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Esophageal squamous cell carcinoma (ESCC) has a high incidence and low survival rate, necessitating the identification of novel
specific biomarkers. Centromere-associated proteins (CENPs) have been reported to be biomarkers for many cancers, but their
roles in ESCC have seldom been investigated. Here, the potential clinical roles of CENPs in ESCC patients were demonstrated
by a systematic bioinformatics analysis. Most CENP-encoding genes were differentially expressed between tumor and normal
tissues. CENPA, CENPE, CENPF, CENPI, CENPM, CENPN, CENPQ, and CENPR were upregulated universally in the three
datasets. Survival analysis demonstrated that high expression of CENPE and CENPQ was positively correlated with the
outcomes of ESCC patients. The CENPE-based forecast model was more accurate than the tumor-node-metastasis (TNM)
staging-based model, which was classified as stage I/II vs. III/IV. More importantly, the forecast model based on the commonly
upregulated CENPs exhibited a much higher area under the curve (AUC) value (0.855) than the currently known TTL,
ZNF750, AC016205.1, and BOLA3 biomarkers. The nomogram model integrating the CENPs, TNM stage, and sex was highly
accurate in the prognosis of ESCC patients (AUC = 0:906). Besides, gene set enrichment analysis (GSEA) demonstrated that
CENPE expression is significantly correlated with cell cycle, G2/M checkpoint, mitotic spindle, p53, etc. Finally, in validation
experiments, we also found that CENPE and CENPQ were significantly overexpressed in esophageal cancer cells. Taken
together, these results clearly suggest that CENPs are clinically promising diagnostic and prognostic biomarkers for ESCC
patients.

1. Introduction

Esophageal cancer ranks seventh globally in terms of inci-
dence and sixth in overall mortality [1]. Esophageal cancer
is classified into two main subtypes: esophageal squamous
cell carcinoma (ESCC) and adenocarcinoma (EAC). In parts
of Asia and sub-Saharan Africa, nearly 90% of esophageal
cancer cases are ESCC [2], suggesting that ESCC is the dom-
inant subtype. Although a variety of diagnostic methods and
multiple therapies for ESCC patients have proven to be

effective, the 5-year overall survival (OS) rate is still <20%
[2]. Several studies have suggested that long noncoding
RNA (lncRNA), microRNA- (miR-) 375, and miR-483-5p
might serve as potential biomarkers for ESCC [3–5]. How-
ever, the outcomes of ESCC patients are still not ideal. The
identification of novel diagnostic and prognostic biomarkers
for ESCC is urgently needed to improve the outcomes of
ESCC patients.

Centromere-associated proteins (CENPs) are a group of
proteins involved in kinetochore formation. CENPs contain
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18 inner kinetochore-located proteins (CENPA, B, C, H, I,
K, L, M, N, O, P, Q, R, S, T, U, W, and X) and two fibrous
corona-located proteins (CENPE and CENPF) [6]. Malfunc-
tions of kinetochore can cause aneuploidy [7], a well-known
hallmark of human cancers. This has prompted the reason-
able hypothesis that CENPs play critical roles in tumorigen-
esis. Indeed, many researchers have confirmed that the
dysregulation of CENPs is significantly associated with can-
cer prognosis and may serve as a biomarker for non-small-
cell lung cancer and breast cancer [8, 9]. Only two specific
CENPs, CENPE and CENPF, have been reported to be pos-
sible prognostic biomarkers for ESCC [10, 11]. The other
CENPs need to be further investigated. The focus of this
paper is to find a more accurate model for ESCC than previ-
ously reported, such as ZNF750, TTL, AC016205.1, and
BOLA3 [12, 13].

The Cancer Gene Atlas (TCGA) and Gene Expression
Omnibus (GEO) databases have provided a lot of informa-
tion about gene expression profiles and clinical data related
to cancer patients. Bioinformatics analysis provides a num-
ber of strategies for cancer prevention and treatment [14].
Herein, we conducted a comprehensive analysis of the
expression of all genes encoding CENPs to assess their clin-
ical significance in ESCC using TCGA and GEO data. Differ-
entially expressed genes (DEGs) were identified by
comparing the expression differences of the CENP-
encoding genes between the tumor and normal samples.
The effects of the expression of overlapping DEGs from
the three datasets on the survival of ESCC patients were
determined in a survival analysis. Based on the expression
of overlapping DEGs, forecast models were established to
forecast the survival of patients with ESCC. Furthermore,
we explored the underlying mechanisms using gene set
enrichment analysis (GSEA) and coexpression network
analysis (WGCNA). Our results suggest that CENPs are
promising diagnostic and prognostic biomarkers for ESCC.

