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Abstract: Particle dispersions have been widely studied inside rooms, but few databases have
examined the transmission risk of respiratory droplets outdoors. This study investigated the wind
effect on the dispersion of coughed droplets and the influence of social distancing on the infection
risk in different susceptible persons using computational fluid dynamics simulations. Infection risk
was evaluated based on direct depositions and exposure fractions. The results indicated that a reverse
and upward flow formed in front of an infected man, and it enhanced as the wind strengthened,
which transported more medium particles higher and increased the deposition on both infected
and susceptible persons. Small particles moved above the neck, and they rarely deposited on the
body. Medium particles larger than 60 µm were more likely to deposit and could reach the head of a
healthy person under stronger winds. The exposure fraction achieved peak values when numerous
particles passed the breathing zone. Although longer social distancing could alleviate the particle
deposition on the face and delay the most dangerous time, its effect on infection risk was ambiguous.
The infection risk was larger for a shorter susceptible person because more particles were deposited
on the face, and the exposure fraction contributed by particles above the neck was larger.

Keywords: cough-jet; COVID-19; droplet dispersion; virtual manikin; computational fluid dynamics;
outdoor environment; social distancing; exposure risk

1. Introduction

The epidemic of Coronavirus Disease 2019 (COVID-19), which occurred at the end
of the year 2019, has caused an abrupt disruption in the world and resulted in serious
destruction to both the economic activity and the lives of normal people. To prevent virus
transmission in a local area, lockdowns have been unwillingly adopted sometimes, and
societies were cautiously opened up after the alleviation of the disease. COVID-19 is mainly
caused by a virus called Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2),
which is usually contained in the droplets exhaled during respiratory activities, such as
sneezing, coughing, talking and even breathing. The virus contained in the respiratory
droplets can live for hours and mutate constantly [1], such as the Delta variant, which
is much more transmissible. As a result, accurately mastering the respiratory activities
is the first step for determining the mechanism of virus transmission in the air. Many
experiments have been conducted to test the number and size distributions of exhaled
droplets from a respiratory activity [2–5]. These studies have indicated that the diameters
of exhaled droplets usually range from several to thousands of micrometers, and the small
and medium particles whose diameters are less than 100 µm account for most of the
percentage. To understand the flow dynamics of respiratory activities, both spirometer and
particle image velocimetry instruments were utilized to obtain the airflow rate [5–8]. The
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above-measured data provided a detailed database and boundary conditions for further
study of respiratory droplet motion using a numerical simulation. As airborne transmission
is the main route for virus infection, understanding the transport mechanism of respiratory
droplets in the air is essential to provide effective guidelines for mitigating a potential
disease epidemic. Although theoretical models have been developed and experiments
have been conducted to investigate the dispersion of micro-droplets in the air since the
outbreak of COVID-19 [9–11], most relevant studies were performed by computational fluid
dynamics (CFD) simulations because of the flexible settings of scenarios in the CFD model.
Because of the strong virus infection risk in enclosed or confined spaces, investigations
on particle dispersion in an indoor environment have caused much concern. Such studies
included the micro-droplet transport inside airliner cabins [12–15], in a high-speed rail
cabin [16], in a coach bus [17], in hospital wards [10,11], inside elevators [18] and in other
ordinary ventilated rooms [19–22].

In enclosed spaces, ventilation may influence particle dispersion, and a large volume
of a room can be filled with germ-containing droplets, which increases the infection risk for
people living inside the room. Investigations have shown that although the infection risk is
relatively lower, there is still the possibility of infection related to outdoor activities, such
as walking, running and cycling [23–25]. Studies of virus transmission through outdoor
environments are still ongoing. Unlike the situation of indoor spaces, the dispersion of
exhaled particles is strongly affected by the meteorological conditions and the flow distur-
bance caused by a human body in an outdoor area. For large indoor spaces, the scenario
is also similar to the outdoor situation if ventilation occurs in a horizontal direction. The
investigation of the transport of exhaled droplets in an outdoor environment is important
for understanding the transmission risk of both SARS-CoV-2 and other influenza viruses
among humans. In order to prevent people from getting infected, social distancing levels of
1, 1.5 and 1.83 m (6 feet) were suggested by different organizations [25–28]. However, these
policies are only for the static airflow condition, and the effectiveness of these distances and
the virus transmission risk still need to be examined for windy conditions. Feng et al. [29]
investigated the wind speed and air humidity effects on the fate of exhaled droplets in
an outdoor environment; they also discussed the effectiveness of the N95 mask that was
manufactured without a valve on the potential exposure risks of a healthy human that
stood at a social distance of 6 feet away. Li et al. [30] studied the effects of relative humidity
on the transport of evaporative droplets in an outdoor space under a wind speed of 2 m/s;
the transmission risks were evaluated based on the viral deposition on a person standing
1 or 2 m away from the cougher. Yang et al. [31] investigated the evaporation and trans-
portation of solid-liquid droplets with diameters of 10, 50 and 100 µm in an open outdoor
environment; social distancing effects between two people with identical body shapes were
discussed under inflow wind speeds of 0.1 and 1.9 m/s.

Although several studies have examined the transport characteristics of respiratory
droplets in outdoor spaces, the virtual manikin models used in these studies were not fine
enough to accurately reproduce the airflow around a human body. Moreover, the infection
risk for a susceptible person was evaluated mainly based on the direct deposition on the
body, and the threats from the airborne transmission were not fully assessed. Another
limitation of the existing studies lies in the fact that the influence of the body features on
the infection risk was not considered. This study aimed to investigate the impact of wind
speed and the aerodynamic effects of the flow around a human body on the transport
characteristics of coughed droplets outdoors and the influence of social distancing on
the infection risk in different susceptible persons under different wind conditions. Near-
real manikin models were used in this study to accurately capture the airflow around
a human body. The flow and particle dispersion around an isolated human model was
first investigated in a long domain to check the effect of wind speed and to investigate
the particle dispersion characteristics without any interruption by other barriers located
downstream. Then, a male model and a female model with different heights were selected
as susceptible persons to study the social distancing influences on the virus transmission
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risk in different susceptible persons under different wind conditions. The infection risk was
evaluated by both direct depositions on a human body and exposure fraction around the
nose. The dispersion characteristics of different sizes of particles were analyzed in detail,
and the conclusions were finally drawn.

