peanut, peanut oil, corn, and corn products was
4.018 ng/kg bw/day resulting in 0.125 extra HCC cases per year/100,000 persons, corresponding to a
DALY number and DALY rate of 21,625.08 and 1.53 per 100,000 population, respectively. Regionally,
DALYs were high in Guangxi and Guangdong provinces, corresponding to 5948 and 5595 DALYs. A
total of 1.5 DALYs/100,000 were lost due to the AFT exposure. DALYs per 100,000 population were
higher in several coastal areas. Though the disease burden of HCC caused by dietary AFTs was low
in the Chinese population, a high health risk was found in the residents of some areas with high AFT
exposure. AFTs are still a health challenge for the Chinese people.

Keywords: aflatoxin; burden of disease; risk assessment; dietary exposure; cancer risk

1. Introduction

Aflatoxins (AFTs) are secondary metabolites produced by Aspergillus flavus and As-
pergillus parasiticus [1]. The most prominent four types of AFTs are aflatoxins B1, B2, G1,
and G2 [2]. Among them, AFB1 is the most common and toxic type. AFTs are classified as a
group 1 carcinogen by the International Agency for Research on Cancer (IARC) due to their
hepatotoxicity, carcinogenicity, and genotoxicity [3]. Researchers also observed that chronic
exposure to aflatoxins reduces immunity and interferes with protein metabolism [4,5].
AFTs can be detected in various food, such as cereals, legumes, oilseeds, nuts, spices, and
milk, and marine products are also contaminants by AFTs [6]. Peanut and corn are the
most common daily foods that are susceptible to contamination by AFTs [7]. Human
biomonitoring also confirmed that humans are exposed to aflatoxins [8]. Although AFTs
are harmful to humans, achieving zero exposure is difficult because they are often present
in commonly consumed food. Due to the toxicity of AFTs, many countries have established
standards for restricting aflatoxins. The European Commission has set the maximum levels
(MLs) of AFB1 and AFTs to be 2.0 and 4.0 µg/kg in peanuts for direct consumption [9].
According to the current China National Food Safety Standard (GB 2761-2017), the ML of
AFB1 is 20 µg/kg in peanut and its products, corn, and corn products [10].
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Contamination by AFTs is influenced by environmental and climatic conditions, and
the health effects of AFTs are also influenced by demographic characteristics. AFT contami-
nation frequently occurs in tropical and subtropical regions due to the temperature, humid-
ity, soil, and storage conditions [11,12]. The growth rate of aflatoxins is remarkably rapid
under high temperature and humid conditions [13]. In China, national monitoring showed
that the contamination of AFTs in peanuts and peanut oil was high in several East and
South China areas, which have subtropical temperate monsoon climates [14]. In addition to
climatic conditions affecting aflatoxin exposure, there are synergistic hepato-carcinogenic
effects caused by AFTs and hepatitis B virus (HBV) infection. The cancer potency factor is
0.3 in individuals with chronic HBV infection, while it is 0.01 in individuals without chronic
HBV infection [15]. In some developing countries, such as sub-Saharan Africa, which has a
high incidence of HCC, chronic exposure to aflatoxin B1 was related to the elevated risk of
significant liver fibrosis among chronic HBV carriers [16]. A meta-analysis estimated that
AFB1 exposure and HBV infection increased HCC risk by 54 fold [17]. With the increasing
rates of administration of the HBV vaccine to newborns in China, the prevalence of HBV
has declined quickly from 2000, but at the same time, AFTs may become a more dominant
risk for liver cancer in the coming decades due to climate change [18,19]. Therefore, it
is necessary to assess the risk of AFTs on the population at current environmental and
consumption levels.

The burden of disease is an indicator of the health and economic impact of illness,
injury, and early death on societies and countries. Disability adjusted life years (DALYs) is a
standard metric to express the burden of disease [20]. Since exposure to contaminants may
lead to health loss, DALYs was used to quantify the impact of environmental pollution [21].
Gibb et al. estimated that the number of foodborne illnesses due to aflatoxin was 21,757,
and the worldwide foodborne DALYs were 636,869 in 2010 [22]. Liu and Wu estimated the
aflatoxin exposure was 17–30 ng/kg body weight/day, and there were 7200 to 18,830 cases
of HCC induced by aflatoxin in China and 25,200 to 155,000 cases globally in 2010 [15].
However, little is known regarding the disease burden of HCC caused by foodborne
aflatoxin intake in China in the recent decade. Most aflatoxin risk assessment studies
mainly focused on AFB1 in a local region or population without disease burden assessment.
Based on our knowledge, no published studies reported the risk assessment and disease
burden assessment of the dietary exposure to AFTs in peanuts and peanut oil, corn, and corn
products from different areas of China. Qin et al. once investigated the spatial distribution
of dietary exposure of aflatoxins in peanuts and peanut oil in China; however, they did not
assess corn or its products, which are also commonly eaten in China, and did not assess the
burden of disease or identify high-risk groups [14].

The present study intended to assess the AFT exposure of the Chinese population
by combining consumption data and data on AFT contamination in four kinds of food:
peanuts, peanut oil, corn, and corn products. Furthermore, we also estimate the burden of
disease of HCC caused by AFT intake through DALY calculation in China. Our findings
could provide an updated view on the disease burden for AFT exposure in China.

2. Materials and Methods
2.1. Study Design

The present study consisted of two parts including the dietary AFT risk assessment
and calculation the burden of disease attributed to dietary AFT exposure [15,23]. The risk
assessment of dietary AFTs included exposure assessment and risk characterization for
AFTs [15]. We obtained the concentrations of AFTs from the literature and combined the
consumption data from national surveys to conduct the exposure assessment [24,25]. Then,
we described the risk characterization using the exposure data and the dose–response
relationship [22]. We estimate the incidence of HCC caused by dietary aflatoxin intake
in this section. Finally, the direct method was used to calculate the DALY based on the
national cancer registry report and the template recommended by WHO [23]. An overview
of the design is shown in Supplementary Figure S1.
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2.2. Data Collection

A literature review was conducted to obtain the aflatoxins’ concentrations in peanut,
peanut oil, corn, and corn products from PubMed and three Chinese databases: The General
Library of Chinese Academic Journals (CNKI), Wanfang Data—academic journal full-text
library (WAN FANG), and Chinese Biomedical Literature Database (CBM) from the period
January 2010 to December 2020.

