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Abstract
During the last decade, gold-catalyzed reactions have become a tour de force in organic synthesis. Recently, the gold-, Brønsted

acid- or Lewis acid-catalyzed oxygen transfer from carbonyl to carbon–carbon triple bond, the so-called alkyne–carbonyl

metathesis, has attracted much attention because this atom economical transformation generates α,β-unsaturated carbonyl deriva-

tives which are of great interest in synthetic organic chemistry. This mini-review focuses on the most recent achievements on gold-

catalyzed oxygen transfer reactions of tethered alkynones, diynes or alkynyl epoxides to cyclic enones. The corresponding mecha-

nisms for the transformations are also discussed.
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Review
α,β-Unsaturated carbonyl derivatives are not only important

building blocks in synthetic organic chemistry, but are also a

significant motif in natural products and biologically active

compounds [1-8]. The construction of the conjugated enone

substructure has attracted the interest of synthetic chemists for

decades. Among numerous methodologies, aldol condensations

and Wittig-type reactions have been widely utilized [9-18].

Recently, it was found that conjugated enones could be gener-

ated from the oxygen transfer from a carbonyl group to a

carbon–carbon triple bond, the so-called alkyne–carbonyl

metathesis. This methodology has sparked the attention of the

synthetic community, because it could serve as an efficient and

atom-economic alternative to the Wittig reaction by the forma-

tion of a new carbon–carbon double bond and the simultaneous

installation of a carbonyl group. In this regard, several Lewis or

Brønsted acid-catalyzed intermolecular or intramolecular

alkyne–carbonyl metatheses have been extensively studied

(Scheme 1) [19-27].

http://www.beilstein-journals.org/bjoc/about/openAccess.htm
mailto:leping.liu@louisville.edu
mailto:gb.hammond@louisville.edu
http://dx.doi.org/10.3762%2Fbjoc.7.71


Beilstein J. Org. Chem. 2011, 7, 606–614.

607

Scheme 1: Lewis acid or Brønsted acid-catalyzed alkyne–carbonyl
metathesis and a proposed [2 + 2] intermediate.

During the early years of this century, organic chemists became

aware that gold salts or complexes were highly active catalysts

in homogeneous catalysis because of the strong π- and σ-elec-

trophilicity of gold [28-33]. Since then, the number of new

gold-catalyzed reactions reported in the literature has increased

substantially and gold catalysis has become one of the hottest

research fields in synthetic organic chemistry [34-42]. Due to

their unique alkynophilicity, gold catalysts are especially suited

to the activation of carbon–carbon triple bonds.

Gold-catalyzed formation of cyclic enones
from alkynyl ketones
Yamamoto and co-workers were the first to report the gold-

catalyzed formation of conjugated cyclic enones under mild

conditions using tethered alkynyl ketones as substrates

(Scheme 2) [43]. Both, aromatic and aliphatic groups substi-

tuted on alkynyl ketones 1 were investigated in this reaction,

and the corresponding enone products 2 were isolated in good

yields. They employed the alkyne–carbonyl metathesis in the

preparation of fused ring systems and obtained two six-

membered bicyclic products. However, if the original ring was

five- or eight-membered, the reaction produced β,γ-unsaturated

bicyclic enones rather than their α,β-unsaturated counterparts.

Yamamoto and co-workers proposed a [2 + 2] mechanism for

their gold-catalyzed cyclization of alkynyl ketones (Scheme 3).

In their mechanism, the carbonyl group attacks the gold acti-

vated triple bond to form an oxonium intermediate, which then

generates an oxetenium intermediate. After several electron

transfer steps, the cyclic enone product is formed. A similar

[2 + 2] pathway has also been invoked for the Brønsted acid- or

Lewis acid-mediated intramolecular and intermolecular

alkyne–aldehyde metatheses.

Scheme 2: Gold-catalyzed cyclization of internal alkynyl ketones.

Scheme 3: Proposed [2 + 2] mechanism for the cyclization of alkynyl
ketones.
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Scheme 5: Gold-catalyzed tandem oxygen transfer/Nazarov cyclizations.