2. Turbulence Model Evaluations

The commonly used Reynolds-Averaged Navier-Stokes (RANS) turbulence models
in wind engineering and numerical algorithms used in this study were first evaluated to
ensure the accuracy of the CFD technique in predicting wind flow around a blunt body.
The examined RANS models were a standard k–ε model, a renormalization group (RNG)
k–ε model and a revised k–ε model proposed by Kato and Launder [32] (hereafter denoted
as the LK k–ε model).

The governing equations for a standard k–ε model are continuum, momentum and
transport equations for turbulent kinetic energy k and turbulent dissipation rate ε:

∂uj

∂xj
= 0 (1)

∂ui
∂t

= − ∂p
∂xi

−
∂
(
uiuj

)
∂xj

+
∂

∂xj

{
(ν + vt)

(
∂ui
∂xj

+
∂uj

∂xi

)}
− 2

3
∂k
∂xi

(2)

∂k
∂t

= −
∂
(
kuj
)

∂xj
+

∂

∂xj

{(
ν +

vt

σk

)
∂k
∂xj

}
+ Pk − ε (3)

∂ε

∂t
= −

∂
(
εuj
)

∂xj
+

∂

∂xj

{(
ν +

vt

σε

)
∂ε

∂xj

}
+

ε

k
(Cε1Pk − Cε2ε) (4)

where i = 1, 2, 3 and j = 1, 2, 3 indicate the three coordinate directions, p is the pressure, ν
and νt are laminar and turbulent viscosity, respectively, and σk and σε are model constants.

In an LK k–ε model, the production term Pk in the turbulent kinetic energy equation is
simply modified from the standard k–ε model and is computed as follows:

Pk = νtSΩ (5)

where S and Ω are the magnitudes of the strain rate and vorticity rate, respectively, which
are computed as follows:
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Because the airflow around a human body has some similarity to that around an
isolated high-rise building, wind tunnel experiments of airflow around a building with
a 1:1:2 shape [33] were used to validate the current CFD models. The experiment was
conducted in a wind tunnel at the Tokyo Polytechnic University. A high-rise building model
with a height of 0.2 m and a width of 0.1 m was located in a fully developed turbulent
boundary layer. The wind flow around the building was measured using a split film probe.
The Reynolds number based on the building width and inflow velocity at building height
Uh was about 28,000. The calculated wind velocities using the current turbulence models
were compared with the measured flow data.

The normalized streamwise and vertical velocities are compared in Figure 1a–c and 1d–f,
respectively. The compared positions included two vertical lines in the wake behind the
building (x/h = 0.5, x/h = 1.0) and a horizontal line above the building (z/h = 1.05). The
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CFD results obtained using the three turbulence models were in accordance with the
experimental measurements except in small areas. The difference between the results of
the standard and LK k–ε models was small. In the wake region behind the building, the
prediction accuracies of the standard and LK k–ε models were better than that of the RNG
model. However, the RNG model provided a better prediction of velocities near the front
corner above the building, where strong flow separation occurred. Figure 1g–i display
the streamlines and normalized turbulent kinetic energy obtained by CFD simulations
in the center plane of the domain. Excessive generation of turbulent kinetic energy in
the front corner of the building was observed in the standard k–ε model. Considerable
overestimations of k in the standard k–ε model have also been reported by Mochida et al. [34]
and Tominaga et al. [35] in their simulations of wind flow around a high-rise building.
Compared with the standard k–ε model, the results of the LK and RNG k–ε models exhibited
considerably lower k values, and the effective reduction of k in the LK k–ε model was
because of the modification in Equation (5).
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A clear recirculation was observed near the front corner above the building in the
simulation conducted with the RNG k–ε model; it was also shown in the results of the LK
k–ε model, but it could not be predicted by the standard k–ε model. Overall, the wind flow
predicted by the standard and LK k–ε models was better than that predicted by the RNG
model, especially in the wake region behind the building. Compared with the standard
k–ε model, the LK model could provide a better prediction of turbulent kinetic energy;
thus, it has the potential to improve the simulated results. As a result, the LK k–ε model
was selected in this study to investigate the wind flow and particle dispersion around the
human body.

3. Methodology and Computational Setups
3.1. Transport Equations of the Discrete Phase

This study treated the particles as inert ones, and evaporation and collisions between
particles were not considered. This study used an Euler–Lagrange approach to simulate the
wind flow and particle dispersion. The fluid phase was treated as a continuum by solving
the Navier–Stokes equations, while the motion equation of the discrete phase was solved
by tracking the trajectories of a large number of particles according to Newton’s second
law as follows:

mp
d
⇀
u p

dt
=

⇀
F D +

⇀
F G +

⇀
F B +

⇀
F S (8)

In which mp = πρpd3
p/6 is the mass of a particle,

⇀
u p is the velocity of a particle in

a vector form and ρp and dp are the density and diameter of a droplet, respectively. The
terms on the right side of the equation correspond to all the forces exerted onto a particle

by the fluid phase. These forces include the drag force
⇀
F D caused by friction, the gravity
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⇀
F G

(
= mp

⇀
g
)

, the buoyant force
⇀
F B and the additional forces

⇀
F S. If the droplets are

considered to be spheres and noting that the direction of the drag force is always opposite
to the direction of the relative velocity, then the spherical drag law is used to obtain the
drag force as follows:

⇀
F D = −1

8
πCDρd2

p ×
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∣∣∣(⇀u p −
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u
)
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In which CD is the drag coefficient, ρ is the density of air and
⇀
u is the vector velocity of

the fluid phase. The buoyant force is calculated according to Archimedes’s law as follows:

⇀
F B = − ρ

ρP
mp

⇀
g (10)

The additional forces exerted onto the particles include virtual mass force, pressure
gradient force, Brownian force and Saffman lift force. These additional forces were ignored
in this study because the virtual mass and pressure gradient forces are not important when
the density of the fluid is much lower than the density of the particles, and the Brownian
and Saffman’s lift forces are only important for sub-micron particles.