2. Materials and Methods

2.1. Patient Profiles. Profiles of ESCC patients were down-
loaded from TCGA (https://portal.gdc.cancer.gov/) and the
GSE38129 and GSE20347 datasets from GEO (https://www
.ncbi.nlm.nih.gov/geo/). In TCGA, the clinical information
data of ESCC and EAC were downloaded together. The sam-
ples with incomplete information were removed, leaving 95
ESCC patient cases. In addition, there were 30 cases in
GSE38129 and 17 cases in the GSE20347 dataset. Relation-
ships between the clinicopathological characteristics and
the OS of ESCC patients were determined using univariate
analysis using SPSS software (version 23.0).

2.2. Analysis of Expression Difference. The gene expression
profiles of CENPs were extracted from the three datasets.
In TCGA, some of the 95 clinical samples lacked gene
expression, and 81 tumor samples and 11 normal samples
were left after selection. In GSE38129, there were 30 normal
and 30 tumor samples. In GSE38129, there were 17 normal
and 17 tumor samples. Differences in CENP expression
between normal and tumor samples were analyzed by calcu-

lating log2 fold change (logFC), false discovery rate (FDR),
and P values using edgeR and limma packages in R 3.5.1
software for TCGA and GEO data, respectively [15, 16].
Genes with FDR < 0:05, and P < 0:05 were identified as
DEGs. Heatmaps, Venn diagrams, and boxplots were plotted
using R.

2.3. Survival Analysis. According to the gene expression
level, DEGs in tumor samples were divided into low and
high expression groups. Gene expression levels were ranked
from high to low levels, with the top 50% as the high expres-
sion group and the bottom 50% as the low expression group.
OS curves were plotted using R software based on the
Kaplan–Meier method [17]. Statistical significance was set
at P < 0:05.

2.4. Establishment of the Forecast Model. The risk scores of
each patient were calculated as the sum of the expression
levels of each gene multiplied by its corresponding coeffi-
cient using multivariate Cox regression analysis in R soft-
ware [18]. Based on the risk scores and survival analysis
data, time-dependent receiver operating characteristic
(ROC) curves were plotted using the “survivalROC,” “time-
ROC,” and “bootstrap” package of R software. Package “sur-
vival” was used for multivariate risk regression analysis
through Cox proportional hazards model. Sensitivity was
the ordinate for true positive rate, and 1-specific was the
abscissa for false-positive rate. A nomogram for individual
forecast was generated based on the risk score of the multi-
gene model and clinical risk factors using R software [19].

2.5. Analysis of the Mechanism. In GSEA, expression profiles
of tumor samples were divided into CENPE-low and
CENPE-high groups, as defined by the median expression
value of CENPE. Hallmark gene sets, Kyoto Encyclopedia
of Genes and Genomes (KEGG) gene sets, and oncogenic
signature gene sets were used as references. Enriched gene
sets were identified using GSEA-3.0.jar (http://software
.broadinstitute.org/gsea/downloads.jsp). Gene sets with
FDR < 0:25 and P < 0:05 were considered statistically signif-
icant [20]. WGCNA was conducted to identify genes coex-
pressed with CENPs [21]. The visualized network was
plotted using Cytoscape 3.6.1. Correlation analysis was per-
formed using Pearson’s correlation analysis with R software.