The keywords for retrieval strategies are shown in Supplementary Table S1. Studies
eligible for inclusion met all of the following criteria: (1) the research objects were peanut,
peanut oil, corn, or corn products; (2) the sample collection time was from January 2010 to
December 2020; (3) detected methods included HPLC, UPLC, and ELISA; (4) concentrations
of aflatoxin were described; (5) the study area was in mainland China. A total of 5639 studies
were retrieved by the search terms. Among them, 126 studies were full-text reviewed,
and 77 papers were removed due to the lack of average data, contaminated area data, or
because the time of sampling was not in conformity with our requirements. Finally, we
included 47 studies that provided information about the contamination of AFTs in peanut,
peanut oil, corn, and corn products. More details on the literature, inclusion criteria, and
exclusion criteria are provided in Supplementary Figure S2.

The weighted arithmetic means of aflatoxin concentrations were calculated for the
same food types in studies by using the following formula [26]:

Ci = ∑m=n
m=1 (Nm × Mm)/ ∑m=n

m=1 Nm

where Ci is the weighted arithmetic mean of aflatoxin concentrations (µg/kg) in food i, Nm
is the sample size, Mm is the mean of the aflatoxin concentration in the original study, and
n is the number of the studies for each food (peanut, peanut oil, corn, and corn products).
For each food, the original concentrations, detection method, and other main information
are shown in Supplementary Tables S2–S4.

2.3. Consumption Data of Peanut, Peanut Oil, Corn, and Corn Products

The consumption frequency (gram per person per day, g/day) of peanut, peanut oil,
corn, and corn products was obtained from two national-level surveys in China. One
was the 2010–2012 China Nutrition and Health Surveillance [25], which provided the
consumption data of peanut, corn, and corn products from 18 provinces, autonomous
regions, and municipalities of mainland China. The other one was the China National
Nutrition and Health Survey (CNNHS) of 2002 [24], which provided the consumption data
of peanuts from 13 provinces. The consumption data of peanut oil was obtained from the
CNNHS of 2002. These surveys were conducted by well-trained dietary staff to obtain
three consecutive 24 h dietary recalls via face-to-face interviews (including two weekdays
and one weekend day).

2.4. Estimation of Daily Intake of Aflatoxins

According to the method recommended by the FAO/WHO [27], the estimated daily
foodborne aflatoxin intake by body weight (EDI, ng/kg·body weight/day) was calculated
using the following formula [28]:

EDIj =
Cij × Dij

Wj

where EDIj (ng/kg body weight/day) is the total daily foodborne aflatoxin intake in j
province; Cij is the weighted arithmetic mean of aflatoxin concentrations (µg/kg) in food
i in j province; Dij is the daily consumption (g/day) of food i in j province; and Wj is the
average body weight (kg) of residents in j province.
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2.5. Risk Characterization
2.5.1. Margin of Exposure (MOE)

The MOE approach, which was proposed by EFSA in 2005, was used to estimate the
genotoxic and carcinogenic risk [29]. The MOE was calculated by dividing the benchmark
dose lower limit for an additional 10% risk (BMDL10) by the human dietary exposure. The
value of BMDL10 used was 400 ng/kg bw/day as previously derived by EFSA (2020) based
on the data on HCC incidences in male rats [30]. MOE values do not quantify the risk but
can indicate a level of concern from a public health point of view. An MOE of 10,000 or
higher would be considered to indicate a low public health risk. The formula to calculate
MOE is as follows:

MOE = BMDL10/EDI

2.5.2. Risk Assessment of Hepatocellular Carcinoma

We used the population attributable fraction (PAF) approach to estimate the incidence
of HCC due to AFTs. A quantitative risk assessment method was used to estimate the excess
risk of HCC-related aflatoxins, which was established by JECFA [22]. This assessment was
done separately in two populations, with (HBsAg+) and without HBV infection (HBsAg−),
because of the synergistic hepato-carcinogenic effects of AFTs and HBV infection. When the
dietary exposure of AFTs was 1 ng/kg bw/day, the AFTs’ cancer potency factor in HBsAg−
individuals was 0.01 cases/100,000 persons/year, while it was up to 0.3 cases/100,000 per-
sons/year in HBsAg+ individuals. The PAF and extra cases of HCC [31] were estimated by
using the following formula:

Pcancer = 0.3 × PHBV+ + 0.01 × (1 − PHBV+)

RAFTs = Pcancer × EDI

PAF = RAFTs/RHCC Case = RAFTs × Population

where Pcancer represents the average potency of HCC due to AFTs in the two populations
(with and without HBV infection); PHBV+ represents the prevalence rate of hepatitis-B-virus
surface antigen (HBsAg+) in different provinces in China; RAFTs represents the HCC risk
due to foodborne intake of AFTs; EDI represents total daily foodborne aflatoxin intake;
RHCC represents the total incidence of HCC by all causes; PAF represents population
attributable fraction; Case represents the extra-cases of HCC due to exposure to AFTs. The
demographic data were obtained from China’s seventh census in 2020.

2.6. Estimation of Disability-Adjusted Life Years Attributed to Foodborne AFT Intake

Disability-adjusted life years (DALYs) is a metric to evaluate the burden of a particular
disease. The direct approach was used to calculate the DALYs attributed to the extra-cases
of HCC related to exposure to AFTs. Firstly, the average DALY number of each liver cancer
case was calculated [26]. According to the China Cancer Registry Annual Report of 2019,
the DisMod II software and template for calculating the burden of disease were used to
calculate the DALYs of each HCC case. We calculated that the DALY number of each HCC
case was 12.37 (detailed information is shown in Supplementary Figure S3). The total
DALYs of HCC of aflatoxin-related origin was equal to the number of cases multiplied by
12.37. The DALY rate (per 100,000) of HCC attributed to foodborne intake was calculated
in the last stage.