3.2. Simulation Arrangements and Mesh Systems

This study aimed to investigate the synthetic effect of wind speed and social distancing
on the infection risk in different styles of a susceptible person. A total of 15 simulations were
performed, as shown in Table 1. Cases 1–3 were conducted for an isolated human model to
examine the wind speed and the aerodynamic effect of the airflow around a human body
on the transport characteristics of the exhaled particles. Cases 4–15 were performed for
two human models with different wind speeds and social distancing levels to evaluate
the infection risk for different styles of a susceptible person who stood downstream of an
infected man. Three inflow wind velocities of Vin = 1.8, 3.6 and 5.4 m/s were examined
in this study. The above-mentioned wind speeds covered a wind level from a light to a
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moderate breeze, and in these meteorological conditions, the communications between
people usually occurred in an outdoor environment. The social distancing levels of Ld = 1
and 2 m were studied because the distances within the range of 2 m were usually suggested
by different organizations as the smallest safe distance to prevent the transmission of
SARS-CoV-2 between individuals during the COVID-19 pandemic. Although longer social
distancing is recommended, longer social distancing was not considered in this study
because people usually tend to communicate with each other at a moderate distance to
facilitate communication, even during the COVID-19 epidemic.

Table 1. Simulation cases.

Inflow Wind Speed

V in = 1.8 (m/s) V in = 3.6 (m/s) V in = 5.4 (m/s)

Isolated human model Case 1 Case 2 Case 3

Male to male
Ld = 1 m Case 4 Case 5 Case 6

Ld = 2 m Case 7 Case 8 Case 9

Male to female
Ld = 1 m Case 10 Case 11 Case 12

Ld = 2 m Case 13 Case 14 Case 15

Because the airflow around a human body may influence particle dispersion, the use
of a near-real manikin model and accurate representation of the wind flow around the body
is important for the study of droplet transport in outdoor spaces. In order to capture the
detailed features of real people and to calculate the heat transmission between the body and
indoor environment accurately, some famous virtual manikin models have been designed
by the ITO Laboratory [36]. The virtual manikins used in this study were adult male and
adult female models in a standing posture, and they were made according to the main
parameters designed by the ITO Laboratory. Table 2 compares the models created in this
study and that designed by the ITO Laboratory in detail. Except for the detailed posture
and surface curves, the manikin models created in this study were quite similar to that
designed by the ITO Laboratory, which represented the typical characteristics of East Asian
people. The heights of the body H are 1.74 and 1.60 m for a male model and a female model,
respectively. A ponytail hairstyle was designed for the female model, which made her head
width a little wider. According to the experiments conducted by Gupta et al. [6], the mouth
opening area during coughing was about 4.00 ± 0.95 cm2 for an adult male. A mouth
opening area of 6.2 cm2, which was a little larger than the tested size in the experiment,
was used for the infected man in this study to represent a coughing activity.

Table 2. Detailed parameters of the manikin models used in this study.

Male Model Female Model

This Study ITO [36] This Study ITO [36]

Whole body area (m2) 1.98 1.75 1.42 1.32

Body height H (m) 1.74 1.74 1.60 1.59

Waist height (m) 1.14 1.13 1.00 1.03

Waist width (m) 0.265 0.268 0.192 0.197

Head width (m) 0.15 0.15 0.16 0.14

Mouse area (m2) 0.00062 — 0.00055 —

Mouse width (m) 0.042 0.052 0.035 0.042

Hair No No Yes No

The domain size and arrangement of the simulation are shown in Figure 2a. An
infected man stood in a windy environment with his back facing the oncoming wind,
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which can cause the riskiest situation to a susceptible person standing downstream [37].
The cough suddenly occurred during communication. This study simulated the transport
characteristics of the exhaled droplets using an isolated human model and evaluated the
infection risk for a susceptible person standing downstream using two human models.
The dimensions of the domain are 2H in both the span-wise and vertical directions. The
distance between the infected man and the inlet boundary is H. For simulations with
only an isolated human model, a long domain of 10H from the infected man to the outlet
boundary was adopted to investigate the dispersion and deposition patterns of the particles.
For simulations in which two human models were included, except for the social distancing
level Ld between two humans, another distance of 2H was used from the susceptible person
to the outlet to exclude the influence of the outlet boundary on the flow and dispersion. A
short domain downstream of a susceptible person was used because the particles that have
left a susceptible person were not of any importance. The zero-coordinate position was set
near the heel of the infected man.

Toxics 2022, 10, x FOR PEER REVIEW 8 of 24 
 

 

 
(a) 

  
(b) (c) 

Figure 2. Computational domain and mesh distributions around the human body: (a) Computa-
tional domain; (b) Mesh distributions around the infected man; (c) Mesh distributions around a 
susceptible person. 

3.3. Boundary Conditions and Numerical Algorithms 
Inflow wind velocities of Vin = 1.8, 3.6, and 5.4 m/s were set to investigate the effect of 

wind speed on particle dispersion. The top and two lateral boundaries of the domain 
were set to be symmetrical (the normal gradient was zero for all flow variables). The 
pressure outlet condition (gauge pressure was zero) was given to the outlet boundary. 
The envelopes of the human body and the ground were set to the wall, and a wall func-
tion was used to deal with the near-wall flow. 