2.6. Validation of Cell Lines. The cell lines, including KYSE
30, 410, 450, 510, 520, and HDF (human dermal fibroblasts),
were purchased from the Shanghai Cell Bank of the Chinese
Academy of Sciences (Shanghai, China). The cells were cul-
tured in RPMI 1640 medium (Gibco Life Sciences, USA)
supplemented with 10% fetal bovine serum (Gibco Life Sci-
ences), 100U/mL penicillin (Gibco; Thermo Fisher Scien-
tific, Inc., USA), and 100μg/mL streptomycin (Gibco;
Thermo Fisher Scientific, Inc.) and were incubated at 37°C
in a humidified incubator containing 5% CO2. In quantita-
tive real-time PCR analysis, total RNA was extracted using
the RNeasy®Mini Kit (QIAGEN, USA). RT-qPCR was per-
formed using SYBR Premix Ex Taq II (TaKaRa BIO, Japan)
in a LightCycler® Real-Time PCR System (Roche, Switzer-
land). The thermocycling conditions included reverse
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transcription at 50°C for 10min and initial denaturation at
95°C for 3min, followed by 40 cycles of denaturation at
95°C for 15 s, annealing, and extension at 60°C for 30 s.
The data were calculated using the 2−ΔΔCt method. The
forward and reverse primers for CENPE were 5′-CAGC
AGAGAAGAATCACTTG-3′ and 5′-GTACCATTGTA
GCCTTGTATG-3′ and for CENPQ were 5′-CAATAC
CATCTCAACTTCCTG-3′ and 5′-TGTAGTAATGCCAG
ACCTTC-3′. Histograms were drawn using the GraphPad
Prism 8 software. Statistical significance was set at P < 0:05.
The gene expression profile of CENPE in esophageal cell
lines was extracted from the GSE23964 dataset (two normal
esophageal epithelial cell lines and 14 ESCC cell lines). Gene
expression difference analysis was performed using the
limma package in R software.

3. Results

3.1. Clinical Characteristics of ESCC Patients in TCGA. This
study explored the effect of CENPs on ESCC (Figure S1). The
relationship between the clinical characteristics and OS of
ESCC patients in TCGA was clarified by performing
univariate Cox regression analysis. Due to the lack of survival
data, the GSE38129 and GSE20347 datasets were only used
in the expression difference analysis. Male sex, advanced
tumor-node-metastasis (TNM) stage, and N2 and N3 stages
were significantly associated with poor survival of ESCC
patients (P = 0:020, P = 0:015, and P = 0:012, respectively;
Table 1). Therefore, N stage, sex, and TNM stage may be
potential risk factors for OS in patients with ESCC.

3.2. Expression of CENPs in ESCC. The expression levels of
the CENP-encoding genes in tumor and normal samples were
assessed to systematically identify the DEGs. The majority of
CENPs were significantly aberrantly expressed in ESCC (17/

20, 11/13, and 12/13 genes in TCGA, GSE38129, and
GSE20347, respectively) (FDR < 0:05 and P < 0:05; Figures 1
(a)–1(c)). While all the genes encoding CENPs seemed to be
universally upregulated in ESCC (logFC > 0; Figures 1(a)–1
(c)), the gene encoding CENPC was downregulated in
GSE38129 and GSE20347 (logFC < 0; Figures 1(a)–1(c)).
Among these DEGs, CENPA, CENPE, CENPF, CENPI,
CENPM, CENPN, CENPQ, and CENPR overlapped in all
three datasets (Figure 1(d)). The expression of the selected
CENPs in each dataset is shown in boxplots (Figures 1(e)–1
(g)), which clearly demonstrated a significantly higher expres-
sion profile in tumors than in normal tissues. The correlations
among CENPs are shown in Figure S2. The collective findings
revealed that a variety of CENPs might be promising
diagnostic biomarkers for ESCC.

3.3. Correlation between Expression of CENPs and Survival of
ESCC Patients. The Kaplan–Meier OS curves were plotted to
determine the prognostic value of the overlap of DEGs in
ESCC patients. As shown in Figure 2(a), high expression
levels of CENPE and CENPQ were significantly correlated
with better outcomes in ESCC patients (P = 0:015 and P =
0:038, respectively). Although the other commonly upregu-
lated CENP-encoding genes in three datasets (CENPA,
CENPF, CENPI, CENPM, CENPN, and CENPR) did not
display statistically significant survival differences between
the lower- and higher-expressed groups (P > 0:05; Figure 2
(a)), they exhibited a similar trend with CENPE and
CENPQ, where high expression was associated with better
survival. Therefore, CENPE and CENPQ may serve as
potential prognostic biomarkers for patients with ESCC.

Since the N stage, sex, and TNM stage exhibited notable
relationships with OS of ESCC patients in the univariate Cox
regression analysis (Table 1), The Kaplan–Meier OS curves
were also drawn for the three clinical characteristics. The
results further demonstrated that N stage, sex, and TNM

Table 1: Univariate Cox regression analysis of ESCC patients’ overall survival in TCGA.