2.7. Sensitivity Analysis

Based on literature retrieval, we obtained the sample-size-weighted mean of AFTs in
each region to calculate the national total levels of AFTs in foods. However, regions with a
large sample size may skew the pooled estimates. We recalculated the AFTs’ concentration
after excluding the region with the largest sample size of 4797. The results demonstrated
that the recalculated pooled AFT concentration was similar to that before excluding the
largest sample study (14.37 vs. 14.47 µg/kg).
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2.8. Statistical Analysis

Uncertainty intervals were performed with Monte Carlo simulation using @RISK 7.6
(Palisade Corporation, Ithaca, NY, USA) to assess the variability of risk estimates. The
appropriate probability distributions were used to describe the parameters. Monte Carlo
simulations were performed considering 100,000 iterations to obtain probability distribu-
tions. We obtained stable outputs by enabling convergence testing in every 200 iterations.
The 95% uncertainty intervals (UIs) were derived from the output values of the 2.5th and
97.5th percentiles.

DisMod II software and an Excel template recommended by the WHO for disease
burden calculation were used to estimate DALYs [32]. ArcGIS software was employed for
visualization. All statistical analyses were conducted using SPSS 20.0 (IBM Corp., Armonk,
NY, USA). All tests were two-sided with a significance level of 0.05.

3. Results
3.1. AFT Concentration in Peanuts, Peanut Oil, Corn, and Corn Products in China

A total of 47 studies were collected with 16,604 unique pieces of AFT data from
31 provinces, autonomous regions, and municipalities of mainland China. Table 1 presents
an overview of the occurrence data obtained for peanuts, peanut oil, corn, and corn
products. The detailed data in various periods are shown in Supplementary Table S2. A
total of 5800 (34.93%) samples were positive for aflatoxins among the whole samples, and
the positive rate of AFTs in peanut oil was the highest (49.14%), followed by that in corn
(29.10%). The positive rate of AFTs in peanut, peanut oil, and corn was positively correlated
with the number of detected cases (p < 0.05), while there was non-correlation in the case of
corn products (p > 0.05) (Supplementary Figure S4). The weighted mean AFT contamination
in peanut, peanut oil, corn, and corn products was 8.07, 14.47, 25.76, and 1.19 µg/kg,
respectively. In peanuts, Shaanxi province had the highest levels of contamination, with a
mean AFT contamination of 34.50 µg/kg, followed by Hebei (21.42 µg/kg). Guangxi had
the highest mean AFT contamination of peanut oil (31.92 µg/kg) and corn (148.57 µg/kg).
The mean AFT contamination in corn was much higher than that in peanuts, peanut oil,
and corn products. The contamination in corn products was relatively low, and the highest
concentration was 8.06 µg/kg in Jiangsu. AFT contamination in Hebei, Shaanxi, Fujian,
Guangxi, Henan, Hunan, and Yunnan exceeded the Codex Alimentarius Commission
(CAC) limit standard (15.0 µg/kg) and the China National Food Safety Standard limit
(20.0 µg/kg). The AFT contamination in corn in Guangxi exceeded the CAC limit standard
by 8.8 times.

Table 1. AFT concentration in peanuts, peanut oil, corn, and corn products in different areas of China
from 2010 to 2020.

Province Peanut Peanut Oil Corn Corn Products

N Positive
N (%)

Means *
(µg/kg) N Positive

N (%)
Means *
(µg/kg) N Positive

N (%)
Means *
(µg/kg) N Positive

N (%)
Means *
(µg/kg)

Total 5092 1353
(26.57) 8.07 7290 3583

(49.15) 14.47 1746 508
(29.10) 25.76 2476 356

(14.38) 1.19
North
Beijing 15 3

(20.00) 0.71

Hebei 40 18
(45.00) 21.42 82 35

(42.68) 7.08 92 78
(84.78) 8.96

Neimongol 15 0 (0.00) 0.34
Shanxi 16 0 (0.00) 4.00 13 8

(61.54) 1.83

Tianjin 219 46
(21.00) 7.47 200 67

(33.50) 8.98
Northeast
Heilongjiang 10 2

(20.00) 0.41 18 10
(55.56) 0.57

Jilin 25 3
(12.00) 1.28 13 0 (0.00) 0.5

Liaoning 130 13
(10.00) 0.34 50 2 (4.00) 1.68
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Table 1. Cont.

Province Peanut Peanut Oil Corn Corn Products

N Positive
N (%)

Means *
(µg/kg) N Positive

N (%)
Means *
(µg/kg) N Positive

N (%)
Means *
(µg/kg) N Positive

N (%)
Means *
(µg/kg)

