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Abstract

The Binary State Speciation and Extinction (BiSSE) model is a branching process based

model that allows the diversification rates to be controlled by a binary trait. We develop a

general approach, based on the BiSSE model, for predicting pathogenicity in bacterial popu-

lations from microsatellites profiling data. A comprehensive approach for predicting patho-

genicity in E. coli populations is proposed using the state-dependent branching process

model combined with microsatellites TRS-PCR profiling. Additionally, we have evaluated

the possibility of using the BiSSE model for estimating parameters from genetic data. We

analyzed a real dataset (from 251 E. coli strains) and confirmed previous biological observa-

tions demonstrating a prevalence of some virulence traits in specific bacterial sub-groups.

The method may be used to predict pathogenicity of other bacterial taxa.

Author summary

An important challenge in Computational Biology is the analysis of genetic molecular

data through sophisticated computer science and mathematical methods that are imple-

mented by interdisciplinary research groups. The resulting comprehensive approach,

based on the BiSSE model and microsatellites profiling (TRS-PCR), can be used to predict

pathogenicity behavior in bacterial taxa. As proof of concept, we applied the procedure

to real clinical data sets of genetic information obtained from a unique collection of bacte-

rial populations (251 strains). Our results showed that a state-dependent model was able

to predict pathogenicity behavior of E. coli population. Furthermore, we confirmed previ-

ous biological observations indicating a prevalence of some virulence genetic traits in

bacteria.
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Introduction

The diverse species of E. coli display a large repertoire of genetic traits—pathogenicity factors,

allowing the colonization of the human host. Depending on the occupied niche, individual vir-

ulence factors (VFs) are favored, allowing the survival of the pathogen. However, pathogenicity

factors are maintained only when they favor the development of the pathogen, during the colo-

nization of the host [1]. Otherwise they are eliminated when not required, as they are costly

traits, or when their presence (expression) promotes detection by the host’s immune system

[2,3].

Microsatellites, stretches of DNA consisting of repeated short segments of nucleotides

(sequence motifs) are commonly found in bacterial genomes. A special class of microsatellites,

that of trinucleotide repeat sequences (TRS motifs), is genetically unstable and this instability

depends mainly on the length and number of copies of the repeated motif [4,5]. In the case of

bacterial genomes a TRS rarely exceeds 10 copies and is therefore relatively stably transmitted

in subsequent generations. The number of such loci (with the number of repetitions n� 3)

varies depending on the species of the microorganism and is, for example 1667 for S. aureus
JH1, 2568 for E. coli CFT073 and 4201 in the case of M. tuberculosis. Amplification of DNA

regions located between the TRS motifs allows one to obtain band patterns specific to the

genus, species or a bacterial strain [6–8]. In the case of E. coli, CGG- and / or GTG-PCR pat-

terns are correlated with their phylogenetic membership and also group strains having similar

sets of VFs [9,10]. Therefore, the question is whether the observed phenomenon of clustering

is only a reflection of the genetic status quo, or can it also be helpful in predicting directions of

pathogenicity development in the E. coli population. Such a hypothesis was verified by employ-

ing the binary-state speciation and extinction model—BiSSE [11] with an appropriate probabi-

listic interpretation (see S1 Appendix).

BiSSE is a theoretical model, which was introduced into the phylogenetic community by

Maddison et al. [11]. Apart from special subcases, see e.g. [12], the likelihood is not analytically

tractable but can be obtained numerically by solving an ODE system (as in the diversitree R

package [13–15]). Since its introduction a number of generalizations have been implemented

such as quantitative state speciation and extinction (QuaSSE, [14]) where the speciation and

extinction rates depend on an arbitrary (even continuous) suite of traits, or Hidden State Spe-

ciation and Extinction model (HiSSE, [16]). Even though the likelihood function is not analyti-

cally tractable one can deduce large sample properties of the model by studying branching

processes on generalized state spaces. In particular Janson [17] provides results characterizing

the limit behavior (almost sure convergence and central limit theorems).

In this paper we apply the BiSSE model to estimate parameters from a collection of 251

strains from the clinical isolates of E. coli. We present an application of microsatellites, specifi-

cally TRS microsatellites, as pathogenicity markers and we analyze E. coli strains using the

BiSSE model.

Methods

E. coli strains used in this study and virulence factors characterization

A collection of 128 clinical E. coli strains (set U) was gathered between June 2005 and Septem-

ber 2006 from the urine of patients in various wards of the Military Teaching Hospital No. 2,

Medical University of Lodz, Poland. The second collection (set K) composed of 123 isolated

from children with diarrhea in the Lodz region (Poland) and were obtained from the Medical

Laboratory SYNEVO in Lodz, Poland. Isolates were collected from January 2009 to May 2010.