Characteristics Total n = 95n (%) HR (95% CI) P

Sex Female vs. male 15 (15.8%) vs. 80 (84.2%) 0.175 (0.041-0.756) 0.020∗

Race
White+other vs. Asian

Missing
47 (49.5%) vs. 45 (47.4%)

3 (3.2%)
1.570 (0.688-3.581) 0.284

Age ≥60 vs. <60 39 (41.1%) vs. 56 (58.9%) 1.296 (0.631-2.662) 0.461

T stage
T3+T4 vs. T1+T2

Missing
54 (56.8%) vs. 40 (42.1%)

1 (1.1%)
1.351 (0.649-2.811) 0.422

N stage
N2+N3 vs. N0+N1

Missing
9 (9.5%) vs. 84 (88.4%)

2 (2.1%)
3.265 (1.302-8.189) 0.012∗

TNM stage
III+IV vs. I+II

Missing
31 (32.6%) vs. 63 (66.3%)

2 (2.1%)
2.443 (1.191-5.011) 0.015∗

Tumor grade
G3 vs. G1+G2

Missing
21 (22.1%) vs. 65 (68.4%)

9 (9.5%)
0.736 (0.277-1.950) 0.537

Tumor location
Lower vs. upper+middle

Missing
44 (46.3%) vs. 50 (52.6%)

1 (1.1%)
0.958 (0.448-2.051) 0.913

Tobacco use Yes vs. no 51 (53.7%) vs. 44 (46.3%) 1.965 (0.901-4.285) 0.089

Alcohol use
Yes vs. no
Missing

68 (71.6%) vs. 25 (26.3%)
2 (2.1%)

2.172 (0.751-6.276) 0.152

HR: hazard ratio; CI: confidence interval; TNM: tumor-node-metastasis; ∗P < 0:05.
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stage were tightly correlated with the OS of patients with
ESCC (P = 0:006, 0.009, and 0.010, respectively; Figure 2(b)).

3.4. Prognostic Accuracies of CENPE, CENPQ, and the Other
CENPs in ESCC Patients. ROC analysis is a widely applied
method to evaluate the prognostic performance of patients
using the area under the curve (AUC) as an index [22].
The forecast model is significant only when its AUC value
exceeds 0.60 [23–25]. By selecting those universally upregu-
lated CENP-encoding genes, we established more focused
forecast models to forecast OS. A single gene CENPE-
based forecast model was more accurate than the TNM stag-
ing forecast model classified as stage I/II vs. III/IV in fore-
casting the OS of patients with ESCC (0.657 vs. 0.625,
respectively; Figures 3(a) and 3(b)). However, the single gene
forecast model of CENPQ did not show a superior value
(AUC = 0:5). To assess the joint effect of these overlapping
DEGs on patient survival, a multigene forecast model was
established. Using the R package [18], the risk scores of
patients were calculated according to the following formulas:
Risk score = (−0.020×CENPAExp ) + (−0.966×CENPEExp) +
(0.222×CENPFExp) + (0.899×CENPIExp) + (−0.520×CENP
MExp)+ (0.480×CENPNExp)+ (−0.609×CENPQExp)+ (−0.402
×CENPRExp).

The AUC value (0.8550 of such a multigene forecast
model was satisfactory (Figure 3(c)) and was much higher
than that of TNM staging, implying that the forecast model
has high specificity and sensitivity for ESCC survival forecast.
According to the median risk score, patients were divided into
low-risk and high-risk groups. The corresponding survival
curve demonstrated that low-risk patients had a higher sur-
vival rate than the high-risk group (P = 0:014; Figure 3(c)).

