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Abstract: Facial temperature distribution in healthy people shows contralateral symmetry, which is
generally disrupted by facial paralysis. This study aims to develop a quantitative thermal asymmetry
analysis method for early diagnosis of facial paralysis in infrared thermal images. First, to improve
the reliability of thermal image analysis, the facial regions of interest (ROIs) were segmented using
corner and edge detection. A new temperature feature was then defined using the maximum and
minimum temperature, and it was combined with the texture feature to represent temperature
distribution of facial ROIs. Finally, Minkowski distance was used to measure feature symmetry of
bilateral ROIs. The feature symmetry vectors were input into support vector machine to evaluate
the degree of facial thermal symmetry. The results showed that there were significant differences
in thermal symmetry between patients with facial paralysis and healthy people. The accuracy of
the proposed method for early diagnosis of facial paralysis was 0.933, and the area under the ROC
curve was 0.947. In conclusion, temperature and texture features can effectively quantify thermal
asymmetry caused by facial paralysis, and the application of machine learning in early detection of
facial paralysis in thermal images is feasible.

Keywords: facial paralysis; infrared thermal images; thermal asymmetry; temperature features;
texture features

1. Introduction

Peripheral facial paralysis is caused by dysfunction of the facial nerve, which is
characterized by imbalance of facial expression muscles on one side [1]. The most common
peripheral facial paralysis is idiopathic facial paralysis (Bell’s palsy) [2]. Most patients
with facial paralysis have a good prognosis; however, around 15% of patients cannot fully
recover; instead, they will have sequelae, such as oblique eyes and crooked mouth [3,4]. If
facial paralysis cannot be diagnosed and treated early, it may lead to poor recovery of the
facial nerve, affecting patients’ appearance as well as their quality of life [5].

Facial paralysis is mainly diagnosed by physicians to evaluate the facial nerve function
of patients according to their facial symptoms using the facial nerve grading systems, such
as House-Brackmann score (HB score) [6–8]. Patients are asked to perform a series of
movements such as frowning, closing eyes, smiling, and puffing cheeks, to determine the
symmetry of the patient’s facial expression between ipsilateral and contralateral facial
regions, and assess the severity of facial paralysis using the degree of symmetry [9]. The
reliability of the HB score depends on the physician’s subjective experience and the patient’s
cooperation [10]. When the initial symptoms of facial paralysis are not obvious, the
reliability of the HB score is low [11]. Electromyography (EMG) can objectively diagnose
facial paralysis by checking the conduction velocity of the facial nerve to determine the
degree of facial nerve damage [2]. However, EMG has low sensitivity in detecting mild
to moderate facial nerve palsy in the acute phase of facial paralysis. It is mainly used for
the prognosis of facial paralysis and is not suitable for its early diagnosis. In addition,
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blink reflex is currently one of the most sensitive electrophysiological indicators for early
diagnosis of facial paralysis [11]. However, it requires a series of stimuli to induce the
defensive reflex of the subject; electrode pads are attached to specific areas of the face
causing pain and discomfort to the subject, which results in poor coordination on the part
of the subject. Therefore, the development of an objective, quantitative, and easy-to-use
early diagnosis method for facial paralysis can be a useful supplement to the HB score and
electrophysiological examination.

Facial paralysis is associated with local vasospasm and tissue edema caused by dys-
function, ischemia, or inflammation of the facial nerve and surrounding tissues [11]. There-
fore, the onset of facial paralysis will affect the local blood circulation of the patient’s face
and change the normal temperature distribution [12]. For a healthy person, the tempera-
ture distribution on the face is symmetrical [13]. Previous studies [14] show that there is
a difference in the symmetry of facial temperature distribution between facial paralysis
patients and healthy people. Further, facial paralysis can be diagnosed early by measuring
the degree of facial thermal asymmetry in patients.

Infrared thermal imaging (IRT) is a noncontact, nonradiation, and easy-to-use temper-
ature measurement tool [15]. It involves temperature measurement and thermal asymmetry
analysis of the facial regions of interest (ROIs) and has been widely used for diagnosis and
assessment of some facial diseases [16–19], such as dry eye [20], temporomandibular disor-
ders [21,22], chronic migraine [23], and facial paralysis [14,24,25]. Existing studies [26,27]
used IRT to measure the temperature difference between the left and right sides of the
face of facial paralysis patients; this difference was related to the severity of facial paraly-
sis [28,29]. The temperature difference in facial paralysis patients was significantly greater
than that in healthy people [12]. Moreover, the feasibility of IRT assisted early diagnosis
of facial paralysis was evaluated [14]; the results showed that facial paralysis on thermal
images can be preliminarily detected by thermal asymmetry analysis; however, more
effective temperature distribution representation is required. Texture features are used to
represent the spatial distribution of temperature on thermal images, and they have been
used in the detection of diabetic foot ulcers [30] and breast cancer [31–33]. Liu et al. [34]
used texture features to evaluate the thermal asymmetry of facial paralysis, and prelimi-
narily validated their feasibility in the diagnosis of facial paralysis. However, the above
studies have three limitations: (1) they only focus on analyzing temperature or texture
features; (2) the ROI segmentation is manual, which reduces the reliability of thermal image
analysis; and (3) without using machine learning, threshold segmentation cannot obtain
optimal results.

To resolve the shortcomings of the aforementioned studies, this study aims to develop
a computer-assisted facial paralysis early diagnosis system using IRT through combining
temperature and texture features. Automatic segmentation of ROIs was adopted to improve
the reliability of thermal image analysis. A new temperature feature was proposed by
combining maximum and minimum temperature values. Texture features were introduced
to represent the spatial distribution of temperature. Further, the Minkowski distance was
used to measure the symmetry between the ipsilateral and contralateral features of facial
ROIs. Support vector machine (SVM) was used to evaluate the difference in facial thermal
symmetry between facial paralysis patients and healthy people, so as to realize the early
detection of facial paralysis in thermal images.