Genomic DNA isolation and purification was performed with the use of a GenElute Bacterial
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Genomic DNA Kit (Sigma-Aldrich, St. Louis, MO). The quantity and purity of each genomic

DNA sample was determined spectrophotometrically at 260 nm (BioPhotometer, Eppendorf,

Germany). The DNA samples were diluted to 20 ng/μl and then used. The possession of viru-

lence genes, typical for uropathogenic (UPEC) and intestinal E. coli (IPEC) was determined by

multiplex-PCR, according to procedures described elsewhere [9,10,18–22]. Detailed character-

istics of the collection of strains are presented in Table 1 and Table 2.

TRS-PCR profiling and construction of dendrograms

A collection of 251 genomic DNA samples were isolated from E. coli strains and TRS-PCR pro-

filing using GTG and CGG primers was performed. Two TRS-PCR reactions were performed

for each strain using primers containing GTG and CGG repeats respectively, according to pro-

cedures described elsewhere [9,10]. The PCR products, 8 μl of 50μl, were resolved by electro-

phoresis on 1.6% agarose gels (15×15 cm, 4 mm thick) in 1×Tris-acetate-EDTA (TAE) buffer,

2.5 V cm-1, until the dye (bromophenol blue) migrated 6 cm from the top of the gel. Such strin-

gent conditions for the electrophoretic separations allow for carrying out trustworthy analyses.

The DNA products for all of the primers ranged from 0.1 kbp to 2.5 kbp. The gels were stained

with ethidium bromide (1 μg ml-1), visualized on a UV-transilluminator, and photographed

(Fc8800, Alphainnotech). Subsequently, gels were optimized according to recommendations

provided by BioNumerics version 5.00 software (Applied Maths, Belgium) and normalized

with regard to a 100 bp Plus DNA size marker (Fermentas, Thermo Scientific Waltham, MA,

USA). The CGG-PCR and GTG-PCR band profiles for each strain from the collection were

obtained and respective dendrograms were constructed using the BioNumerics software

(Pearson correlation, optimization 1%, position tolerance 1%). Finally, the average similarity

Neighbor Joining dendrogram based on the two trees was assembled. The results are shown in

Fig 1. Such dendrogram and virulence information were subsequently analyzed by our wrap-

per, around make.bisse() and find.mle() functions, R script.

Table 1. Number of VF features and their function in the K and U populations. K, strains isolated from children

with diarrhea; U, strains isolated from patients with urinary tract infections. (grey zone–VFs underrepresented, not

included for prediction).

Virulence

factor

Function Number of strains

K U

astA heat-stable enterotoxin 1 7 20

cnf1 cytotoxic necrotizing factor 1 3 38

fimG fimbrial protein FimG 120 115

fyuA pesticin/yersiniabactin receptor protein 74 78

hly1 alpha-hemolysin 5 40

iroN IroN protein, siderophore receptor 36 84

iutA ferric aerobactin receptor precusor IutA 77 62

papC fimbrial protein 33 45

sat secreted autotranspoter toxin 46 15

sfa S fimbriae major subunit SfaA 2 43

tsh temperature sensitive hemagglutinin 8 7

usp uropathogen-specific protein, bacteriocin-like genotoxin 2 40

escV Type III secretion system major export apparatus protein 14 0

stx1 shiga-like toxin I 1 0

stx2 shiga-like toxin II 1 0

pic Pic serine protease precursor, autotransporter 2 3

aggR AraC homolgous regulator of AAF/I 1 1

https://doi.org/10.1371/journal.pcbi.1005931.t001
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Table 2. The virulence factors characteristics of E. coli strains used in this work. (grey zone–VFs underrepresented, not included for prediction).