A nomogram is a reliable tool for the prognosis of cancer
patients by incorporating and illustrating important factors
for oncologic prognoses [26]. Based on the aforementioned
results of the strong association of TNM stage and sex were
tightly associated with patients with ESCC OS (Table 1 and
Figure 2(b)), we further constructed a nomogram integrating
CENP-based risk score and the two clinicopathological risk

factors (TNM stage and sex). The N stage was excluded from
the nomogram because it was included in the TNM stage. As
shown in the nomogram, the CENP-based risk score con-
tributed the most to forecast patients’ OS, followed by sex
and TNM stage (Figure 3(d)). The ROC curve showed that
the true positive rate of our nomogram integrating CENP-
based risk score, TNM stage, and sex could reach 90.6%
(Figure 3(e)), implying the extremely high accuracy of the
nomogram in forecasting individual OS of ESCC patients.
In addition, to clarify whether our forecast models were
superior in forecasting the survival of ESCC patients, com-
pared with previously published biomarkers, we also per-
formed ROC analysis of other known biomarkers,
including ZNF750, TTL, AC016205.1, and BOLA3 [12, 13].
The results demonstrated that our CENPE-based forecast
model, CENP-based forecast model, and integrated nomo-
gram all had higher AUC values than the four other known
biomarkers (AUC values for TTL, ZNF750, AC016205.1,
and BOLA3 of 0.652, 0.643, 0.623, and 0.613, respectively;
Figures 3(e) and 3(f)). Collectively, our forecast models
based on CENPE, CENPs, and integrating CENP-based risk
score, TNM stage, and sex are promising in the prognosis of
ESCC patients.

3.5. Identification of the Potential Mechanism of CENPE in
ESCC Progression. To investigate the underlying mechanism
of CENPE in ESCC progression, we performed GSEA and
WGCNA. GSEA is a computational method to explore
whether a specific gene set is markedly enriched in a group
of gene markers ranked by their relationship to a phenotype
of interest [20, 27]. In the experiment, the expression profiles
of tumor samples were divided into CENPE-low and
CENPE-high groups and then analyzed based on hallmark
gene sets, KEGG gene sets, and oncogenic signature gene
sets. Several cancer-related gene sets, including G2/M check-
point, mitotic spindle, cell cycle, E2F targets, VEGF, RB/
p107, EGFR, ERB2, and p53, were significantly enriched in
the high CENPE expression group (FDR < 0:25 and P <
0:05; Figure 4). To further explore the molecular
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Figure 1: Aberrant expression of CENPs in ESCC. (a–c) Heatmaps showing expression differences of CENP-encoding genes between the
tumor and normal samples in order of descending logFC in TCGA, GSE38129, and GSE20347. Blue and red colors represent low and
high expression, respectively. ∗∗∗P < 0:001; ∗∗P < 0:01; ∗P < 0:05; and NSP > 0:05. Genes with FDR < 0:05 and P < 0:05 were identified as
DEGs. (d) Venn diagram displaying the overlapped DEGs in the three datasets, including CENPA, E, F, I, M, N, Q, and R. (e–g)
Boxplots representing the different expression levels of the overlapped genes in tumor and normal samples according to TCGA,
GSE38129, and GSE20347.
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mechanism, we performed WGCNA and correlation analy-
ses. In WGCNA, genes coexpressed with CENPs with corre-
lation coefficients > 0:5 were selected and demonstrated in
the visualized network (Figure 5). Some of the coexpressed
genes that were highly related to CENPE and/or tumorigeneses,
such as TOP2A, NDC80, BRCA1, CENPF, BARD1, TTK,
BRCA2, and BUB1B, were further selected to plot correlation
maps (Figure S3(a)). The results of differential expression
analysis showed that BRCA1, BUB1B, and TTK were
significantly upregulated in ESCC tissues based on the TCGA,
GSE38129, and GSE20347 datasets, at the same time notable
overexpressed in ESCC cell lines based on the GSE23964
dataset (FDR < 0:05 and P < 0:05; Figures S3(b)–S3(e)).

3.6. Target Validation in Human Cell Lines. To validate the
mRNA expression differences of CENPE and CENPQ at
the cell line level, RT-qPCR was done, and expression differ-

ence analysis was performed using expression profiles
extracted from the GSE23964 dataset. Analysis results based
on the GSE23964 dataset showed that CENPE was overex-
pressed by microarray assay in ESCC cell lines
(logFC = 1:86, P < 0:001; Figures 6(a) and 6(b)). There were
no CENPQ expression data in the GSE23964 dataset. In RT-
qPCR analysis, since normal esophageal epithelial cell lines
were very difficult to obtain, human dermal fibroblasts
(HDF) were chosen as the ESCC control cell line with refer-
ence to other published articles [28, 29]. RT-qPCR analysis
results demonstrated that both CENPE and CENPQ were
significantly upregulated in the five ESCC cell lines com-
pared to the normal cell line (P < 0:05; Figures 6(c) and 6
(d)). Overall, these results validated that CENPE and
CENPQ were upregulated in ESCC cell lines compared to
the normal ones, consistent with their expression difference
at the tissue level in TCGA and GEO databases.
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4. Discussion