2. Materials and Methods

This paper proposes a computer-assisted thermographic analysis method for early
detection of facial paralysis. The general process is shown in Figure 1. The whole method
is divided into five stages. The first stage is the recruitment of subjects and the collection of
thermal images. The collected thermal images are divided into training and test datasets.
The purpose of the training dataset is to construct an optimal classification model using
the principle of minimizing the training error. The test dataset is used to evaluate the
generalization performance of the classifier. The second stage is the automatic segmentation
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of the facial ROIs. Using corner and edge detection combined with anthropometry, the
subject’s facial thermal image is divided into 10 symmetrical ROIs. The third stage is
feature extraction and symmetry measurement. The temperature and texture features of
each ROI are extracted separately, and Minkowski distance is used to measure the feature
symmetry, which refers to the similarity between the features of the two ROIs on the left
and right sides. The fourth stage is statistical analysis and feature selection. The t-test is
used to determine the feature symmetry, which has significant differences between the
facial paralysis patients and the healthy population. The feature symmetry is used as the
classifier input, and the optimal parameters of the classifier are calculated using the training
dataset. The fifth stage uses the test dataset to measure the generalization performance of
the proposed method for the diagnosis of facial paralysis.

Figure 1. Overview of proposed classification method for early detection of facial paralysis.

2.1. Subjects

A total of 90 subjects were involved in this study, including 45 patients with facial
paralysis and 45 healthy people. The healthy subjects consisted of 24 males and 21 females
with average age and body mass index of 41.20 ± 9.02 years and 23.85 ± 2.31 kg/m2, re-
spectively. Patients with facial paralysis consisted of 22 males and 23 females with average
age of 44.37 ± 8.14 years and body mass index of 23.12 ± 2.36 kg/m2, respectively. The
Ethics Committee of Northeastern University approved the study. All volunteers were
recruited from facial paralysis patients at Qinhuangdao Hospital of Traditional Chinese
Medicine and healthy workers at Northeastern University at Qinhuangdao. The subjects
were fully informed of the experimental procedures and precautions before enrollment,
and they signed the informed consent form. The inclusion criteria of patients with facial
paralysis were: (1) unilateral Bell’s palsy, (2) having symptoms that appeared at most more
than 72 h prior, and (3) taking no medication or acupuncture treatment. The exclusion
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criteria for all subjects were: (1) age less than 18 years, (2) chronic diseases such as hyper-
tension, diabetes, and gout, (3) suffering from migraine, rhinitis, conjunctivitis, dry eye,
temporomandibular arthritis, gingivitis and other diseases that may change the normal
temperature distribution of the face, and (4) cosmetic surgery.

All subjects were evaluated by the experienced clinicians based on the HB score.
The purpose of this study is to preliminarily verify the feasibility of applying infrared
thermography and machine learning in the early diagnosis of facial paralysis. Therefore,
all subjects were divided into two groups (normal and facial paralysis), and the facial nerve
function was graded as shown in Table 1. In the table, the numbers of the patients with
different HB scores is non-uniform distribution, which is consistent with the characteristics
of disease onset. The numbers of the patients with grade IV and V are much more than
that with grade II and III.

Table 1. Distribution of the House-Brackmann scores in the subjects.

Subject Score Description Number of Subjects

Healthy individuals I Normal 45

Patients with facial paralysis

II Slight 3

Total 45
III Moderate 8

IV Moderately severe 14

V Severe 20

VI Total paralysis 0

2.2. Acquisition of Thermal Images

The thermal camera used for this study was the FLIR Tau 336 (FLIR Systems, Inc.
Wilsonville, OR, USA), with a resolution of 336 × 256 pixels and a thermal sensitivity of
0.05 ◦C, which works for an emissivity value of 0.98 [13]. The thermal image acquisition
was carried out in an indoor environment, where the indoor temperature was controlled at
24–25 ◦C and the humidity was maintained at 45–55%. Before the acquisition, all subjects
were screened through questionnaires to exclude those who did not meet the thermal
image acquisition criteria [35], including those who smoked, drunk alcoholic or caffeine-
containing drinks, applied foundation cream, or had performed physical activity, within
4 h before thermal image collection. Additionally, subjects were required to rest for at
least 15 min to adapt to room temperature, and the thermal imager was turned on for
15 min to stabilize the internal microbolometer. The thermal camera was placed 1.2 m away
from the subjects, perpendicular to the subject’s face, and it took the front facial images of
the subjects.

2.3. Automated Selection of ROIs

Based on previous studies [14] and the symptoms of facial paralysis, this study divided
facial thermal images into 10 ROIs that were distributed in pairs on the left and right sides
on the face, as shown in Figure 2. Automatic segmentation of facial ROIs is helpful
to improve the reliability of thermal asymmetry analysis [36]. Some studies [37] used
edge detection, active appearance model (AAM), or cascaded shape regression (CSR)
to automatically locate key points on facial thermal images. Notably, CSR has better
robustness [38]. Considering the single background and constant ambient temperature of
facial thermal images in this study, an automatic segmentation algorithm of facial ROIs
with low computational cost, high real-time performance was developed. Interpretability
was proposed through combining corner detection, edge detection, and gray projection.
The algorithm steps are shown in Table 2 and Figure 3.
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Figure 2. Illustration of facial ROIs. R1: forehead region; R2: orbital region; R3: infraorbital region;
R4: nasal region, R5: mouth region.