VF

strain

papC sfa cnf1 usp hly1 fimG astA fyuA iutA iroN sat tsh escV stx1 stx2 pic aggR

K 001 1 1 1 1 1

K 002 1 1

K 003 1 1 1 1

K 004 1 1 1 1

K 005 1 1 1 1

K 006 1 1 1 1 1

K 007 1

K 008 1 1 1 1

K 009 1 1 1 1

K 010 1 1

K 011 1 1 1 1

K 012 1 1 1 1 1

K 013 1 1 1 1 1

K 014 1 1 1 1 1 1 1 1

K 015 1 1 1

K 016 1 1

K 017 1 1 1 1 1

K 018 1 1 1

K 019 1 1 1 1 1

K 020 1 1

K 021 1 1 1 1

K 022 1 1

K 023 1 1 1 1 1

K 024 1 1 1 1

K 025 1 1 1 1 1 1

K 026 1 1 1 1 1

K 027 1 1

K 028 1 1 1

K 029 1 1 1

K 030 1 1

K 031 1 1 1 1 1

K 032 1 1

K 033 1

K 034 1 1 1

K 035 1 1 1

K 036 1 1 1 1 1

K 037

K 038 1 1 1 1

K 039 1 1 1 1

K 040 1 1 1

K 041 1 1 1 1 1 1

K 042 1 1 1 1

K 043 1 1 1 1

K 044 1 1

K 046 1 1 1

K 048 1

(Continued )
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Table 2. (Continued)

VF

strain

papC sfa cnf1 usp hly1 fimG astA fyuA iutA iroN sat tsh escV stx1 stx2 pic aggR

K 049 1 1 1 1 1

K 051 1 1 1 1 1 1 1

K 052 1 1 1 1 1

K 053 1

K 055 1 1 1 1

K 057 1

K 059 1 1 1 1 1

K 060 1 1 1 1

K 061 1 1 1 1

K 062 1 1 1 1 1 1 1 1 1

K 063 1 1 1

K 064 1 1

K 065 1 1 1

K 066 1 1

K 067 1 1 1 1

K 071 1 1

K 072 1 1 1 1 1

K 073 1 1 1 1 1

K 074 1 1 1 1 1

K 075 1 1 1 1 1

K 076 1 1 1 1

K 077 1 1 1 1

K 078 1 1 1 1 1

K 079 1 1 1

K 080 1 1 1 1

K 081 1 1 1

K 082 1 1 1 1 1

K 083 1 1 1

K 084 1 1 1 1

K 085 1 1 1 1

K 086 1 1 1

K 087 1 1 1

K 089 1 1 1

K 090 1 1 1 1

K 091 1 1 1 1 1

K 093 1 1

K 094 1 1 1 1 1

K 095 1 1 1

K 096 1 1

K 097 1 1 1

K 098 1

K 099 1 1 1 1 1

K 100 1

K 102 1

K 103 1

K 104 1 1 1

(Continued )
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Table 2. (Continued)

VF

strain

papC sfa cnf1 usp hly1 fimG astA fyuA iutA iroN sat tsh escV stx1 stx2 pic aggR

K 106 1 1

K 108 1 1 1 1

K 110 1 1 1 1

K 111 1 1 1

K 112 1 1 1 1

K 113 1 1 1

K 114 1 1 1 1

K 115 1 1 1 1 1

K 116 1 1 1 1

K 117 1 1 1 1 1

K 118 1

K 120 1 1

K 121 1 1

K 122 1 1 1

K 123

K 124 1 1 1 1 1

K 126 1 1 1 1

K 127 1 1 1 1 1 1 1 1 1

K 128 1 1

K 129 1 1 1 1

K 132 1 1 1

K 133 1 1

K 134 1 1 1 1 1 1

K 135 1

K 137 1 1 1 1 1

K 138 1 1

K 140 1 1 1

K 141 1 1 1 1 1

K 142 1 1 1 1

K 160 1 1

K 162 1

U 001

U 002 1

U 003 1

U 004 1

U 005

U 006 1 1 1 1 1 1 1

U 007 1 1

U 008 1 1

U 009 1 1 1

U 010 1 1

U 011 1 1

U 012 1 1 1 1

U 013 1 1 1 1 1 1 1 1 1 1

U 014 1 1 1 1 1 1

U 015 1 1 1

(Continued )
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Table 2. (Continued)

VF

strain

papC sfa cnf1 usp hly1 fimG astA fyuA iutA iroN sat tsh escV stx1 stx2 pic aggR

U 016 1 1 1 1 1 1 1 1

U 017 1

U 018 1 1 1 1 1 1 1 1

U 019

U 020 1 1 1

U 021 1 1 1 1 1

U 022 1 1

U 023 1 1 1 1 1 1 1 1

U 024 1

U 025 1 1 1 1 1

U 026 1 1 1 1 1 1 1 1 1 1

U 027 1 1 1 1 1 1 1 1

U 028 1 1 1

U 029 1 1 1

U 030 1 1 1 1 1 1

U 031 1 1 1

U 032

U 033 1 1 1 1 1 1 1 1

U 034 1 1

U 035 1 1 1 1 1 1 1 1

U 036 1 1 1 1 1 1 1 1 1

U 037 1 1 1

U 038 1 1 1

U 039 1 1 1 1 1 1

U 040 1 1 1 1 1 1 1 1 1

U 041 1

U 042 1 1 1 1

U 043 1 1 1

U 044 1 1 1 1 1

U 045 1

U 046 1 1 1 1 1 1 1 1 1 1

U 047 1 1 1 1 1 1 1

U 048 1 1 1 1 1

U 049 1 1 1 1 1 1 1 1

U 050 1 1 1 1 1 1

U 051 1 1 1

U 052 1 1 1 1

U 053 1 1 1 1

U 054 1 1 1 1 1 1 1

U 055 1 1

U 057 1 1 1

U 058 1 1 1 1 1 1 1

U 059

U 060 1 1 1

U 061 1 1 1

U 062 1

(Continued )
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Table 2. (Continued)