Tumor markers of esophageal cancer may have pivotal roles
in evaluating tumor response to therapy [30], which could
be exploited to develop early diagnostic biomarkers. Aber-
rant expression of CENPs has reportedly been related to sev-
eral human cancers. For instance, in non-small-cell lung
cancer, CENPU expression promotes cancer cell prolifera-
tion and forecasts poor survival [8]. In breast cancer, ele-
vated expression of CENPA is associated with cancer
malignant progression and is a prognostic biomarker [9].
However, the potential role of CENPs in ESCC has seldom
been investigated. Herein, we systematically clarified the
potential clinical functions of CENPs in ESCC patients using
bioinformatics methods based on multiple datasets.

Most CENP-encoding genes, including CENPA,
CENPE, CENPF, CENPI, CENPM, CENPN, CENPQ, and
CENPR, were upregulated in ESCC patients in the TCGA,
GSE38129, and GSE20347 datasets. Consistently, a previous
study demonstrated the overexpression of CENPF in ESCC
cell lines at both the mRNA and protein levels when com-
pared to normal tissue [11]. CENPE was also upregulated
in ESCC based on the TCGA dataset in a recent study
[10]. However, the previous study only analyzed a single
gene using a single dataset to draw the conclusion. In con-
trast, we obtained our results for all CENP-encoding genes
based on three datasets, making it more convincing. Except
for CENPE and CENPF, to the best of our knowledge, the
overexpression of the other six CENPs in ESCC is described

for the first time. Additionally, CENPH was overexpressed
in ESCC samples compared to normal samples based on
the TCGA dataset. Interestingly, CENPH is overexpressed
and is prognostic in esophageal carcinoma [31].

In survival analysis, high expression of CENPE and
CENPQ was significantly associated with better outcomes
in ESCC patients. Similarly, some genes with high expres-
sion in pathological tissues will act against certain aberra-
tions of pathological cells. Previous research has shown
that the downregulation of CENPE causes an increase in
aneuploidy, which in turn triggers an elevated level of spon-
taneous lymphomas and lung tumors in aged animals [32],
implying that CENPE acts as a tumor suppressor. In a recent
study, high expression of CENPE was closely correlated with
better survival in ESCC patients but with unfavorable out-
comes in EAC patients [10]. These findings indicate that
CENPE might play crucial and complicated roles in the sur-
vival of cancer patients. Importantly, in the current study,
CENPQ was first reported to act as a prognostic biomarker
for ESCC patients. We speculate that although CENPE is
highly expressed in tumor tissues, it has a good effect on sur-
vival, which may be a protective factor for ESCC. Thus,
CENPE and CENPQ could serve as potential prognostic bio-
markers for ESCC patients.

Since there are various factors that affect gene expres-
sion, a single gene is usually difficult to be an ideal factor
to forecast. Indeed, the single gene CENPE-based model
was capable of forecasting the OS of ESCC patients, while
CENPQ was not. Therefore, a multigene forecast model
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Figure 3: Forecast models to forecast the prognosis of ESCC patients. (a) Forecast model according to the TNM stage (I+II vs. III+IV) in
ESCC. (b) CENPE-based forecast model. (c) Multigene forecast model and survival curve based on the expression of CENPs. (d) Nomogram
integrating TNM stage, sex, and CENPs-based risk score to forecast individual OS for ESCC patients. (e) ROC curve to evaluate the
nomogram’s performance in forecasting patients’ OS. (f) ROC curves showing the sensitivity and specificity of CENPE, CENPs, and
other known biomarkers in forecasting ESCC patients’ survival. The number of samples in (a) was 94, in (b, c) and (f) was 81, and in (d,
e) was 79.
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based on the expression of CENPs was established. Satisfac-
torily, the multigene model exhibited an especially higher
AUC value than that of TNM staging classified as stage I/II
vs. III/IV, with an accuracy of 85.5% (AUC = 0:855). The
stage I/II vs. III/IV based TNM staging system is a recog-
nized benchmark for classifying the degree of spread of can-
cer and is a principal prognostic factor in forecasting the
consequences of patients with cancer [33]. In this study,
TNM staging was combined with the CENP-based risk score
to construct a new nomogram-based forecast model. Sur-
prisingly, the AUC value of the integrated nomogram
reached 0.906, implying the high accuracy of our nomogram
in the estimation of the individual OS of ESCC patients.