Table 2. Automatic segmentation algorithm of facial ROIs.

1: Input grayscale image← Original thermal image preprocessing
2: Background segmentation← Otsu method
3: Corner detection← Harris operator and morphological operations
4: Key point positioning of nostril and pupil← Gray projections
5: Edge Detection← Canny edge detector and morphological operations
6: Key point positioning of the mouth← Gray projections
7: Key point positioning of canthus and eyebrow← Fusion of corner and edge features
8: ROI segmentation← Combining facial key points and anthropometry

The temperature in most areas of the face changes smoothly and has strong spatial
correlation, which is mainly due to the uniform distribution of blood vessels in these areas.
However, in the organ regions, due to changes of physiological structure, there are specific
changes in temperature. For example, the surface temperature of the nostrils is closer to
the ambient temperature than other parts, while the surface temperature of the eyes and
mouth differ considerably from the surrounding skin temperature. These temperature
changes are related to the physiological characteristics of the human face and have good
generalizability. Therefore, the pixels with the largest temperature change or the maximum
curvature values in the thermal image can be found through corner and edge detection,
allowing the key points of facial organs to be located.

The specific processing steps are shown in Figure 3. The original temperature matrix
was normalized into a grayscale map (Figure 3a,b). An optimal temperature threshold was
set using the Otsu method [39] to segment the facial region from the background (Figure 3c).
The Harris operator [40] was used for corner detection of the face (Figure 3d), and image
erosion and dilation were performed on it (Figure 3e,f) to remove the interference of the
edge of the facial contour. The horizontal and vertical coordinates of nostril and eye were
determined by the gray projection method [9] (Figure 3j,k). The canny edge detector [41]
was used to detect the edges of the facial region (Figure 3g–i), and gray projections and
anthropometry were used to locate the corners of the mouth and the eyebrow (Figure 3l–n).
Corner detection, edge detection and anthropometry were combined to fine-tune and
segment the facial ROIs through these horizontal and vertical coordinates (Figure 3o).

2.4. Feature Extraction

Temperature features are commonly used in IRT-assisted diagnosis. Furthermore, in
some abnormal physiological conditions, the spatial distribution of all temperature values
in ROIs will change relative to that of healthy people. Texture features can represent the
temperature distribution of the facial ROIs, which may be helpful for early diagnosis of
facial paralysis [34]. Therefore, the thermal asymmetry of facial paralysis was evaluated
using temperature and texture features in this study.
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Figure 3. General process of automatic segmentation of facial ROIs. (a) Raw thermal image; (b) Gray
processing; (c) Face segmentation; (d) Corner detection; (e) Image Erosion and Dilation; (f) Corner
features; (g) Edge detection; (h) Image Erosion; (i) Edge features; (j) Gray projection of the nose;
(k) Gray projection of the eye; (l) Gray projection of the mouth; (m) Anthropometry; (n) Eyebrow
location; (o) ROI segmentation.

2.4.1. Temperature Features

The mean temperature (Tmean), maximum temperature (Tmax) [42], and minimum
temperature (Tmin) were used to represent the temperature features, which are formulated
as Equations (1)–(3), Tmean is the average of all temperature values in the ROI, Tmax is the
average of the maximum 5% of all temperature values in the ROI, and Tmin is the average
of the minimum 5% of all temperature values in the ROI.

Tmean =
1
N ∑N

i=1Ti (1)

Tmax =
1
N ∑N

j=N+1−[0.05N]Tj (2)
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Tmin =
1
N ∑

N+1−[0.05N]
j=1 Tj (3)

where N is the number of all pixels in the ROI, Ti is the temperature value of each pixel in
the ROI, and Tj is the reordering sequence of Ti in ascending order.

2.4.2. Texture Features

The gray level co-occurrence matrix (GLCM) is a texture feature describing the spatial
distribution of temperature, in which each value represents the frequency of pixel pairs
with specific value and specific spatial relationship in thermal image [30,31]. In a thermal
image I with M×N dimensions, any pixel with coordinates (x,y) and another pixel with
coordinates (x + a, y + b) (where a, b are integers) constitute a pixel pair. Assuming that
the gray value of the pixel pair is (i, j), and the maximum gray level of the thermal image
is L, there are a total of L × L combinations of i and j. For the whole thermal image, the
number of occurrences of each (i, j) is counted, they are normalized into probability P (i, j)
by the total number of occurrences of (i, j), and then, arranged into a square matrix, which
is called GLCM. The P(i, j ∆, θ) (Equation (4)) in the GLCM is defined as follows:

P(i, j, ∆, θ) =
1
R

{
1, i f I(x, y) = i and I

(
x + ∆x, y + ∆y

)
= j

0, Otherwise
(4)

where (x, y) is the position coordinates of the pixel in the image I, (i, j) is a pair of given gray
values, ∆(∆x, ∆y) is the horizontal and vertical offset between a pair of pixels, θ denotes the
angle between the connecting line between a pair of pixels and the horizontal direction (0◦,
45◦, 90◦, 135◦), and R is the total number of occurrences of all possible pixel pairs in the
entire image. An example of calculating GLCM is given in Figure 4.

Figure 4. Typical GLCM calculation process. (a) The original thermal image is transformed into
a gray matrix, and P(i,j,(1,1), 135◦) is calculated. (b) Normalization of the original matrix to the
specified gray scale range. (c) Counting the occurrence times of gray pair (i, j) at the two adjacent
pixels on the 135◦ diagonal. (d) Calculation of the occurrence probability of each pair of pixels (i, j),
namely, GLCM.