VF

strain

papC sfa cnf1 usp hly1 fimG astA fyuA iutA iroN sat tsh escV stx1 stx2 pic aggR

U 063 1 1 1 1 1 1

U 064 1 1

U 066 1 1 1 1 1 1 1

U 067 1 1 1 1 1 1 1 1

U 068 1

U 069 1 1 1 1 1 1 1 1 1 1

U 070 1

U 071 1 1 1

U 072 1 1 1 1 1 1 1 1 1 1

U 073 1 1

U 074 1

U 075 1 1 1 1 1 1 1 1 1 1

U 076 1 1

U 077 1 1 1

U 079 1 1 1 1 1 1 1

U 080 1 1

U 081 1 1 1 1 1

U 082 1 1 1 1 1 1 1

U 083 1 1 1 1 1 1 1

U 084 1 1 1 1 1 1 1 1 1 1

U 085 1 1 1 1 1 1 1 1 1

U 086 1 1 1 1 1 1 1

U 087 1 1 1 1 1 1 1 1 1 1

U 088 1 1 1 1 1 1

U 089 1 1 1 1 1

U 090 1 1 1 1 1 1 1 1 1

U 091 1

U 092

U 093 1 1 1 1 1

U 094 1 1 1 1

U 095 1 1 1 1 1

U 096 1 1

U 097 1 1 1 1 1 1

U 098 1 1 1 1 1 1 1 1 1

U 099 1 1 1

U 100 1 1 1 1

U 101 1 1 1 1 1 1 1 1 1 1

U 102 1 1 1 1 1 1 1 1 1

U 103 1 1 1 1

U 104 1 1 1 1 1

U 105 1 1 1 1 1 1 1 1

U 106 1

U 107 1 1

U 108 1 1 1 1 1

U 109 1

U 110 1 1 1 1 1 1 1 1 1

(Continued )
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The BiSSE model

In this study we used the BiSSE model [11] for binary states with four rate parameters. BiSSE

models (Fig 2) the evolution of a binary trait (two possible states 0 and 1) and allows for esti-

mation of the speciation (λ0, λ1), extinction (we assumed μ0 = μ1 = 0), and transition between

states (q01, q10) rates. Knowledge of these rates sheds light on whether the trait controls diversi-

fication rates or not. In our case the trait levels correspond to non-pathogenic (0) and patho-

genic (1). The transition rate from 0 to 1 is q01 and from 1 to 0 is q10. If the species is in state 0,

then it has speciation rate λ0 and in state 1 speciation rate λ1.

Notice that in our setting we do not assume any extinction events, i.e. the extinction rates

are set to 0, while in the general BiSSE model they can be non-zero. We may concisely describe

the model as follows. Let N0(t) be the number of 0 strains at time t and N1(t) the number of 1

strains. Of course N(t) = N0(t)+N1(t) is the total number of strains present in the system at

time t. We assume that at time 0, at the root of the tree there is one strain alive, N(0) = 1. We

will estimate the root state, i.e. whether our data supports N0(0) = 1 or N1(0) = 1.

Immediately with the introduction of the BiSSE model there was concern about its power,

i.e. its ability to distinguish between competing hypotheses of symmetric versus asymmetric

models (given pairs of parameters equal versus not equal) [23]. Simulation studies indicated

that a minimal sample size should be about 300 [23]. However, these investigations were done

under the full six parameter BiSSE model. Later investigations (e.g. [24,25]) indicate that some

questions can be analyzed based on much smaller samples. If some parameters are set to 0

then the power can increase dramatically and give sensible results with 100 species [24]. Asym-

metric speciation rates can be detected with as few as 45 contemporary tip species [25,26]. In

our setting the extinction rates are fixed at 0. Since these parameters are the most difficult to

Table 2. (Continued)