A cough activity was selected as the particle source in this study because a cough is 
one of the prime sources of airborne diseases and produces a large quantity of droplets. 
The characteristics of a cough-jet are determined by its airflow rate and the number of 
exhaled droplets in different sizes. Figure 3 presents the cough-jet boundary conditions 
used in this study at the mouth of the infected man. A transient volumetric flow rate was 
set for a single cough according to the coughing experiments conducted by Gupta et al. 

Figure 2. Computational domain and mesh distributions around the human body: (a) Computa-
tional domain; (b) Mesh distributions around the infected man; (c) Mesh distributions around a
susceptible person.



Toxics 2022, 10, 294 8 of 24

Figure 2b,c display the mesh distributions on the surfaces of and around the infected
man and a susceptible person downstream. Unstructured mesh systems were used for all
simulations. A total number of 5,000,000 and 7,000,000 cells were adopted for Cases 1–3
(isolated human model) and Cases 4–15 (two human models), respectively. For the body
surfaces and regions near the human model, denser meshes were adopted to capture the
curved geometry configurations and airflow around the manikin. The nondimensional
distance y+ on the body surfaces was between 10 and 30 in most regions for all simulations,
and a logarithmic law was used to deal with the near-wall flow. A scalable wall function
was adopted to avoid deterioration of the standard wall functions under grid refinement
below y+ < 12.

3.3. Boundary Conditions and Numerical Algorithms

Inflow wind velocities of Vin = 1.8, 3.6, and 5.4 m/s were set to investigate the effect of
wind speed on particle dispersion. The top and two lateral boundaries of the domain were
set to be symmetrical (the normal gradient was zero for all flow variables). The pressure
outlet condition (gauge pressure was zero) was given to the outlet boundary. The envelopes
of the human body and the ground were set to the wall, and a wall function was used to
deal with the near-wall flow.

A cough activity was selected as the particle source in this study because a cough is
one of the prime sources of airborne diseases and produces a large quantity of droplets. The
characteristics of a cough-jet are determined by its airflow rate and the number of exhaled
droplets in different sizes. Figure 3 presents the cough-jet boundary conditions used in this
study at the mouth of the infected man. A transient volumetric flow rate was set for a single
cough according to the coughing experiments conducted by Gupta et al. [6]. The number of
exhaled droplets of different sizes was determined according to the experiments performed
by Duguid [2], which were reproduced by Bourouiba et al. [38]. Detailed particle size and
number distributions from one cough are summarized in Table 3. A total of 4973 droplets
were exhaled from one cough, and the size of the droplets ranged from several micrometers
to thousands of micrometers. The majority of droplets were concentrated at diameters
of 8, 16, and 24 µm. The droplets were injected into the flow field at the initial stage of
a cough-jet, and the motions of the droplets were determined by the airflow and their
weights and buoyancies. A “trap” condition was used for the particles for the ground and
envelopes of the human body; while an “escape” condition was adopted for the outlet
boundary, which meant that the tracking of a particle was stopped when it reached a wall
and an outlet boundary.
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Table 3. Particle size and number distributions from one cough [38].

dp (µm) 2 4 8 16 24 32 40 50
Number 50 290 970 1600 870 420 240 110
dp (µm) 75 100 125 150 200 250 500 1000
Number 140 85 48 38 35 29 34 14

The second-order Upwind scheme for the convection term, which is commonly used
in wind engineering, was adopted for simulations. The SIMPLE algorithm was used for the
pressure–velocity calculations. Steady simulations were first performed to achieve a steady
flow field, and they were used as the initial conditions for simulations of particle dispersion.
Transient simulations were opened up when coughing started to track the motions of the
particles at each time. A time step of ∆t = 10−3 s was adopted, and 15 iterations were
performed in each time step to make the simulations stable. The simulations were stopped
when the total time reached 15 s or when there were no particles in the domain.

4. Results and Discussion
4.1. Airflow and Particle Dispersions around an Isolated Human Model

Figure 4 displays the mean streamlines and U/Vin in the center plane of the domain
(y = 0) for the case of Vin = 1.8 m/s. A large area of the reverse-flow region was observed
in front of the body, mainly located between the height of the waist and nose, which was
probably caused by the upward flow after passing through the two legs. This reverse-flow
region lasted around 0.5 m in the streamwise direction, and the entire mouth was immersed
in the reverse-flow region, which could strongly affect the dispersion of exhaled particles
from the mouth. The separation line between the downward and upward flows was located
around the height of the nose position. Strong acceleration of the wind speed was observed
between the two legs because of the Venturi effect. The other regions in which the wind
velocity was accelerated included the area above and on the two sides of the head.
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Figure 5 presents the normalized streamwise velocity in a vertical line in the wake
(about 0.2 m in front of the infected man) for simulations of an isolated human model. To
examine the sensitivity of the mesh density, two additional calculations were conducted
using a lower number of grids (2,200,000) and a higher number of grids (8,600,000) for the
case of Vin = 1.8 m/s. The results indicated that the calculated flow fields were insensitive
to mesh density. For the cases using different inflow wind speeds, the calculated U/Vin in
front of the infected man coincided quite well with each other, which indicated that the
Reynolds number independent phenomenon was well achieved for the studied range of
inflow wind speed. As a result, the reverse flow became stronger in the wake region when
the oncoming wind was strong.
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Figure 6 displays the droplet distributions around the isolated human model at times
of 0.5 and 1.0 s for the cases of different wind speeds. The particles moved and followed the
main wind direction in a narrow zone downstream from the infected man. The dispersion
characteristics were quite different for different sizes of particles. Particles larger than
400 µm in diameter were not easily affected by the flow, and they dropped quickly because
of their large gravities. Medium particles were more likely affected by both the flow field
and their gravities. However, small particles moved and followed the streams because
of their small inertia. The particles dispersed widely with the passage of time, and the
wind speed had a considerable influence on particle dispersion. At the same instant, the
particles were dispersed widely and were blown downstream quickly when the inflow
wind was strong. As discussed previously, the reverse and upward flow became stronger
in the wake when the inflow wind velocity was larger. As a result, for conditions with a
strong wind speed, some medium particles first dropped to the reverse-flow region due
to their relatively large gravities and then they were blown back to the body because of
the strong reverse flow. As shown in Figure 6a–c, most of the dark-yellow particles were
located below the chest and slightly away from the body for Case 1; while they were located
near the chest for Case 2 and near the neck for Case 3. The stronger reverse and upward
flow in the wake also made some medium particles move to a higher position, which could
be clearly observed by the motions of medium particles with green and light-yellow colors.
For Cases 2 and 3, many medium particles were even thrown up to a position higher than
the eyes by the strong upward flow in the initial stage of coughing because of their large
inertia, which could pierce through the streamlines. With the passage of time, the positions
of medium particles also began to descend. It was noted that the droplets moved faster
on the two sides of the wake in the initial stage because the velocity on the two sides was
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higher than that in the center location. Although not shown, the results from later time
steps showed that most small particles whose diameters were less than 60 µm could be
transported downstream at a very long distance, and there was still no deposition tendency
for the very small particles less than 10 µm. As a result, no safety distance can be assured
for a susceptible person who stands downstream during communication. Except that some
medium particles were found to be transported above the eyes in the initial stage under
strong wind conditions, as shown in Figure 6, all particles were moving at a level below
the mouth height in downstream stations. As a result, a person can avoid being infected by
the virus-containing droplets through airborne transmission if they have a greater height.
The results also indicated that a strong wind speed can carry larger droplets far away and
increase the exposure risk for people standing downstream.