According to previous research [14,30,31], the parameters in the GLCM in this study
are as follows: the offset distance ∆ is set to 2 and 5, the offset direction θ is set to 0◦, 45◦, 90◦,
135◦, and the maximum gray level G is set to 16 and 32. After calculating all 16 GLCMs and
based on the given parameters, each GLCM uses 4 s-order statistics to represent the texture
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features of the thermal image. Table 3 lists the definitions and calculation formulas of the
4 texture features, where µx, σx, µy, and σy represent the mean and standard deviation of
the rows and columns of the GLCM.

Table 3. Four second-order texture features calculated by GLCM.

Feature Description Mathematical Expression

Contrast Sharpness and depth of thermal texture ∑i ∑j|i− j|2P(i, j)
Correlation Correlation of local temperature distribution ∑i ∑j

(ij)P(i,j)−µxµy
σxσy

Energy Temperature distribution uniformity and fineness ∑i ∑j P(i, j)2

Homogeneity Homogeneity of thermal texture and local variation of temperature distribution ∑i ∑j
P(i,j)

1+(i−j)2

2.5. Symmetry Measurement

There are significant differences in the thermal symmetry of the left and right sides
of the face between healthy people and facial paralysis patients [12,14]. To quantify this
difference, it is necessary to measure the feature symmetry of the ROIs on the left and
right sides of the face. The most commonly used representation of feature symmetry is the
distance measure between two features [37,42,43]. The smaller the measured value, the
better the symmetry will be.

In this study, the degree of symmetry between two temperature features is expressed
as the average temperature difference (∆Tmean) and maximum temperature difference
(∆Tmax), which are formulated as Equations (5) and (6).

∆Tmean = |TL-mean − TR-mean| (5)

∆Tmax =

{
∆TL-max, i f ∆TL-max > ∆TR-max

∆TR-max, Otherwise
(6)

where TL-mean and TR-mean represent the average temperature of the left and right ROIs
respectively, and TL-max and TR-max represent the maximum temperature of the left and
right ROIs, respectively. The TL-max (Equation (7)) and TR-max (Equation (8)) are defined
as follows:

∆TL-max = |TL-max − TR-min| (7)

∆TR-max = |TR-max − TL-min| (8)

The symmetry ρ between two texture features is calculated by the Minkowski distance,
and the ρ (Equation (9)) is defined as follows:

ρP,∆,G(FL,∆,G, FR,∆,G) =

(
∑θ

∣∣∣Fθ
L,∆,G − Fθ

R,∆,G

∣∣∣P
)1/P

(9)

where FL,∆,G and FR,∆,G represent the texture features of a pair of ROIs distributed symmet-
rically; θ, ∆, G are the parameters of GLCM, θ is the offset direction (0◦, 45◦, 90◦, 135◦), ∆ is
the offset distance (and the values are 2 and 5), and G is the maximum gray level (and the
values are 16 and 32). The values of P are 1 and 2. When P = 2, it is the Euclidean distance;
when P = 1, it is the Manhattan distance. Each ROI of the subjects has 4 types of texture
features (shown in Table 2), and there are 8 types of symmetry between each type of texture
features; so, there are 32 texture symmetries between each pair of ROIs of the subjects.

2.6. Classifier Construction

In this study, the subjects are classified as facial paralysis or normal using a support
vector machine (SVM). The SVM performs binary classification of data according to super-
vised learning, which is suitable for small and medium-sized data samples, and non-inear,
high-dimensional classification problems [44,45]. An SVM classifies samples by finding
the best hyperplane. The best hyperplane refers to the hyperplane with the largest margin
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between two categories, and the largest margin refers to the farthest distance from all
samples to the hyperplane. For a detailed introduction to the basic theory of SVM, please
refer to [45].

The input of SVM is the feature symmetry vector between the ipsilateral and con-
tralateral ROIs of the subject’s facial thermal image, and the output is the positive (facial
paralysis) and the negative (normal). A subject’s facial thermal image has 5 pairs of ROIs
(Figure 1), and each pair of ROIs has 2 temperature symmetries and 32 texture symmetries.
Therefore, the input vector of the SVM has 170 dimensions at most. Different combinations
of feature symmetries have different diagnostic values in facial paralysis. It is hypothesized
that the feature symmetries with significant differences between the facial paralysis group
and the normal group may have the more contribution in the diagnosis of facial paralysis.
Therefore, a t-test (n = 45) was used to select these feature symmetries.

To evaluate the generalization error of different feature symmetry combinations for
the diagnosis of facial paralysis, the sample set is divided into the training and test sets by
the 10 repetitions of the leave-k-out cross-validation. In general, the test set should contain
at least 30 samples [46]. Therefore, the value of K is set to 30. There are 90 subjects in this
study, including 45 patients with facial paralysis and 45 healthy individuals. 15 patients and
15 healthy individuals are randomly selected as the test set, and the remaining 60 subjects as
the training set. In the test set, at least one subject is selected in each of the HB scores from
level II to level V. The results obtained by the single use of the leave-k-out method are often
not reliable enough, so the leave-k-out method is repeated 10 times. The generalization
performances of the classifier are the average results of the 10 tests. For example, if the
t-test is used to select 37 out of 170 feature symmetries with significant differences, the
sample set is a two-dimensional matrix with 90 rows and 37 columns. In the matrix,
each row represents a subject, and each column represents a feature symmetry. The first
45 rows represent patients with facial paralysis, and the last 45 rows represent healthy
people. 30 rows which are randomly selected from the matrix constitute the test set, where
15 rows are from the first 45 rows. The remaining 60 rows are used as the training set.
In addition, to evaluate the effectiveness of SVM in the diagnosis of facial paralysis, two
classical classifiers, i.e., k-nearest neighbor (k-NN) and linear discriminant analysis (LDA),
were compared with SVM.