East
Anhui 706 232

(32.86) 9.25 30 15
(50.00) 1.06

Fujian 284 31
(10.92) 14.02 166 105

(63.25) 27.42 16 6
(37.50) 0.57

Jiangsu 421 124
(29.45) 3.33 33 8

(24.24) 1.31 106 49
(46.23) 8.06

Jiangxi 482 168
(34.85) 10.81 38 12

(31.58) 10.29 11 5
(45.45) 0.43

Shandong 201 18
(8.96) 1.95 326 103

(31.60) 6.78 689 159
(23.08) 6.17 371 125

(33.69) 1.44

Shanghai 97 23
(23.71) 12.09 19 7

(36.84) 1.26

Zhejiang 50 9
(18.00) 9.90 363 31

(8.54) 0.26 125 1 (0.80) 0.07
Central
Henan 107 44

(41.12) 5.89 270 43
(15.93) 1.99 40 32

(80.00) 50.32 659 61
(9.26) 0.81

Hubei 424 171
(40.33) 6.55 67 2 (2.99) 1.60 20 12

(60.00) 3.4

Hunan 468 160
(34.19) 13.49 10 7

(70.00) 22.1
South
Guangdong 302 85

(28.15) 11.73 4797 2623
(54.68) 14.42 548 48

(8.76) 0.26

Guangxi 56 26
(46.43) 7.78 844 492

(58.29) 31.92 230 39
(16.96) 148.57 58 30

(51.72) 3.03

Hainan 46 5
(10.87) 0.47 3 2

(66.67) 6.15
Southwest
Chongqing 136 55

(40.44) 0.97 73 28
(38.36) 0.63 16 16

(100.00) 6.44 63 24
(38.10) 0.95

Guizhou 23 1 (4.35) 0.21 17 11
(64.71) 1.02

Sichuan 535 77
(14.39) 5.75

Xizang 23 0 (0.00) 0.05
Yunnan 70 11

(15.71) 0.56 28 6
(21.43) 3.44 14 11

(78.57) 65.74 292 >6
(>2.05) 1.83

Northwest
Gansu 63 6 (9.52) 0.59 17 3

(17.65) 0.58

Ningxia 10 5
(50.00) 0.89

Qinghai 14 0 (0.00) 1.20
Shaanxi 64 17

(26.56) 34.5 123 82
(66.67) 1.14 308 31

(10.06) 1.54 254 18
(7.09) 0.37

Xinjiang 40 0 (0.00) 0.11

* Weighted means; N: number of samples.

3.2. Consumption Data of Peanuts, Peanut Oil, Corn, and Corn Products in China

The daily consumption data of peanuts, peanut oil, corn, and corn products are
shown in Table 2. The daily consumption of peanuts ranged from 0.23 to 5.34 g/day
in the general population, with Liaoning (5.34 g/day) being the highest, followed by
Shandong (4.67 g/day). The consumption level for peanut oil in Shandong was the highest
(37.81 g/day), while levels in Anhui and Jiangsu were the lowest (0.02 g/day). The corn
consumption level in Jilin (20.96 g/day) was the highest, and the corn product consumption
level in Shaanxi (18.87 g/day) was the highest. The peanut and peanut oil consumption
levels were higher in South China and coastal areas, while the corn and corn product
consumption levels were higher in Northeast and North China.
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Table 2. The mean consumption levels of peanuts, peanut oil, corn, and corn products in different
areas of China (g/day).

Province
Consumption

Levels of
Peanuts (g/Day)

Consumption
Levels of

Peanut Oil
(g/Day)

Consumption
Levels of Corn

(g/Day)

Consumption
Levels of Corn

Products
(g/Day)

Total 2.19 5.49 4.98 4.17
North

Beijing 3.00 26.10 9.56 10.17
Hebei 3.24 15.05 2.41 14.36
Neimongol 0.88 0.70 9.25 1.42
Shanxi 1.00 0.81
Tianjin 4.24 7.34

Northeast
Heilongjiang 1.47 7.11 2.45
Jilin 1.73 20.96 1.53
Liaoning 5.34 0.26 5.95 6.06

East
Anhui 1.56 0.02
Fujian 3.43 7.25
Jiangsu 4.27 0.02 1.69 4.80
Jiangxi 1.90 4.35 1.35 0.01
Shandong 4.67 37.81
Shanghai 2.51 0.46
Zhejiang 3.78 0.18 6.19 0.17

Central
Henan 2.22 7.04 2.93 7.51
Hubei 3.02 5.28 1.82 2.25
Hunan 1.99 0.39 2.71 0.10

South
Guangdong 2.55 19.43
Guangxi 3.00 0.69 6.62 1.23
Hainan 1.83 10.24

Southwest
Chongqing 1.25 0.05
Guizhou 0.68 0.63 0.42 0.39
Sichuan 1.38 0.22 1.35 0.52
Xizang 0.23 0.59
Yunnan 3.50 0.50

Northwest
Gansu 0.42 5.43 3.14
Ningxia 0.49 2.43 3.40 0.02
Qinghai 0.36
Shaanxi 1.00 0.30 0.42 18.87
Xinjiang 0.94 0.09

3.3. Estimated Daily Intake of AFTs from Peanuts, Peanut Oil, Corn, and Corn Products in China

As is shown in Table 3, the estimated daily intake (EDI) of AFTs was calculated based
on consumption data and contamination data. The mean EDI was estimated to range
from 0.00 to 1.102, 0.00 to 5.251, and 0.00 to 18.447 ng/kg bw/day for peanuts, peanut oil,
corn and corn products, respectively, and the national average EDI was estimated to be
4.018 ng/kg bw/day (95% UI: 0.721, 10.955). The AFT exposure from corn was the highest,
being 26 times that of peanuts, 7.7 times that of peanuts, and 1.6 times that of peanut oil. For
AFT exposure from corn, Guangxi province was the highest (18.447 ng/kg bw/day; 95% UI:
0.468, 68.055), followed by Henan province (2.383 ng/kg bw/day; 95% UI: 0.060, 8.486). For
AFT exposure from peanut oil, Guangdong province was the highest (5.251 ng/kg bw/day;
95% UI: 0.133, 19.371), followed by Shandong province (4.673 ng/kg bw/day; 95% UI:
0.119, 17.239).
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Table 3. AFT intake through peanuts, peanut oil, corn, and corn products in China (ng/kg bw/day).

Province AFT Exposure from
Peanuts (95% UI)

AFT Exposure from
Peanut Oil (95% UI)

AFT Exposure from
Corn (95% UI)

AFT Exposure
from Corn

Products (95% UI)

AFT Exposure from
Peanut, Peanut Oil,

Corn, and Corn
Products (95% UI)

Total 0.308 (0.008, 1.138) 1.385 (0.035, 5.113) 2.238 (0.057, 8.333) 0.086 (0.002, 0.322) 4.018 (0.721, 10.955)
North
Beijing 0.033 (0.001, 0.032) 0.033 (0.001, 0.032)
Hebei 1.102 (0.027, 2.993) 1.691 (0.043, 6.239) 0.343 (0.009, 1.251) 3.136 (0.548, 7.861)
Neimongol 0.005 (0.000, 0.012) 0.005 (0.000, 0.012)
Shanxi 0.076 (0.001, 0.073) 0.076 (0.001, 0.073)
Tianjin 0.499 (0.013, 1.842) 0.499 (0.013, 1.842)