If terminal alkynyl ketone 3 is employed as the substrate, the

reaction still furnishes α,β-unsaturated cyclic enone 4, but it

necessitates a larger catalyst load (Scheme 4). By carefully

monitoring of the reaction, it was found that intermediate 5 was

formed together with a mixture of a hydrolyzed derivative of 6

and the final product 4. The isolated intermediate 5 could be

transformed into a mixture of 6 and 4 under the reaction condi-

tions, finally yielding 4 via intramolecular aldol condensation.

This gold-catalyzed cyclization of alkynyl ketones to enones

was successfully utilized in a cascade reaction by the same

authors (Scheme 5) [44]. Using enynones 7 as the substrate, the

gold-catalyzed tandem alkyne–carbonyl metathesis/Nazarov

reaction generated a number of intriguing fused bicyclic,

tricyclic and tetracyclic derivatives of 8 in moderate to good

yields and excellent diastereoselectivity. In this case, the gold

catalyst exhibited a dual role, namely the activation of alkyne

and carbonyl moieties.

Yamamoto and co-workers attempted to utilize their protocol to

build five-membered cyclic enones, however, when they

employed alkynyl ketone 9 as the substrate, the gold catalyst

did not show good activity, and less than 30% of the desired

Scheme 4: Gold-catalyzed cyclization of terminal alkynyl ketones.

product 10 was formed [45]. After optimizing the reaction

conditions, the authors found that TfOH was the best catalyst

for this oxygen transfer reaction in methanol (Scheme 6). This

TfOH-mediated cyclization was applied to the synthesis of

various fused tricyclic and tetracyclic derivatives of 10.



Beilstein J. Org. Chem. 2011, 7, 606–614.

609

Scheme 7: Gold-catalyzed cyclizations of 2-alkynyl-1,5-diketones.

Scheme 6: TfOH-mediated cyclization of alkynyl ketones.

Hammond and co-workers found that the gold-catalyzed

oxygen transfer reaction proceeded very smoothly when using

alkynyldiketone 11 as the substrate (Scheme 7) [46]. Indeed,

this reaction was complete in 5 minutes at room temperature to

give the five-membered cyclic enones 12 cleanly and in excel-

lent yields. The large reactivity difference between substrates 9

and 11 prompted the authors to propose an alternative [4 + 2]

mechanism for this transformation, rather than the previously

proposed and well-accepted [2 + 2] pathway for oxygen transfer

reactions.

An isotopic labeling experiment was designed to elucidate the

pathway responsible for the gold-catalyzed intramolecular

oxygen transfer of 2-alkynyl-1,5-diketones (Scheme 8). By

introducing an 18O atom into one of the carbonyls of the sub-

strate, and using the 13C NMR spectra of the substrate and pro-

duct to locate the 18O atom, the authors hoped to elucidate the

more favorable mechanistic pathway. The alkynyldiketone

[18O]-11 was chosen as a model substrate. If the reaction

follows a [2 + 2] route then 18O would end up on the left car-

bonyl group in [18O]-12a (Scheme 8, top), whereas it would be

incorporated on the benzoyl group in [18O]-12b if the reaction

follows a [4 + 2] pathway (Scheme 8, bottom).

Scheme 8: Designed isotopic labeling experiment for mechanistic
studies.

The result of this isotopic experiment is outlined in Scheme 9.

Substrate [18O]-11 was synthesized from the 18O exchange of

compound 11 with H2
18O under acidic conditions, and its
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13C NMR spectrum showed that the 18O exchange happened

only at the methyl carbonyl group (carbon 1). This substrate

was subjected to the gold-catalyzed oxygen transfer reaction

conditions and the product [18O]-12 was obtained in quantita-

tive yield without any 18O loss. It was later found that the 18O

was only incorporated into the benzoyl group (carbon 4) in pro-

duct [18O]-12, as determined from its 13C NMR spectrum. The

absence of any detectable 18O incorporation at carbon 3 demon-

strates that the [2 + 2] pathway is disfavored, and instead it is

the [4 + 2] pathway that is the favored mechanism in the gold-

catalyzed intramolecular oxygen transfer of 2-alkynyl-1,5-dike-

tones.