For the diagnosis of facial paralysis, the case can be divided into four results: true
positive (TP), true negative (TN), false positive (FP) and false negative (FN) according to
the combination of actual class and predicted one from the SVM. The interpretation of
these classification results is shown in Table 4.

According to the confusion matrix (shown in Table 4), a total of 5 indicators were used
to evaluate the diagnostic ability of the SVM classifier for facial paralysis, namely accuracy,
sensitivity, specificity, precision, and F1, which are defined as follows (Equations (10)–(14)):

Accuracy = (TP + TN) ÷ (TP + TN + FP + FN) (10)

Sensitivity = TP ÷ (TP + FN) (11)

Specificity = TN ÷ (FP + TN) (12)

Precision = TP ÷ (FP + TP) (13)

F1 = 2× Precision× Sensitivity ÷ (Precision + Sensitivity) (14)

Table 4. Confusion Matrix of Diagnosis Results.

Actual Class
Predicted Class

Facial Paralysis Normal

Facial paralysis TP FN
Normal FP TN



Diagnostics 2021, 11, 2309 10 of 19

2.7. Statistical Analysis

The statistical analysis was carried out with SPSS Statistics 23 (IBM, Armonk, NY,
USA). The significance level was set at p < 0.05. The normal distributions of the temperature
and texture features were verified by the Shapiro-Wilk test, and these values were expressed
as Mean ± SD. The t-test was used to analyze the difference in the feature symmetry of
facial ROIs between the facial paralysis and control group. For the feature symmetry with
a statistical difference between the two groups, the inter-subject variability was evaluated
by comparing the interquartile range of data in each group. The accuracy, sensitivity,
specificity, precision, and F1 were used to compare the diagnostic ability of different feature
symmetry combinations for facial paralysis. In addition, the area under the ROC curve
(AUC) was used to compare the generalization performance of different classifiers (i.e.,
SVM, K-NN and LDA).

3. Results and Discussion

To evaluate the computer-aided early diagnosis of facial paralysis based on IRT, the
following three key issues were discussed: (1) the difference of the facial temperature fea-
ture symmetry between facial paralysis patients and healthy population, (2) the difference
of the texture feature symmetry between facial paralysis patients and healthy population,
and the influence of different feature symmetry combinations on the early diagnosis of
facial paralysis, especially whether the application of texture features contributes to the
diagnosis of facial paralysis.

3.1. Symmetry Measurements of Temperature Features

The degree of thermal symmetry on the left and right sides of the face can be observed
intuitively through the pseudo-color of the facial temperature distribution. The facial
thermal images of a healthy person and a patient with facial paralysis were compared
using different pseudo-color methods presented in Figure 5. Due to the distribution of
blood vessels on the human face, both patients with facial paralysis and normal people have
the facial thermal characteristics of high temperature in the middle and low temperature on
both sides, which is consistent with the research findings of Guan [47] and Liu et al. [14,36].
In addition, facial paralysis destroys the symmetry of temperature distribution between
the left and right sides of the face. The quantitative evaluation is shown in Table 5.

Figure 5. Comparison of facial thermal images between healthy subject and patient with facial paralysis using different
pseudo-color methods. (a–d) are images of the healthy subject, while (e–h) are for the patient with facial paralysis. According
to the given lower and upper temperature limits, the temperature values of all pixels in the thermal image are divided from
low to high into 64 layers (a,e), 32 layers (b,f), 16 layers (c,g) and 8 layers (d,h), where each pixel is given a pseudo-color
according to the level of its temperature value.
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Temperature difference is one of the most commonly used methods to measure the
symmetry of temperature features on both sides of the face [14]. Table 5 presents the
statistics for the facial average temperature difference (∆Tmean) and maximum temperature
difference (∆Tmax) between facial paralysis patients and normal people. It can be seen from
Table 5 that in the forehead, orbital, and infraorbital ROIs, the ∆Tmean of facial paralysis
patients were greater than that of the normal population (control group), and there were
statistical differences between the two groups (Figure 6). Additionally, the ∆Tmax of patients
with facial paralysis in the forehead and infraorbital ROIs were greater than that of the
normal population, and there were statistical differences between the two groups (Figure 7).
These results show that the symmetry of temperature features measured by ∆Tmean and
∆Tmax can preliminarily distinguish patients with facial paralysis from normal people, and
the symmetry of temperature features with statistical differences can be used as the selected
features for early diagnosis of facial paralysis.

Table 5. Symmetry measurements of facial temperature features between patients with facial paralysis and healthy population.

ROI Features
∆T of ROIs (Mean ± SD)

Control Group Facial Paralysis Group p Value

Forehead region ∆Tmean 0.15 ± 0.14 0.47 ± 0.34 0.005 **
∆Tmax 1.01 ± 0.31 2.35 ± 1.59 0.006 **

Orbital region ∆Tmean 0.14 ± 0.13 0.38 ± 0.21 0.002 **
∆Tmax 3.81 ± 1.36 3.64 ± 1.56 0.305

Infraorbital region ∆Tmean 0.24 ± 0.12 0.46 ± 0.29 0.015 *
∆Tmax 2.78 ± 0.92 4.72 ± 2.16 0.005 **

Nasal Region ∆Tmean 0.42 ± 0.27 0.47 ± 0.36 0.668
∆Tmax 5.40 ± 1.55 4.67 ± 2.23 0.311

Mouth region ∆Tmean 0.35 ± 0.20 0.39 ± 0.28 0.602
∆Tmax 3.67 ± 1.44 4.04 ± 2.19 0.585

* p < 0.05, ** p < 0.01.