Northeast
Heilongjiang 0.010 (0.000, 0.035) 0.065 (0.001, 0.111) 0.075 (0.006, 0.123)
Jilin 0.035 (0.001, 0.050) 0.000 (0.000, 0.000) 0.035 (0.001, 0.050)
Liaoning 0.029 (0.001, 0.106) 0.007 (0.000, 0.016) 0.036 (0.003, 0.113)

East
Anhui 0.27 (0.005, 0.399) 0.270 (0.005, 0.399)
Fujian 0.951 (0.024, 3.51) 3.932 (0.100, 14.502) 4.883 (0.496, 15.664)
Jiangsu 0.230 (0.006, 0.847) 0.000 (0.000, 0.001) 0.625 (0.016, 2.305) 0.855 (0.094, 2.606)
Jiangxi 0.367 (0.009, 1.355) 0.801 (0.019, 2.195) 0.010 (0.000, 0.019) 1.178 (0.135, 2.688)
Shandong 0.166 (0.004, 0.595) 4.673 (0.119, 17.239) 4.839 (0.250, 17.307)
Shanghai 0.477 (0.012, 1.761) 0.477 (0.012, 1.761)
Zhejiang 0.633 (0.016, 2.336) 0.001 (0.000, 0.003) 0.634 (0.017, 2.337)

Central
Henan 0.211 (0.005, 0.515) 0.227 (0.006, 0.835) 2.383 (0.060, 8.486) 0.098 (0.002, 0.363) 2.919 (0.394, 8.968)
Hubei 0.337 (0.0085, 1.243) 0.144 (0.003, 0.171) 0.105 (0.003, 0.260) 0.586 (0.094, 1.399)
Hunan 0.487 (0.012, 1.796) 1.086 (0.026, 2.875) 1.572 (0.179, 3.543)

South
Guangdong 0.561 (0.014, 2.068) 5.251 (0.133, 19.371) 5.812 (0.450, 19.904)
Guangxi 0.438 (0.011, 1.615) 0.413 (0.010, 1.524) 18.447 (0.468, 68.055) 0.070 (0.002, 0.258) 19.368 (1.275, 69.105)
Hainan 0.016 (0.000, 0.058) 0.016 (0.000, 0.058)

Southwest
Chongqing 0.024 (0.001, 0.089) 0.001 (0.000, 0.001) 0.025 (0.001, 0.089)
Guizhou 0.003 (0.000, 0.007) 0.012 (0.000, 0.034) 0.015 (0.001, 0.036)
Sichuan 0.138 (0.003, 0.431) 0.138 (0.003, 0.431)
Xizang 0.000 (0.000, 0.000) 0.000 (0.000, 0.000)

0.000 (0.000, 0.000)
Yunnan 0.038 (0.001, 0.111) 0.033 (0.001, 0.084) 0.071 (0.008, 0.148)

Northwest
Gansu 0.004 (0.000, 0.015) 0.055 (0.001, 0.094) 0.06 (0.003, 0.099)
Ningxia 0.008 (0.000, 0.026) 0.008 (0.000, 0.026)
Qinghai 0.008 (0.000, 0.023) 0.008 (0.000, 0.023)
Shaanxi 0.579 (0.015, 2.133) 0.006 (0.000, 0.017) 0.011 (0.000, 0.04) 0.117 (0.003, 0.432) 0.713 (0.082, 2.304)
Xinjiang 0.002 (0.000, 0.002) 0.002 (0.000, 0.002)

AFTs include four aflatoxins: AFB1, AFB2, AFG1, and AFG2; UI: uncertainty interval.

As is shown in Figure 1, the daily exposure to AFTs from peanuts, peanut oil, corn, and
corn products was classified into five grades as 0.00–0.50, 0.51–1.00, 1.01–2.00, 2.01–5.00,
and 5.01–20.00 ng/kg bw/day. Compared with other regions, South and East China
residents had higher exposure to AFTs. Guangxi province was the highest, with up to
19.386 ng/kg bw/day, followed by Guangdong (5.812 ng/kg bw/day), Fujian
(4.883 ng/kg bw/day), and Shandong (4.839 ng/kg bw/day). Southwest, Northwest,
and Northeast China had exposures below 1.00 ng/kg bw/day.
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3.4. Risk Characterization of Dietary Intake of AFTs

The HCC risk based on AFT intake was estimated according to the quantitative
liver cancer risk approach proposed by JECFA. The HBsAg+ prevalence rate was derived
from the China National Sero-epidemiological Survey of 2006 [33]. The estimated extra
cases of HCC due to the exposure to AFTs in two groups are shown in Table 4. The
overall average HCC risk caused by AFTs in the general Chinese population was 0.125
(95% UI: 0.022, 0.338) cases/100,000 persons/year. Guangxi province presented with the
highest HCC risk of 0.959 (95% UI: 0.063, 3.423) cases/100,000 persons/year, followed
by Guangdong province with 0.359 (95% UI: 0.028, 1.230) cases/100,000 persons/year.
As published in the 2019 Annual Report of the China Cancer Registry, the incidence of
liver cancer in China was 18.09 cases/100,000 persons/year in 2016, ranging from 15.98
to 21.41 cases/100,000 persons/year. The PAF of AFT exposure from peanuts, peanut oil,
corn, and corn products accounted for 0.69% (95% UI: 0.12, 1.87) of the overall annual
liver cancer incidence and ranged from 0.00% to 4.60% in different areas. Guangxi and
Guangdong were the two highest, with contribution rates of 4.48% (95% UI: 0.30, 15.99)
and 2.25% (95% UI: 0.17, 7.69), respectively (Table 4).

The MOE value was 99.6 of AFT exposure from peanuts, peanut oil, corn, and corn
products for the general population in China. According to the estimate, 20 provinces/cities
had MOE values below 10,000, with Guangxi province having the lowest, far less than the
safe threshold (Table 4).
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Table 4. The HCC risk, PAF, and MOE of AFT exposure from peanuts, peanut oil, corn, and corn
products.