Scheme 9: 18O isotopic experiments.

The discovery of a [4 + 2] cycloaddition of a furanium inter-

mediate to a carbonyl group was further verified by quantum

chemical calculations. The competing [2 + 2] and [4 + 2] reac-

tion coordinates were computed for the simplified substrate

11a, shown in Scheme 10. In accordance with the experimental

findings, the [4 + 2] pathway is found to be the more favorable.

The rate-limiting step in each pathway is the intramolecular

nucleophilic addition to the Au-coordinated alkyne – the barrier

for this step is computed to be 6.8 kcal/mol lower for the forma-

tion of the five-membered ring oxonium intermediate C than for

the seven-membered ring oxonium A. This energetic prefer-

ence is also observed in the stabilities of the oxoniums them-

selves, with C considerably more stable by 16.1 kcal/mol. The

subsequent transformations are all computed to be feasible, with

the barrier to [4 + 2] cyclization lying only 4.4 kcal/mol above

the starting complex. Further calculations on the barrier for

transition states were also consistent with the rapid conversion

that was observed in the experiments. Overall, the large ener-

getic preference of the intermediates and transition states for the

[4 + 2] pathway over the [2 + 2] pathway supports the postulate

Scheme 11: Gold-catalyzed cyclization of tethered alkynyl arylalde-
hydes.

that the [4 + 2] pathway is dominant in the gold-catalyzed

oxygen transfer of 2-alkynyl-1,5-diketones, which is exactly in

accordance with the 18O isotopic experiments.

Scheme 10: B2PLYP/6-311+G(d,p)//B2PLYP/6-31G(d) computed
reaction profile, relative energies in kcal/mol.

Chan and co-workers developed a gold-catalyzed tandem

intramolecular rearrangement of alkynyl arylaldehydes 13 to

benzoxepinones 14 with good regioselectivity (Scheme 11)

[47]. This transformation was effectively promoted by the addi-

tion of benzyl alcohol and the sequential addition of p-toluene-

sulfonic acid. However, in the absence of p-toluenesulfonic

acid, benzyl ether 15 was isolated as the major product. The
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latter was considered to be an intermediate in the reaction and

moreover, the isolated compound 15 could be transformed into

the final product 14 under the mediation of p-toluenesulfonic

acid.

Gold-catalyzed formation of cyclic enones
from diynes
Zhang and co-workers reported gold-catalyzed cyclizations to

cyclohexenones 17, employing terminal 1,6-diynes 16 as

substrates in the presence of a Brønsted acid and 1 equiv of

water (Scheme 12) [48]. None of the desired products were

obtained in the absence of the gold catalyst, the Brønsted acid

or water. Interestingly, when the diacid 1,6-diyne (R1 = R2 =

COOH) was employed in the reaction, only the esterified pro-

duct (R1 = R2 = COOMe) was isolated, albeit in low yield. The

authors also carried out this gold-catalyzed transformation in an

ionic liquid [49]. This modification enabled the separation of

the gold catalyst from the organic mixture and the recovered

gold catalyst in the ionic liquid was re-used as many as five

times without loss of activity.

Scheme 12: Gold-catalyzed cyclization of terminal diynes.

A hydrolysis/cyclization mechanism was proposed for the trans-

formation (Scheme 13). Although this mechanism is plausible,

another option for the cyclization step might exist. One of the

key intermediates in the catalytic cycle is the hydrolyzed pro-

duct – the alkynyl ketone from hydrolysis of one triple bond –

which is the same as the substrate that was employed by

Yamamoto and co-workers. Thus, a similar diketone intermedi-

ate 6' could also have been formed before being transformed

into the final product via intramolecular aldol condensation.