Drawing comparison to previous studies [14], the results of ∆Tmean are seen to be
consistent, but the results of ∆Tmax are not completely identical. The reasons for the
difference are (1) the calculation method of ∆Tmax is different, i.e., the previous study [14]
only considered the difference of the maximum temperature between the two ROIs, but this
study highlights the difference between the temperature features of the two ROIs through
combining the maximum and minimum temperature; (2) the size of ROIs, especially in
the orbital region, was not entirely consistent; and (3) the sample size was enlarged in
this study.

Figures 6 and 7 further show the difference in temperature feature symmetry between
patients with facial paralysis and healthy people. According to the interquartile ranges
and the probability density of data distribution, it can be found that the inter-subject
variability of patients with facial paralysis was greater than that of normal people; this is
mainly caused by the inconsistent severity of symptoms in different parts of different facial
paralysis patients. In addition, ∆Tmean and ∆Tmax cannot be used in the diagnosis of facial
paralysis in nasal and mouth regions, mainly due to the large variation of temperature
features in these regions in the normal population.

3.2. Symmetry Measurements of Texture Features

Through the observation of the subjects’ facial thermograms, the symmetry of the
facial temperature distribution on the ipsilateral and contralateral sides of patients with
facial paralysis was lower than that of the normal population. The current studies [14] only
analyzed the temperature features, but ignored the temperature spatial distribution, which
may result in overlooking the corresponding features that are valuable for early diagnosis
of facial paralysis. The texture features can effectively represent the temperature spatial
distribution on the thermal image. Therefore, the classical texture representation method
of GLCM was selected to calculate the temperature spatial distribution in this study.
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Figure 6. Comparison of ∆Tmean between patients with facial paralysis and healthy people, where
the horizontal line represents the median, the long box represents the inter-quartile range, and the
outer contour curve represents the probability density of the data distribution.

Figure 7. Comparison of ∆Tmax between patients with facial paralysis and healthy people, where the
horizontal line represents the median, the long box represents the inter-quartile range, and the outer
contour curve represents the probability density of the data distribution.

In this study, the Manhattan and Euclidean distances were used to evaluate the
symmetry of texture features on the left and right sides of the face. As shown above, there
were 32 texture feature symmetries between each pair of ROIs on the left and right sides
of the infrared thermal image; half of them used Manhattan distance and the other half
used Euclidean distance. Tables 6 and 7 summarize the statistical results of texture feature
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symmetry using Manhattan and Euclidean distances respectively, and only the feature
symmetry with statistical differences between facial paralysis patients and healthy people
were included.

Table 6. Symmetry measurements of texture features using the Manhattan distance (the offset
distance ∆ of the GLCM is set to 2 and 5, and the maximum gray level is set to 16 and 32).

ROI Features
Feature Symmetry Value (Mean ± SD)

Control Group Facial Paralysis Group p Value

Forehead region
Energy (5,16) 0.018 ± 0.017 0.04 ± 0.027 0.015 *
Energy (2,32) 0.013 ± 0.01 0.035 ± 0.036 0.035 *
Energy (5,32) 0.012 ± 0.009 0.033 ± 0.032 0.025 *

Orbital region Contrast (5,16) 6.402 ± 8.948 14.718 ± 12.337 0.050 *
Contrast (5,32) 25.316 ± 34.117 59.547 ± 48.876 0.042 *

Infraorbital region Homogeneity (2,16) 0.035 ± 0.017 0.061 ± 0.044 0.043 *
Homogeneity (5,16) 0.076 ± 0.039 0.134 ± 0.085 0.028 *

Nasal Region

Energy (2,16) 0.126 ± 0.101 0.439 ± 0.447 0.017 *
Energy (5,16) 0.123 ± 0.077 0.435 ± 0.477 0.022 *
Energy (2,32) 0.054 ± 0.039 0.176 ± 0.162 0.011 *
Energy (5,32) 0.049 ± 0.035 0.152 ± 0.133 0.009 **

Mouth region
Homogeneity (2,16) 0.05 ± 0.018 0.085 ± 0.037 0.004 *

Energy (2,32) 0.079 ± 0.08 0.236 ± 0.221 0.019 *
Energy (5,32) 0.072 ± 0.077 0.21 ± 0.218 0.034 *

* p < 0.05, ** p < 0.01.

From Tables 6 and 7, the following conclusions are drawn: (1) there are significant dif-
ferences in the spatial distribution of facial temperature on the left and right sides between
patients with facial paralysis and healthy people; (2) in comparison with temperature
features, texture features can be used for the diagnosis of facial paralysis in all facial ROIs,
including nasal and mouth regions; (3) among all texture features, energy and homogeneity
are the most valuable diagnostically; (4) the inter-subject variability of patients with facial
paralysis was greater than that of the normal population.

Table 7. Symmetry measurements of texture features using the Euclidean distance (the offset distance
∆ of the GLCM is set to 2 and 5, and the maximum gray level is set to 16 and 32).