Province
Estimated

Annual
HCC/100,000

(HBV+)

Estimated
Annual

HCC/100,000
(HBV−)

HCC Risk of AFT
Exposure *,

95% UI
HCC Incidence # PAF% ˆ,

95% UI MOE

Total 0.022 0.009 0.125 (0.022, 0.338) 18.07 0.69 (0.12, 1.87) 99.6
North

Beijing 0.014 0.010 0.001 (0.000, 0.001) 15.98 0.00 (0.00, 0.00) 12,121.2
Hebei 0.013 0.010 0.072 (0.013, 0.181) 15.98 0.45 (0.08, 1.13) 127.6
Neimongol 0.019 0.009 0.000 (0.000, 0.000) 21.41 0.00 (0.00, 0.00) 80,000.0
Shanxi 0.019 0.009 0.002 (0.000, 0.002) 19.12 0.01 (0.00, 0.01) 5263.2
Tianjin 0.017 0.009 0.013 (0.000, 0.049) 15.98 0.08 (0.00, 0.31) 801.6

Northeast
Heilongjiang 0.032 0.009 0.003 (0.000, 0.005) 19.12 0.02 (0.00, 0.03) 5333.3
Jilin 0.026 0.009 0.001 (0.000, 0.002) 19.12 0.01 (0.00, 0.01) 11,428.6
Liaoning 0.039 0.009 0.002 (0.000, 0.005) 15.98 0.01 (0.00, 0.03) 11,111.1

East
Anhui 0.023 0.009 0.009 (0.000, 0.013) 19.12 0.05 (0.00, 0.07) 1481.5
Fujian 0.051 0.008 0.291 (0.030, 0.933) 15.98 1.82 (0.18, 5.84) 81.9
Jiangsu 0.020 0.009 0.025 (0.003, 0.076) 15.98 0.16 (0.02, 0.47) 467.8
Jiangxi 0.046 0.008 0.065 (0.007, 0.148) 19.12 0.34 (0.04, 0.77) 339.6
Shandong 0.022 0.009 0.154 (0.008, 0.549) 15.98 0.96 (0.05, 3.44) 82.7
Shanghai 0.022 0.009 0.015 (0.000, 0.055) 15.98 0.09 (0.00, 0.35) 838.6
Zhejiang 0.033 0.009 0.026 (0.001, 0.097) 15.98 0.16 (0.00, 0.61) 630.9

Central
Henan 0.036 0.009 0.130 (0.018, 0.399) 19.12 0.68 (0.09, 2.09) 137.0
Hubei 0.033 0.009 0.025 (0.004, 0.059) 19.12 0.13 (0.02, 0.31) 682.6
Hunan 0.023 0.009 0.051 (0.006, 0.114) 19.12 0.27 (0.03, 0.60) 254.5

South
Guangdong 0.054 0.008 0.359 (0.028, 1.230) 15.98 2.25 (0.17, 7.69) 68.8
Guangxi 0.041 0.009 0.959 (0.063, 3.423) 21.41 4.48 (0.30, 15.99) 20.7
Hainan 0.053 0.008 0.001 (0.000, 0.004) 15.98 0.01 (0.00, 0.02) 25,000.0

Southwest
Chongqing 0.034 0.009 0.001 (0.000, 0.004) 21.41 0.00 (0.00, 0.02) 16,000.0
Guizhou 0.017 0.009 0.000 (0.000, 0.001) 21.41 0.00 (0.00, 0.00) 26,666.7
Sichuan 0.031 0.009 0.006 (0.000, 0.017) 21.41 0.03 (0.00, 0.08) 2898.6
Xizang 0.052 0.008 0.000 (0.000, 0.000) 21.41 0.00 (0.00, 0.00) N/A
Yunnan 0.020 0.009 0.002 (0.000, 0.004) 21.41 0.01 (0.00, 0.02) 5633.8

Northwest
Gansu 0.024 0.009 0.002 (0.000, 0.003) 21.41 0.01 (0.00, 0.02) 6666.7
Ningxia 0.037 0.009 0.000 (0.000, 0.001) 21.41 0.00 (0.00, 0.01) 50,000.0
Qinghai 0.025 0.009 0.000 (0.000, 0.001) 21.41 0.00 (0.00, 0.00) 50,000.0
Shaanxi 0.027 0.009 0.026 (0.003, 0.084) 21.41 0.12 (0.01, 0.39) 561.0
Xinjiang 0.021 0.009 0.000 (0.000, 0.000) 21.41 0.00 (0.00, 0.00) 200,000.0

HCC: hepatocellular carcinoma; HBV+: hepatitis B surface antigen positive; HBV−: hepatitis B surface antigen
negative; MOE: margin of exposure; AFTs include four aflatoxins: AFB1, AFB2, AFG1, and AFG2; UI: uncertainty
interval. * AFT exposure from peanuts, peanut oil, corn, and corn products (cases/100,000 persons/year); # liver
cancer incidence in 2016 (cases/100,000 persons/year); ˆ population attributable fraction.

3.5. Estimated Disability-Adjusted Life Years Attributed to Dietary Exposure to AFTs in China

As shown in Table 5, the number of DALYs attributed to foodborne AFT intake was
21,625.08 (95% UI: 3878.31–58,968.04) in the Chinese population. When classified by region,
the top three regions were Guangxi, Guangdong, and Shandong (5948.01, 5595.31, 1927. 92,
respectively) (Supplementary Figure S5). The health loss per 100,000 persons due to AFT
exposure ranged from 0.00 to 11.87 DALYs. The DALY rate was the highest in Guangxi
province, with 11.87 (95% UI: 0.78, 42.34) per 100,000 persons, followed by Guangdong
province (4.44 per 100,000 persons), and those with the lowest estimates were Neimongol,
Guizhou, Xizang, Ningxia, Qinghai, and Xinjiang, with below 0.01 per 100,000 persons.
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Table 5. Estimated DALY of HCC due to AFTs in China in 2020.