Fiksdahl and co-workers investigated a similar gold-catalyzed

transformation of internal 1,6-diynes 18 in methanol at room

temperature (Scheme 14) [50,51]. Interestingly, a non-conju-

gated five-membered cyclic enone 19 was isolated as the pro-

duct, instead of the conjugated cyclohexenone that was obtained

from terminal 1,6-diynes. However, the scope of this transfor-

mation was limited to just a few substituent variations on the

alkynes. When both R1 and R2 were ethyl groups, this cycliza-

Scheme 13: Proposed hydrolysis/cyclization mechanism.

tion was dramatically retarded and only traces of the desired

product were obtained. Under the mediation of aluminium

oxide, this non-conjugated cyclopentylidene ketone product

isomerized to the conjugated cyclopentenyl ketone 20.

Scheme 14: Gold-catalyzed cyclization of internal diynes.

The authors proposed a solvolysis/cyclization mechanism for

this gold-catalyzed cyclization, which was supported by a

deuterium isotopic experiment (Scheme 15). Two molecules of

methanol were involved in the transformation and a dimethoxy-

ketal intermediate was formed: The final product was derived

from the hydrolysis of this ketal intermediate. When
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Scheme 16: Gold-catalyzed cyclization of alkynyl epoxides and the
18O isotopic labeling experiment.

d4-methanol was used as the solvent, a highly deuterated pro-

duct was isolated, which provided strong support for the

proposed mechanism.

Scheme 15: Proposed solvolysis/cyclization mechanism.

Gold-catalyzed formation of cyclic enones
from alkynyl epoxides
Hashmi and co-workers synthesized a number of 2-alkynyl aryl

epoxides 21 intended to be used as substrates for a gold-

catalyzed rearrangement to naphthols. Surprisingly, acylindene

22 turned out to be the product of this reaction, rather than the

expected naphthol (Scheme 16) [52]. However, when a bulky

group was substituted on the triple bond, this gold-catalyzed

transformation was completely suppressed. Moreover, none of

the desired product could be obtained when a terminal alkyne, a

TMS-substituted alkyne, or even an ester-substituted epoxide

was used as the starting material.

An 18O isotopic experiment helped the authors to propose an

intramolecular oxygen transfer mechanism for the above trans-

formation (Scheme 17). When employing the 18O incorporated

substrate in the reaction, the authors found that the isolated pro-

duct still contained the isotopic atom which excludes the

involvement of external water in the reaction. A cross-over

experiment with a mixture of two substrates (one with 18O, the

other without) was also conducted, and no 18O scramble was

found in the products, which clearly supported the intramolec-

ular nature of the oxygen transfer.

Scheme 17: Proposed oxygen transfer mechanism.

Liu and co-workers independently reported a very similar gold-

catalyzed cyclization of 2-alkynyl aryl epoxide 21 to acylin-

dene 22 (Scheme 18) [53]. A deuterium isotopic experiment

was conducted to support the intramolecular oxygen transfer

mechanism. However, when a trisubstituted epoxide 23 was

employed in the reaction, the gold catalyst did not promote the

transformation. By contrast, when AgSbF6 was used as the cata-

lyst, the 1,2-alkyl shifted product 24 was obtained.

Conclusion
This short review compiles recently reported gold-catalyzed

oxygen transfer reactions used to build cyclic enones from teth-

ered alkynyl ketones, 1,6-diynes or 2-alkynyl aryl epoxides.

Most of these reactions take place under mild conditions and the

corresponding products were isolated in good yields. The mech-

anisms for these transformations were also comparatively
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Scheme 18: Gold or silver-catalyzed cyclization of alkynyl epoxides
and the corresponding deuterium labeling experiment.

discussed. Similar Brønsted acid or other metal mediated trans-

formations and their applications to cascade cyclizations were

additionally described. Given gold’s strong π-electrophilicity, it

is expected that novel applications of gold catalysts in reactions

of alkynes, allenes, and even alkenes, will continue to attract the

attention of synthetic chemists.
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