ROI Features
Feature Symmetry Value (Mean ± SD)

Control Group Facial Paralysis Group p Value

Forehead region

Energy (2,16) 0.012 ± 0.011 0.022 ± 0.016 0.048 *
Energy (5,16) 0.01 ± 0.008 0.021 ± 0.014 0.013 *
Energy (2,32) 0.007 ± 0.005 0.018 ± 0.019 0.031 *
Energy (5,32) 0.006 ± 0.005 0.017 ± 0.017 0.021 *

Orbital region

Homogeneity (2,16) 0.046 ± 0.032 0.086 ± 0.061 0.032 *
Contrast (5,16) 3.631 ± 5.059 9.402 ± 8.338 0.031 *

Homogeneity (5,16) 0.081 ± 0.05 0.133 ± 0.068 0.025 *
Homogeneity (2,32) 0.059 ± 0.041 0.097 ± 0.046 0.022 *

Contrast (5,32) 14.423 ± 19.502 37.935 ± 33.293 0.027 *

Infraorbital region Homogeneity (2,16) 0.02 ± 0.01 0.035 ± 0.024 0.044 *
Homogeneity (5,16) 0.046 ± 0.025 0.077 ± 0.048 0.038 *

Nasal Region

Energy (2,16) 0.066 ± 0.051 0.221 ± 0.231 0.017 *
Energy (5,16) 0.068 ± 0.041 0.22 ± 0.247 0.025 *
Energy (2,32) 0.029 ± 0.02 0.09 ± 0.083 0.009 **
Energy (5,32) 0.027 ± 0.018 0.079 ± 0.068 0.008 **

Mouth region
Homogeneity (2,16) 0.03 ± 0.011 0.048 ± 0.021 0.009 **

Energy (2,32) 0.041 ± 0.042 0.12 ± 0.113 0.017 *
Energy (5,32) 0.039 ± 0.042 0.107 ± 0.112 0.036 *

* p < 0.05, ** p < 0.01.

3.3. Performance Measurement of Different Feature Symmetry Combinations for Diagnosis of
Facial Paralysis

Different feature symmetry combinations have great influence for the diagnostic per-
formance of classifiers. In this study, an easy-to-use feature symmetry selection method
was used, i.e., we selected the temperature and texture feature symmetry with statistical
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differences between patients with facial paralysis and normal population. Therefore, the
performance of different feature symmetry combinations was compared: (1) all tempera-
ture feature symmetries and the temperature feature symmetries with statistical differences
(Table 8), (2) all texture feature symmetries and the texture feature symmetries with sta-
tistical differences (Table 9), (3) the combinations of all temperature and texture feature
symmetries and the combinations of the feature symmetries with statistical differences
(Table 10).

The simplest feature symmetry selection method involves inputting all temperature
and texture feature symmetries. When only temperature feature symmetry was selected,
the accuracy of SVM in the diagnosis of facial paralysis was 0.833 (Table 8). When only
texture feature symmetry was input, the diagnostic accuracy of facial paralysis was 0.767
(Table 9). When all temperature and texture feature symmetries were combined, the
diagnostic accuracy of facial paralysis was 0.8 (Table 10). With the increase of feature
dimensionality and use of texture features, there was no improvement in the classification
performance after using only temperature feature symmetry. This attributed to the lack
of feature selection. More features are not necessarily better, but features that are more
complementary and differentiated should be selected.

For the results in Tables 5–7, t-test was used to select temperature and texture feature
symmetries with significant differences between the two groups of subjects from all fea-
tures. When only temperature feature symmetry with significant differences was used,
the diagnostic accuracy of facial paralysis was 0.767 (Table 8). When only texture feature
symmetry with significant differences was used, the accuracy was 0.833 (Table 9). After
combining the above two feature symmetries, the diagnostic accuracy of facial paralysis
was 0.933 (Table 10). In conclusion, texture feature symmetry is helpful for diagnosis of
facial paralysis, and the combination of temperature and texture feature symmetry with
significant differences can improve the diagnostic accuracy of facial paralysis compared to
using a single type of feature symmetry.

Table 8. Diagnostic performance of facial paralysis using different temperature feature symmetry combinations.

Feature Symmetry Dimensions Accuracy Sensitivity Specificity Precision F-Score

All ∆Tmean 5 0.7 1 0.4 0.625 0.489

∆Tmean with significant differences 3 0.833 0.8 0.867 0.857 0.862

All ∆Tmax 5 0.833 0.8 0.867 0.857 0.862

∆Tmax with significant differences 2 0.8 0.933 0.667 0.737 0.700

∆T1: All ∆Tmean and ∆Tmax 10 0.833 0.8 0.867 0.857 0.862

∆T2: ∆Tmean and ∆Tmax with
significant differences 5 0.767 0.867 0.667 0.722 0.693

Table 9. Diagnostic performance of facial paralysis using different texture feature symmetry combinations.

Feature Symmetry Dimensions Accuracy Sensitivity Specificity Precision F-Score

F1: Texture symmetries by Manhattan distance 80 0.767 0.867 0.667 0.722 0.693

F2: Texture symmetries by Euclidean distance 80 0.767 0.8 0.733 0.75 0.742

F3: F1 with significant differences 14 0.8 0.8 0.8 0.8 0.8

F4: F2 with significant differences 18 0.767 0.8 0.733 0.75 0.742

F1 + F2 160 0.633 0.467 0.800 0.700 0.747

F3 + F4 32 0.833 0.8 0.867 0.857 0.862
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Table 10. Diagnostic performance of facial paralysis using a combination of temperature and texture feature symmetry.

Feature Symmetry Dimensions Accuracy Sensitivity Specificity Precision F-Score

∆T1 + F1 + F2 170 0.8 0.867 0.733 0.765 0.749

∆T1 + F3 + F4 42 0.9 1 0.8 0.833 0.816

∆T2 + F3 + F4 37 0.933 1 0.867 0.882 0.874

Moreover, SVM was selected as a diagnostic classifier for facial paralysis. The AUC
was used for comparing the generalization performance of SVM with other two typical
classifiers, as shown in Figure 8. SVM has good adaptability to the diagnosis of facial
paralysis, and the AUC is 0.947, i.e., higher than k-NN and LDA. In addition, this study
proposed an SVM diagnosis system for facial paralysis based on temperature and texture
features, which have higher sensitivity, specificity, and AUC than those of previous similar
studies [14,34] (Table 11). The reasons for these results are: (1) SVM is good at small sample
machine learning; (2) the previous studies only used single type features and threshold
method; (3) two types of complementary thermal features were combined, and supervised
learning was used to train the classification parameters in this study.