Toxics 2022, 10, x FOR PEER REVIEW 12 of 25 
 

 

 

   
(a) (b) (c) 

   
(d) (e) (f) 

Figure 6. Droplet distributions around an isolated human model (side and top views): (a) Vin = 1.8 
m/s, t = 0.5 s; (b) Vin = 3.6 m/s, t = 0.5 s; (c) Vin = 5.4 m/s, t = 0.5 s; (d) Vin = 1.8 m/s, t = 1.0 s; (e) Vin = 3.6 
m/s, t = 1.0 s; (f) Vin = 5.4 m/s, t = 1.0 s. 

Figure 7a presents the deposition fractions on the human body and ground. It is 
clear that the number of droplets deposited on the ground gradually decreased as the 
inflow wind velocity increased because more medium particles have the chance to be 
blown downstream and escape from the domain under strong wind conditions. The 
number of particles deposited on the human body gradually increased when the inflow 
wind velocity increased from 1.8 to 3.6 m/s, and it suddenly increased to a high fraction 
of about 14% for the case of Vin = 5.4 m/s. The increase in the number of depositions on the 
human body was mainly caused by the strengthening of the reverse and upward flow in 
the wake under strong wind conditions. For the strongest wind condition studied in this 
research (Vin = 5.4 m/s), depositions of the droplets were even found on the nose of the 
infected man, which led to the possibility that these particles could be inhaled by the in-
fected man once again. Figure 7b shows the fractions of suspended particles at each time 
under each wind condition. An initial gradual decrease and then a sudden decrease at 
some instant for suspension fraction was observed for all simulations. The gradual de-
crease in the suspension fraction during the first stage was mainly because of depositions 
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Figure 7a presents the deposition fractions on the human body and ground. It is clear
that the number of droplets deposited on the ground gradually decreased as the inflow
wind velocity increased because more medium particles have the chance to be blown
downstream and escape from the domain under strong wind conditions. The number of
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particles deposited on the human body gradually increased when the inflow wind velocity
increased from 1.8 to 3.6 m/s, and it suddenly increased to a high fraction of about 14%
for the case of Vin = 5.4 m/s. The increase in the number of depositions on the human
body was mainly caused by the strengthening of the reverse and upward flow in the wake
under strong wind conditions. For the strongest wind condition studied in this research
(Vin = 5.4 m/s), depositions of the droplets were even found on the nose of the infected
man, which led to the possibility that these particles could be inhaled by the infected
man once again. Figure 7b shows the fractions of suspended particles at each time under
each wind condition. An initial gradual decrease and then a sudden decrease at some
instant for suspension fraction was observed for all simulations. The gradual decrease in
the suspension fraction during the first stage was mainly because of depositions of some
large and medium particles on the ground. However, the sudden decrease in the number
of particles in the domain occurred because many small and medium particles had been
blown to the outlet boundary, and they escaped from the domain in groups. The time at
which the suspension fraction suddenly decreased was about 12, 6 and 4 s for the cases of
Vin = 1.8, 3.6 and 5.4 m/s, respectively. As a result, a strong wind can blow the exhaled
droplets downstream more quickly.
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4.2. Droplet Transmission between the Infected Man and a Susceptible Person

Figure 8 displays the wind flow around the two human models for the cases of
Vin = 3.6 m/s. The wind was accelerated between the two legs of both the upstream and
downstream persons because of the Venturi effect. In addition, a large area of the reverse-
flow region was observed in front of the infected man in the wake region. From the
observations of these three-dimensional streamlines, it is very clear that this reverse-flow
area was caused by both the flow coming from regions between the two legs and the arms
and human body. Downward flow was observed after flow separation from the top head
of the infected man, which made dispersion of the small particles difficult above the head
after being exhaled from the mouth. Susceptible persons standing downstream were totally
located in the wake of the infected man. A reverse-flow region having a hump shape was
observed behind the female model that stood downstream mainly because of the small
waist-hip ratio in a female model. For the case with 1-m social distancing, the reverse-flow
region in front of the infected man was interrupted a bit by the downstream person.