Interestingly, the CENP-based risk score was the most
important factor for OS in the nomogram to forecast, sug-
gesting that CENPs are important in the prognosis of ESCC
patients.

GSEA results demonstrated that cell cycle, G2/M check-
point, mitotic spindle, RB/p107, p53, E2F targets, VEGF,
ERB2, and EGFR were significantly related to CENPE expres-
sion. CENPE is a kinesin-like microtubule motor protein that
accumulates maximally in the G2 phase [34]. It plays a crucial
role in the cell cycle by forming a link between the attachment
of spindle microtubules to kinetochores and the mitotic check-
point [35]. High gene expression of CENPE is positively corre-
lated with the tumor suppressor pathway. The G2/M

Figure 5: The coexpressed network of CENPs and their coexpressed genes. The blue circles represented the coexpressed genes. The red
circles represented CENPs, of which the bigger ones represented the overlapped DEGs and the biggest one represented CENPE. The
number of samples in WGCNA was 81.
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checkpoint pathway can prevent the cell from entering mitosis
(M phase). Hence, high CENPE expression inhibits cell divi-
sion, which leads to a better prognosis in cancer patients.
CENPE is regulated by E2F transcription factor 4. This regula-
tion is important in maintaining G2-arrest and is regulated by
p130/p107/Rb signaling [36]. Moreover, we found that CENPE
was positively related to genes including TOP2A, NDC80,
BRCA1, CENPF, BARD1, TTK, BRCA2, and BUB1B/BUBR1
by correlation analysis. CENPE, CENPF, TTK, and BUB1B
are all mitotic spindle assembly checkpoint-related genes. The
depletion of CENPE and CENPF has been related to the signif-
icant disruption of the cell cycle and paclitaxel resistance in
ovarian cancer [37]. In addition, CENPE and TOP2A are
upregulated in a number of solid cancers and are involved in
mitotic cell cycle nodes in breast cancer [38]. Additionally,
CENPE, TOP2A, CENPF, TTK, and NDC80 are highly
expressed in the cell cycle of basal-like breast cancer [39].
Therefore, our findings indicate that CENPE affects ESCC pro-
gression, possibly by regulating cell cycle-related pathways.

In conclusion, CENPs, especially CENPA, CENPE,
CENPF, CENPI, CENPM, CENPN, CENPQ, and CENPR,
could serve as promising diagnostic biomarkers for ESCC.
CENPE and CENPQ may be potential prognostic biomarkers
for patients with ESCC. In addition, the CENPE-based model,
CENP-based model, and nomogram integrating CENP-based
risk score, TNM stage, and sex are especially promising in
forecasting OS of ESCC patients. Mechanistically, CENPE
may affect the progression of ESCC by regulating cell cycle-
related pathways by interacting with TOP2A, NDC80, and
BRCA1. Further studies are required to confirm their detailed
roles by performing cell and animal experiments.

Data Availability

The datasets analysed during the current study are available
in The Cancer Gene Atlas (https://portal.gdc.cancer.gov/)
and Gene Expression Omnibus (https://www.ncbi.nlm.nih
.gov/geo/).
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Figure 6: Validation of the mRNA expression differences of CENPE and CENPQ at the cell line level. (a) Histogram showing CENPE
expression difference between ESCC cell lines and normal cells based on the GSE23964 dataset (2 normal esophageal normal epithelium
normal cell lines and 14 ESCC ones). Normal cell lines and ESCC ones were filled in black and grey colors, respectively. (b) Boxplot
representing CENPE expression difference based on the GSE23964 dataset. logFC = 1:86, P < 0:001. (c and d) RT-qPCR results of
CENPE and CENPQ, respectively. Normal cell lines and ESCC cells were filled in black and grey colors, respectively. ∗P < 0:05.
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