Province Population
(Million)

Annual HCC Cases
(HBV+), 95% UI

Annual HCC Cases
(HBV−), 95% UI DALY Number, 95% UI DALY Rate (per

100,000), 95% UI

Total 1,411,778,724 1221.72 (219.11, 3331.44) 526.46 (94.42, 1435.58) 21,625.08 (3878.31, 58,968.04) 1.53 (0.27, 4.18)
North

Beijing 21,893,095 0.10 (0.00, 0.10) 0.07 (0.00, 0.07) 2.10 (0.03, 2.06) 0.01 (0.00, 0.01)
Hebei 74,610,235 31.52 (5.50, 79.01) 22.35 (3.90, 56.02) 666.27 (116.29, 1670.19) 0.89 (0.16, 2.24)
Neimongol 24,049,155 0.02 (0.00, 0.06) 0.01 (0.00, 0.03) 0.41 (0.01, 1.06) 0.00 (0.00, 0.00)
Shanxi 34,915,616 0.51 (0.01, 0.49) 0.25 (0.00, 0.24) 9.41 (0.15, 9.02) 0.03 (0.00, 0.03)
Tianjin 13,866,009 1.18 (0.03, 4.35) 0.65 (0.02, 2.41) 22.66 (0.58, 83.62) 0.16 (0.00, 0.60)

Northeast
Hei-

longjiang 31,850,088 0.76 (0.06, 1.25) 0.21 (0.02, 0.35) 12.01 (0.94, 19.75) 0.04 (0.00, 0.06)
Jilin 24,073,453 0.22 (0.00, 0.31) 0.08 (0.00, 0.11) 3.64 (0.07, 5.19) 0.02 (0.00, 0.02)
Liaoning 42,591,407 0.59 (0.06, 1.87) 0.13 (0.01, 0.42) 9.00 (0.83, 28.34) 0.02 (0.00, 0.07)

East
Anhui 61,027,171 3.83 (0.08, 5.66) 1.52 (0.03, 2.25) 66.24 (1.32, 97.78) 0.11 (0.00, 0.16)
Fujian 41,540,086 103.99 (10.56, 333.59) 16.82 (1.71, 53.95) 1494.44 (151.8, 4793.78) 3.60 (0.37, 11.54)
Jiangsu 84,748,016 14.32 (1.58, 43.66) 6.76 (0.75, 20.63) 260.78 (28.79, 795.19) 0.31 (0.03, 0.94)
Jiangxi 45,188,635 24.73 (2.81, 56.41) 4.50 (0.51, 10.27) 361.54 (41.15, 824.73) 0.80 (0.09, 1.83)
Shandong 101,527,453 110.40 (5.705, 394.83) 45.45 (2.35, 162.56) 1927.92 (99.61, 6894.8) 1.90 (0.10, 6.79)
Shanghai 24,870,895 2.63 (0.07, 9.72) 1.10 (0.03, 4.06) 46.15 (1.17, 170.31) 0.19 (0.00, 0.69)
Zhejiang 64,567,588 13.37 (0.355, 49.25) 3.65 (0.10, 13.45) 210.48 (5.61, 775.52) 0.33 (0.01, 1.20)

Central
Henan 99,365,519 103.56 (13.97, 318.1) 25.56 (3.45, 78.5) 1597.17 (215.46, 4905.94) 1.61 (0.22, 4.94)
Hubei 57,752,557 11.25 (1.81, 26.82) 3.01 (0.48, 7.19) 176.4 (28.31, 420.64) 0.31 (0.05, 0.73)
Hunan 66,444,864 24.04 (2.74, 54.17) 9.65 (1.10, 21.74) 416.67 (47.48, 938.8) 0.63 (0.07, 1.41)

South
Guangdong 126,012,510 392.17 (30.34, 1343.11) 60.16 (4.66, 206.05) 5595.31 (432.94, 19,162.95) 4.44 (0.34, 15.21)
Guangxi 50,126,804 396.99 (26.15, 1416.44) 83.85 (5.52, 299.19) 5948.01 (391.73, 21,222.35) 11.87 (0.78, 42.34)
Hainan 10,081,232 0.08 (0.00, 0.31) 0.01 (0.00, 0.05) 1.21 (0.03, 4.45) 0.01 (0.00, 0.04)

Southwest
Chongqing 32,054,159 0.27 (0.01, 0.96) 0.07 (0.00, 0.25) 4.15 (0.17, 15.01) 0.01 (0.00, 0.05)
Guizhou 38,562,148 0.10 (0.01, 0.24) 0.05 (0.00, 0.13) 1.86 (0.16, 4.54) 0.00 (0.00, 0.01)
Sichuan 83,674,866 3.63 (0.09, 11.34) 1.03 (0.03, 3.23) 57.67 (1.44, 180.11) 0.07 (0.00, 0.22)
Xizang 3,648,100 0.00 (0.00, 0.00) 0.00 (0.00, 0.00) 0.00 (0.00, 0.00)
Yunnan 47,209,277 0.68 (0.07, 1.42) 0.31 (0.03, 0.65) 12.24 (1.32, 25.59) 0.03 (0.00, 0.05)

Northwest
Gansu 25,019,831 0.35 (0.02, 0.59) 0.14 (0.01, 0.23) 6.08 (0.35, 10.07) 0.02 (0.00, 0.04)
Ningxia 7,202,654 0.02 (0.00, 0.07) 0.00 (0.00, 0.02) 0.31 (0.01, 1.07) 0.00 (0.00, 0.01)
Qinghai 5,923,957 0.01 (0.00, 0.03) 0.00 (0.00, 0.01) 0.20 (0.00, 0.56) 0.00 (0.00, 0.01)
Shaanxi 39,528,999 7.67 (0.88, 24.81) 2.56 (0.29, 8.28) 126.58 (14.52, 409.32) 0.32 (0.04, 1.04)
Xinjiang 25,852,345 0.01 (0.00, 0.01) 0.00 (0.00, 0.01) 0.19 (0.00, 0.22) 0.00 (0.00, 0.00)

DALY: disability-adjusted life years; HCC: hepatocellular carcinoma; HBV+: hepatitis B surface antigen-positive;
HBV−: hepatitis B surface antigen-negative; AFTs include four aflatoxins: AFB1, AFB2, AFG1, and AFG2; UI:
uncertainty interval.