Figures 9 and 10 display droplet distributions around the two human models at
different times when the inflow wind was weak (Vin = 1.8 m/s) for the cases with 1-m and
2-m social distancing, respectively. The particles gradually dispersed downstream with
the passage of time, and the dispersion patterns were obviously different for the particles
that were smaller than or larger than 60 µm. Small particles that were less than 60 µm were
moving over the chest, and they were more threatening to a susceptible person who stood
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downstream. Medium particles larger than 60 µm had less chance of arriving at the upper
body of a susceptible person under a weak wind condition. It seems that the particles with
diameters ranging from 30 to 60 µm could easily be trapped in the regions between the two
humans. It was observed that many particles were still suspended in the regions between
the two persons at the time of t = 4.0 s because of the reverse flow in front of the infected
man. The vanguard of small particles began to pass through the upper body from about
t = 2.0 s for the case with 1-m social distancing and from t = 3.0 s for the case with 2-m social
distancing. As a result, the arrival time of the virus-containing droplets can be extended
when the two persons stand at a larger social distance, which can provide a longer time for
a susceptible person to cover his/her mouth and nose. Because the small particles have less
inertia and are more easily affected by the wind flow, most small particles were moving
along the two sides of the head or neck when they passed through the susceptible person.
Small particles were mainly moving below the nose for the case with 1-m social distancing
and at the height of the neck for the case with 2-m social distancing when they passed
through the male model. However, most small particles passed through the two sides of
the face of the female. As a result, the infection risk was greater for a susceptible female or
person who has a relatively shorter height because the virus-containing droplets can more
easily be inhaled by the mouth and nose that are located on the face.
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Figure 11 displays droplet distributions around a female model under stronger wind
conditions at some representative instants, at which time many particles passed through
a susceptible female. Compared to the situations under a weak wind condition shown
in Figures 9d and 10d, it is obvious that many medium particles whose diameter were
larger than 60 µm were transported to a higher position in the initial stage and had more
chance of being thrown towards the face of a susceptible person under a stronger wind
condition. In Figure 11a,c (Vin = 3.6 m/s), most green particles, the diameters of which
ranged from 60 to 120 µm, had passed through the two sides of the face of a susceptible
female. In Figure 11b,d (Vin = 5.4 m/s), most light-yellow particles, the diameters of which
ranged from 120 to 180 µm, had passed through the face of a susceptible female. For the
cases with 1-m social distancing, some medium particles were also found to move along
the two sides of the head when the downstream person was a susceptible male in strong
wind conditions.
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Figure 9. Droplet distributions around two persons at different times (Ld = 1 m, Vin = 1.8 m/s):
(a) Male to male model, t = 1.0 s; (b) Male to male model, t = 2.0 s; (c) Male to male model, t = 3.0 s;
(d) Male to female model, t = 1.0 s; (e) Male to female model, t = 2.0 s; (f) Male to female model,
t = 3.0 s.
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Figure 12 presents the changes in deposition fractions on the body of an infected
man and a susceptible female as the wind speed increased. For both the cases with 1-m
and 2-m social distancing, the deposition fraction on the infected man increased with the
increase in the inflow wind speed, which exhibited a similar tendency to that shown in
Figure 7a for cases of an isolated human model. The slight difference between the two
figures may be because of flow interruptions by a susceptible person downstream for the
cases of two human models. The deposition fraction of a susceptible person downstream
also exhibited an increase with the wind speed, but both the number of depositions and the
increasing speed of deposition fractions were much smaller than that shown for an infected
man. An increase in the deposition fraction on both the infected man and susceptible
person may increase the infection risk among other people through contact transmission
by touching under a stronger wind condition. It is worth noting that compared with
the cases with 1-m social distancing, the deposition fraction increased slightly when the
social distancing level was 2 m under a stronger wind speed. Therefore, when evaluating
the social distancing effect on the infection risk, the meteorological conditions should be
considered in a windy environment. The research conducted by Feng et al. [29] showed
that the deposition fractions on both the infected man upstream and a susceptible male
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downstream decreased considerably when the wind speed increased from 3.9 to 5.5 m/s if
evaporation and condensation were considered. As a result, more research is still needed
to understand the evaporation and condensation effects on the fates of exhaled particles.
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The deposition numbers of different sizes of droplets on a susceptible person are
presented in Figure 13 to study the infection risk of each kind of droplet. Each bar in
Figure 13 was a summation of the number from the total of six simulations for each sex of a
susceptible person. It was observed that the number of depositions on a susceptible person
was lower for particles less than 60 µm because small particles had small inertia, and they
usually moved towards the two sides of the body due to flow separation. The number of
depositions was also lower for particles larger than 400 µm because these large particles
dropped quickly because of their large gravities. The depositions of the particles with a
500 µm diameter were only found under a strong wind condition and with short social
distancing, and the deposited positions were only on the legs. Most of the depositions
occurred under stronger wind conditions of Vin = 3.6 and 5.4 m/s. The droplets with
diameters ranging from 75 to 150 µm were more likely to be deposited on the body of a
susceptible person because these medium droplets can be easily affected by both the wind
flow and their inertia, and they have more chance of piercing through the streamlines.
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The number of particles deposited on the face of a susceptible person is listed in
Table 4 to judge the extremely risky situations. For the six simulations of male to male
models, the depositions on the face of the susceptible male were found in only one case
(Ld = 1 m, Vin = 5.4 m/s). However, particle depositions were found on the face of the
susceptible female in most of the cases. The diameters of the deposited particles on the face
of the susceptible female ranged from 32 to 150 µm, and most particles were larger than
60 µm. The deposition of medium particles larger than 60 µm occurred mainly because
of the strong wind, which first transported these medium particles to a higher position
and then threw them directly on the face of the susceptible female due to the relatively
shorter height of the female model. As a result, the infection risk is somewhat greater when
the downstream person is a susceptible female. Compared to the cases with 1-m social
distancing, the 2-m social distancing appeared to reduce the particle (especially for particles
with a relatively large diameter) depositions on the face.