Figure 8. Diagnostic performance comparison of SVM, k-NN and LDA for facial paralysis.

Table 11. Comparison between proposed method and existing studies.

Study Features Used Classifier Sensitivity Specificity AUC

[34] Texture (LBP) Threshold 0.860 0.890 -
[14] Temperature Threshold 0.867 0.800 0.818

Proposed study Composite features SVM 1 0.867 0.947

HB score is a conventional method to evaluate facial paralysis. Based on the asymme-
try of facial expressions of the subjects, the facial nerve function is evaluated as normal
(grade I) and facial paralysis (grade II-VI) by physicians. The drawback is that it relies on a
subjective judgment with significant inter-rater variation. In order to solve the problem, the
computer-aided diagnosis methods for facial paralysis based on HB Score are developed,
and the highest accuracy of distinguishing facial paralysis from normal is 0.923 [1,9,48].
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In this study, the accuracy of the proposed method based on temperature asymmetry is
0.933. We consider this accuracy excellent because relevant studies have shown that the
reliability of HB Score itself ranges from 0.8 to 0.93 [49]. Because the data set used for
training the classifier is calibrated by the conventional method, the accuracy has reached
the upper limit of the conventional method. In addition to the comparison with the above
literatures [1,9,48,49], the proposed method and the conventional method will be used to
diagnose the same patients for a clearer comparison in the future study. The proposed
method verifies the feasibility of infrared thermal imaging in the diagnosis of facial paraly-
sis, which is beneficial compared with traditional methods. This is mainly caused by two
reasons: (1) the automatic thermal asymmetry analysis algorithm can avoid the inter-rater
variation, (2) subjects do not need to make a series of facial expressions and it leads to
higher coordination.

The patients with very mild symptoms may be missed diagnosed through HB scores.
In the proposed thermal imaging diagnosis, no patients with facial paralysis was missed
diagnosed, but 13.3% of healthy subjects were misdiagnosed as facial paralysis due to the
variation of the facial temperature asymmetry. This method is a useful supplement to
the conventional method. The asymmetry of facial temperature distribution in patients
with facial paralysis is not completely consistent with the HB scores. Patients with mild
symptoms may have significant facial thermal asymmetry, which needs to be verified by
expanding the data set in future studies.

In order to assist physicians in clinical decision-making, our final goal is to develop
a facial paralysis evaluation system based on infrared thermal imaging. This process is
divided into four steps. Firstly, the facial temperature distribution between patients with fa-
cial paralysis and healthy people is compared to find out the feature symmetry combination
with significant difference. Secondly, an automatic method which distinguishes between
facial paralysis and normal is developed using thermal asymmetry analysis. Thirdly, the
differences in thermal images between facial paralysis and other diseases that change
the facial temperature distribution are analyzed, and a thermal image analysis method
to distinguish facial paralysis from other diseases will be further explored. Finally, the
correlation between thermal asymmetry and HB scores is analyzed, and a computerized
facial paralysis grading system is explored based on thermal asymmetry. This study focuses
on the first two steps. In order to complete the distinction between facial paralysis and
normal on thermal images, the exclusion criteria are used to eliminate the interference of
certain diseases on the diagnosis of facial paralysis. The exclusion criteria can enhance the
sensitivity and specificity of thermal asymmetry analysis and simplify the complexity of
this research.

Certain diseases may have similar facial temperature manifestations, such as facial
paralysis, stroke, Parkinson, temporomandibular arthritis, etc. These diseases may lead
to the facial temperature asymmetry, but the degree and site of temperature asymmetry
may be different. However, this study only analyzes the difference in facial thermal images
between facial paralysis and healthy people. In addition, a general framework for analyzing
facial thermal asymmetry is proposed in this study. In the future research, it is necessary to
distinguish the diseases with similar temperature features by changing the facial ROIs.

The automatic output results of the developed computer-aided thermal image analysis
system are divided into two categories: facial paralysis and normal. In future studies, the
output of the extended system will be the severity of facial paralysis (six classes, normal
to complete paralysis [48,49]). Accordingly, the following methods could be adopted:
(1) enlarging the sample dataset and increasing the number of subjects with different facial
paralysis severity; (2) analyzing the correlation between temperature and texture features
and the severity of facial paralysis; (3) evaluating other temperature and texture features,
such as Histogram of oriented gradients and Gabor filters; (4) extending the application to
the curative effect evaluation of facial paralysis.
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4. Conclusions

In this study, a computer-aided thermal image analysis method for early diagnosis
of facial paralysis was proposed. The facial ROIs were automatically segmented using
corner and edge detection, which improves the reliability of thermal image analysis. After
measuring the temperature and texture feature symmetries of the bilateral ROIs of the
subject’s face, it was found that there was a significant difference in the symmetry of facial
temperature distribution between patients with facial paralysis and normal population.
The SVM was used to evaluate the degree of symmetry between thermal features, and its
sensitivity, specificity, and AUC in the diagnosis of facial paralysis were superior compared
to existing studies. In conclusion, the combination of temperature and texture features can
effectively describe the facial temperature distribution of patients with facial paralysis, and
the automatic diagnosis method of facial paralysis based on IRT is feasible. In future work,
the computer-aided thermal asymmetry analysis could be used to evaluate the severity of
facial paralysis.
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