4. Discussion

Peanuts, corn, and their products were the primary sources of AFT exposures to
people from foods. Our study found that these four foods had different levels of aflatoxin
contamination. The detection rate for AFTs was the highest in peanut oil, while the
concentration of AFTs was the highest in corn. A similar finding was also found by
Ji et al. [34] that the positive rate was higher in peanut oil than in peanuts, as aflatoxin
detected in peanut oil often comes from contaminated peanuts. The weighted mean of the
concentration of AFTs in corn was higher than that of the other three foods, i.e., 25.76 µg/kg,
exceeding the ML of 20 µg/kg in China. Gao et al. [35] reported that the mean concentration
of AFTs was 44.04 µg/kg, and the positive rate was 75.63% of 279 corn samples from six
provinces in China. Similar to the case in Indonesia, the overall level of aflatoxins in corn
was higher than that in peanuts [36]. It may be that corn, once infected with Aspergillus
flavus, is more likely to produce aflatoxin. Since the carcinogenic effect of aflatoxin is
not governed by a threshold, attention should be paid to contamination with AFTs, e.g.,
either peanut oil with a high positive rate or corn with a high aflatoxin concentration.
Furthermore, the positive rate of AFTs positively correlated with the number of detected
cases for peanut, peanut oil, and corn, indicating that AFT contamination may be more
severe than detected.
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Although AFTs occur naturally, factors such as climate, inappropriate storage, and food
processing contribute to AFT contamination in foods. Firstly, climatic factors are important
for AFT contamination levels. Ding et al. [37] reported that, as the latitude goes up, the
higher temperature and relative humidity might increase the risk of peanut contamination
by Aspergillus and aflatoxins. Battilani et al. [38] reported that the concentration of aflatoxin
B1 increased significantly in maize in Europe when the temperature increased by 2 ◦C
in their prediction model. According to the review of Assuncao et al. [39], the potential
consequence of climate change on the health effects of aflatoxins exposure should be
monitored in Portugal and Europe. In the present study, the regions with subtropical
climates, such as Guangdong, Guangxi, and Fujian, were found to be more conducive to
the growth of aflatoxins due to their high temperature and humid environment. Secondly,
rural households usually store post-harvest peanuts and corn in open bags on the ground,
leading to fungal infection [40]. Unpackaged food from small workshops or farmer’s
markets is also easily contaminated [40,41]. Thirdly, homemade food is widely consumed
in many rural areas in China, e.g., peanut oil; the simple traditional procedures cannot
degrade AFTs, and the poor-quality machines may lead to AFT contamination during the
production process [42]. In addition, genetic polymorphisms of toxigenic strains may affect
aflatoxin production [43].

Risk assessment results demonstrate that the attributable risk of liver cancer caused
by AFTs was relatively low in China, while some areas still had high health risks. The PAF
of AFT-induced liver cancer was 0.69% in our study, far lower than that in Liu and Wu’s
study [15]. They reported that aflatoxin played a causative role in 4.6–28.2% of all global
HCC cases in 2010 [15]. In Qin’s study, the liver cancer risk due to peanuts and peanut
oil consumption contributed 0.30–0.33% to the annual liver cancer incidence in China [14].
Our estimated PAF was higher than that in Qin’s study because only peanuts and peanut
oil were included in their research. Hepatitis B vaccine and staple-food replacement could
account for the low risk of AFTs associated with HCC in China now. Hepatitis B vaccination
increased to 60% coverage, and the HBsAg prevalence decreased by up to 12% annually
from 2000 onward [19]. Considering the combined effect of hepatitis B infection and
aflatoxin on HCC, reducing the incidence of hepatitis B could reduce the risk of AFT-
induced HCC. Replacing maize with rice in the areas with high AFT contamination was
considered one of the successful measures to reduce liver cancer in areas in China where
the aflatoxin pollution was severe in corn [44]. However, the PAF was 2.25% and 4.48% in
Guangdong and Guangxi provinces, respectively, which revealed a relatively higher risk of
AFT exposure. Furthermore, the MOE values in 20 regions were below 10,000 and should
be a cause for concern.

The estimated number of DALYs in our present study was lower than the reported
estimates. We estimated that the DALY number and DALY rate related to AFT exposure
were 21,625.08 and 1.53 per 100,000 persons, respectively. The Foodborne Disease Bur-
den Epidemiology Reference Group (FERG) estimated that the median DALY was 17 per
100,000 persons caused by aflatoxins in WPR B (including China) in 2010 [45]. Although
the estimated burden of aflatoxins was not very high in the present study, more than
20,000 years of life could be saved if some precise preventive measures could reduce the
exposure to AFTs in the Chinese population. Hence, control measures are necessary to min-
imize aflatoxin exposure, thereby saving years of life lost in relation to AFT contamination.

Although the present study has provided a national-level estimation of AFT exposure
and risk, there are several limitations. Firstly, the consumption data were obtained from the
China National Nutrition and Health Survey (CNNHS) of 2002. The dietary pattern might
have changed due to socioeconomic development during the past decade. Consequently,
using the previous consumption data would result in under- or overestimation of the
dietary AFT exposure [8]. Secondly, the typical heterogeneous distribution of aflatoxins
may lead to inaccurate exposure estimations [8]. Furthermore, while other food categories,
including rice, nuts, or beans, might also be contaminated with AFTs, the disease burden of
this AFT exposure cannot be assessed due to the insufficient data. A more comprehensive
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estimation for the overall dietary AFT exposure of the Chinese population needs to be
done in future research. Finally, although our design was accurate and reasonable, some
better approaches that systematically and comprehensively collecte representative data for
synthesis and analysis could be implemented to conduct this type of study in the future.

5. Conclusions

In conclusion, our study indicated that the disease burden of dietary AFT intake
from peanuts, peanut oil, corn, and corn products was low in the Chinese population.
Nevertheless, some subpopulations still have high AFT-related health risks in several
areas. Continuous efforts and targeted strategies are needed to control AFT contamination,
thereby reducing the disease burden of AFTs.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/nu14051027/s1, Figure S1: The framework of study design;
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