Table 4. Number of particles deposited on the face of a susceptible person.

Cases

V in = 1.8 m/s V in = 3.6 m/s V in = 5.4 m/s

Male to male
Ld = 1 m 0 0 2

Ld = 2 m 0 0 0

Male to female
Ld = 1 m 4 4 16

Ld = 2 m 0 0 20

4.3. Exposure Fractions

Except for direct depositions on the body and face of a susceptible person, another
important index called exposure fraction was also used to evaluate the infection risk from
airborne transmission. The calculation of the exposure fraction is as follows:

fe,t =
nt

N
(11)

where f e,t is the exposure fraction, and nt is the total number of particles that are suspended
in the breathing zone of a susceptible person at an instant. N = 4973 was the total number
of particles that were exhaled by one cough. A distance between the spatial locations of
a particle and the nose less than 0.2 m was used to judge whether a particle was located
inside the breathing zone or not. The particles suspended in the breathing zone can be
more threatening to a susceptible person because these particles have more chance of being
inhaled by a person or of being deposited on the face of a person if he or she moves slightly.

Figure 14a,b present the exposure fractions for a susceptible male and susceptible
female at different instants, respectively, in which the solid symbols indicate the cases with
1-m social distancing and the hollow symbols indicate the cases with 2-m social distancing.
Black, red and blue colors show the cases for Vin = 1.8, 3.6 and 5.4 m/s, respectively.
Overall, similar distribution patterns of the exposure fraction were observed for both male
and female models. For all simulations, the exposure fraction had a peak value at a time
when many small and some medium particles passed through the head in groups, and the
exposure risk was highest for a susceptible person who stood downstream. The highest
peak value appeared for the case with 1-meter social distancing and 3.6 m/s inflow wind
speed. For most of the meteorological conditions, the effect of social distancing on the
peak value of the exposure fraction was small except when the inflow wind speed was
equal to 3.6 m/s, in which situations the peak value dropped when the social distancing
level extended from 1 to 2 m. It is worth noting that compared with the situation of 1-m
social distancing, a considerable increase in the peak value was observed for the case of
Vin = 1.8 m/s when the downstream person was a female and a slight increase in the peak
value was observed for the case of Vin = 5.4 m/s when the downstream person was a male
when the social distancing level was 2 m. Although the social distancing effect on the
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infection risk is not clear, longer social distances can obviously delay the arrival time for
the peak value of the exposure fraction under the same wind condition. It was noticed that
for the cases with the same social distancing, although the peak value occurred later, the
waves were wider when the inflow wind was weak, which means that a longer risky time
will be provided under a weak wind condition. The exposure fractions decreased quickly
after the time t = 6 s, and they were only slightly greater than zero for all simulations. For
the cases with the same social distancing and under the same wind condition, the values of
exposure fraction were slightly greater when the susceptible person was a male.

Toxics 2022, 10, x FOR PEER REVIEW 20 of 24 
 

 

 
(a) 

 
(b) 

Figure 14. Exposure fractions for a susceptible person at different times: (a) Male to male model; (b) 
Male to female model. 

For the cases with 2-m social distancing, as shown in Figure 10, most small particles 
were moving at the height of the neck and face positions while passing through a sus-
ceptible male and female, respectively. As a result, compared with the situation of a fe-
male model, a higher value of the exposure fraction for a male does not absolutely mean a 
higher infection risk. The exposure fractions contributed by the particles in the breathing 
zone but above the neck are presented in Figure 15 for the cases with 2-m social distanc-
ing, in which the solid symbols were the results of male models and the hollow symbols 
were the results of female models. Black, red and blue colors indicate the wind conditions 
of Vin = 1.8, 3.6 and 5.4 m/s, respectively. If we use the bottom height of the jaw as the 
separation line, the particles located in the breathing zone but above this height can 
generate more infection risk in a susceptible person. As shown in Figure 15, except under 
the condition of Vin = 5.4 m/s, in which the difference between the exposure fraction of a 
male and female was small, the exposure fraction contributed by the particles above the 
neck was obviously larger when the downstream person was a female. As a result, for the 
cases with larger social distancing, the infection risk was usually greater when a female 
stood downstream of an infected man in most of the situations. It should be stated that 
simulations with 2-m social distancing under a weak wind condition in this study had 
more realistic significance because people usually communicate with each other under 
the condition of a lower outdoor wind speed and with moderate social distancing. 

Figure 14. Exposure fractions for a susceptible person at different times: (a) Male to male model;
(b) Male to female model.

For the cases with 2-m social distancing, as shown in Figure 10, most small particles
were moving at the height of the neck and face positions while passing through a susceptible
male and female, respectively. As a result, compared with the situation of a female model, a
higher value of the exposure fraction for a male does not absolutely mean a higher infection
risk. The exposure fractions contributed by the particles in the breathing zone but above
the neck are presented in Figure 15 for the cases with 2-m social distancing, in which the
solid symbols were the results of male models and the hollow symbols were the results
of female models. Black, red and blue colors indicate the wind conditions of Vin = 1.8, 3.6
and 5.4 m/s, respectively. If we use the bottom height of the jaw as the separation line, the
particles located in the breathing zone but above this height can generate more infection risk
in a susceptible person. As shown in Figure 15, except under the condition of Vin = 5.4 m/s,
in which the difference between the exposure fraction of a male and female was small, the
exposure fraction contributed by the particles above the neck was obviously larger when
the downstream person was a female. As a result, for the cases with larger social distancing,
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the infection risk was usually greater when a female stood downstream of an infected man
in most of the situations. It should be stated that simulations with 2-m social distancing
under a weak wind condition in this study had more realistic significance because people
usually communicate with each other under the condition of a lower outdoor wind speed
and with moderate social distancing.
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Figure 15. Exposure fractions contributed by particles above the neck (Ld = 2 m).

As small particles are more likely to be breathed in through the mouth or nose and
contribute the most to airborne transmission of viruses, the dispersion characteristics of
small particles with a diameter of less than 60 µm were analyzed in detail for the male to
female model case with 2-m social distancing under the wind condition of Vin = 1.8 m/s, as
shown in Figure 16. Figure 16a presents the suspension fraction of different small particles
with the time duration. Small particles whose diameters were less than 30 µm exhibited
similar dispersion patterns, and their suspension fractions dropped suddenly from the time
t = 6.0 s. As the diameter of the particle increased, the time at which the suspension fraction
began to decrease was delayed, and the decreasing speed of the suspension fraction became
lower. It was worth noting that for particles with diameters of 40 and 50 µm, although
their total fractions were small, they could stay or were trapped for a longer time between
two persons, and as a result, they could be constantly threatening to a susceptible person
downstream. The time at which the suspension fraction began to decrease was even
delayed to t = 10 s for the particles with a diameter of 50 µm.
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Figure 16. Suspension fraction and exposure fraction of small particles at a time duration (male
to female model, Ld = 2 m, Vin = 1.8 m/s): (a) Suspension fraction of small particles; (b) Exposure
fractions from different sizes of small particles.
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The exposure fractions from different ranges of particles are presented in Figure 16b,
in which the exposure fractions were obtained by the number of particles located in the
breathing zone, divided by their individual numbers but not the total number N. It was
observed that the exposure fractions of particles whose diameters were less than 10 µm and
ranged from 10 to 30 µm had a peak value at the time around t = 4.0 s, but the peak value
was slightly delayed and another peak value was observed at the time around t = 7.0 s
for the particles ranging from 30 to 60 µm. The peak values of exposure fractions were
about 0.076, 0.144 and 0.13 for the particles that were less than 10 µm, ranged from 10 to
30 µm and from 30 to 60 µm, respectively. This means that compared with the extremely
small particles (dp < 10 µm), the relatively larger particles are more likely to approach
the breathing zone when passing through the body and can be more threatening to a
susceptible person. Two peak values of the exposure fraction for the particles ranging from
30 to 60 µm indicated a long duration of exposure risk generated by these particles.

5. The Limitations

Although various cases were conducted, this study still has limitations. The turbulent
flow around a blunt body cannot be accurately captured by a RANS turbulence model.
As a result, large-eddy simulation is necessary to be conducted in future studies. For real
situations, airflow and particle dispersions may be affected by other factors, such as the
body features, the human posture, the initial injection method for the particles and the
braking effect on local airflow by a surgical mask. Further studies on the influence of these
factors can help to thoroughly understand the transmission characteristics of respiratory
droplets in outdoor environments. This study only concerned the dispersion of particles
generated from one cough. Particle dispersion caused by a continuous source, such as
talking and breathing, is also necessary to be investigated. An additional limitation of
this study is that the evaporation effect was not considered, while the evaporation effect
becomes important for an environment with lower humidity.

6. Conclusions

This study used transient CFD simulations to investigate the impact of wind speed
and airflow around a human body on the dispersion of coughed droplets in an outdoor
space. The influences of social distancing on the infection risk in different susceptible
persons were evaluated under different wind conditions based on the direct deposition
on the body and the exposure fraction around the nose. The exposure risks from different
sizes of particles were also discussed. The main conclusions of this study are as follows:

(1) A reverse and upward flow was created in the wake of the infected person, and it
became stronger as the wind speed increased. The enhanced reverse and upward flow
transported more particles backward and more medium particles to a higher position
and increased the number of depositions on a human body. Stronger wind can blow
the particles downstream quickly and reduce the number of particles deposited on
the ground.

(2) The dispersion patterns of particles with different sizes were different. Medium
particles larger than 60 µm had less chance of reaching the upper body of a susceptible
person under a weak wind condition, while many of them can be transported to higher
locations and have more chance of being thrown toward the face of a susceptible
person under a stronger wind condition. Particles smaller than 60 µm were moving at
the height of the head or neck as they passed through a susceptible person. Particles
with diameters ranging from 30 to 60 µm were trapped for a longer time between
two persons and were more likely to approach the breathing zone of a susceptible
person; as a result, they can be largely and continuously threatening. Many small and
some medium particles passing through the breathing zone of a susceptible person
simultaneously led to the peak value of the exposure fraction.

(3) The deposition of particles on both an infected man and a susceptible person increased
with the increase in wind speed. Most of the depositions occurred under stronger
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wind conditions. The particle depositions were rarely observed on the face of a
susceptible male, but they were found on the face of a susceptible female in most of
the cases. Droplets with diameters ranging from 75 to 150 µm were more likely to
deposit on the body of a susceptible person.

(4) Compared with the cases with 1-m social distancing, the deposition fraction increased
slightly when the wind speed was larger, and an increase in the peak value of the
exposure fraction was observed for a susceptible person in some situations when the
social distancing was 2 m. Longer social distancing can alleviate the deposition of
particles on the face and delay the arrival of the riskiest time for a susceptible person.
As a result, the effect of social distancing on the infection risk was not distinct in a
windy environment.

(5) The infection risk was evaluated for different styles of a susceptible person in a windy
condition. Stronger wind had the potential to create a greater risk of instantaneous
exposure. A susceptible person can avoid being infected by the virus-containing
droplets through airborne transmission if they have a greater height. Compared with
the situations for a susceptible male, the infection risk was somewhat greater for a
susceptible female that had a shorter height because more particles were deposited on
the face and the exposure fractions contributed by the particles above the neck were
greater in most cases.

This study discussed the infection risk of the SARS-CoV-2 virus that was contained in
the droplets generated by a cough activity. The results and conclusions of this study can be
of valuable reference for the assessment of infection risk to other types of bacteria, such as
influenza virus, from airborne transmissions.
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