VF

strain

papC sfa cnf1 usp hly1 fimG astA fyuA iutA iroN sat tsh escV stx1 stx2 pic aggR

U 111 1 1 1 1 1 1 1 1 1 1

U 112 1 1 1 1 1 1 1 1

U 113 1 1

U 114 1 1 1 1 1 1 1 1 1

U 115 1 1

U 116 1 1 1 1 1 1

U 117 1 1 1 1 1

U 118 1 1 1

U 119 1 1 1 1 1

U 120 1 1 1

U 121 1 1 1

U 124 1 1 1 1

U 125 1 1 1 1 1 1 1 1 1

U 126 1 1 1

U 127 1 1 1 1 1

U 128 1 1 1

U 130 1

U 131 1 1 1 1 1 1

U 134 1 1

U 135 1 1

U 136 1 1 1 1

https://doi.org/10.1371/journal.pcbi.1005931.t002
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Fig 1. The average neighbor joining dendrogram constructed from the two trees based on the CGG-PCR and

GTG-PCR profiling for 251 E. coli strains.

https://doi.org/10.1371/journal.pcbi.1005931.g001
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estimate [24,25], the consideration of a restricted sub-model should improve the situation.

Quoting [24] p. 391, ". . . there are also many reasons for guarded optimism." especially as,

quoting [25] ". . . low power should tend to reduce our ability to detect differences between

parameters, rather than exacerbate them".

The computer software and calculations

We wrote a wrapper script around the make.bisse() and find.mle() functions of the diversitree

R package [13,14] that does model selection and then calculates the limit behavior of the

model. We demonstrate the application of the BiSSE model to estimate parameters from

genetic traits (see scheme of research hypothesis) and to illustrate this approach we estimate

parameters from a collection of clinical E. coli strains. We used the diversitree R package to

estimate four parameters (λ0, λ1, q01, q10) from the dendrograms. We considered various mod-

els: (λ0, λ1, q01, q10), (λ0, λ1, q01 = q10) and (λ0 = λ1, q01 = q10). This particular functionality is

actually available through the diversitree::constrain() function. However, our wrapper function

is more general and allows the user to specify an arbitrary parametrization of BiSSE’s parame-

ters. In particular we do not have the restrictions "Terms that appear on the right hand side of

an expression may not be constrained in another expression, and no term may be constrained

twice." (from diversitree::constrain()’s help). Our wrapper function should be useful to

researchers as it seems that biological studies can require restricted BiSSE setups (e.g. [24,25]).

Model selection was done using AICc [27]. Assessment of model fit was done by comparing

the observed fractions of pathogenic strains to the composite parameter P1 (see Section Proba-

bility of maintaining the VF in E. coli strains) in Table 3. Furthermore, in Table 3 we can see

that the Taylor expansion approximation (see Section Probability of maintaining the VF in E.

coli strains) of P1 corresponds well to the theoretical and observed proportions. The estimation

of the four parameters was based on the provided phylogeny and observed states. From the

estimated parameters we extracted, using an R script, the almost sure limits of the proportion

of the VF in E. coli strains (see S1 Appendix).

All calculations were done in R on the multicore computational server of the Department

of Mathematics Uppsala University (R 3.2.5 for Ubuntu 12.04.5 LTS on a 1.4GHz. AMD

Opteron Proc. 6274). We ran the computation on 4 cores and the whole analysis took about 3

days.

Fig 2. Graphical representation of the BiSSE model [11]. On each arrows the particular parameters of the BiSSE model were

placed: q01, q10 –the transition between states; λ0, λ1 –the speciation rates; μ0, μ1 –the extinction rates. The state diagram has

two states labeled 0 (non-pathogenic) and 1 (pathogenic).

https://doi.org/10.1371/journal.pcbi.1005931.g002
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Source code and sample data freely available for download at https://github.com/

BISSE-TRS/ppbEcoli, distributed under the GNU GPLv3 license.

Results

Research hypothesis

In this work, we ask whether, with the disposal of dendrograms based on TRS profiles and the

BiSSE method, it is possible to predict the maintenance of particular VF features in a popula-

tion. A diagram summarizing our work is presented in research hypothesis, Fig 3.

The estimated rates of speciation rates - λ0, λ1

In our study we take the viewpoint that strains are genetically variable but do not go extinct in

a population. Extinction is a principle of evolution, but this phenomenon is attributed to spe-

cies. In our case we do not have classical extinction of species present. Rather, we observe that

with time the bacterial genetic pool of strains becomes more diverse. Hence, we focus on the

no extinction model (μ0 = μ1 = 0) [28,29]. Even though BiSSE is known to have low power for

samples less than 300, Maliska et al. [25] indicated the asymmetries in speciation rates can be

detected with as few as 45 species. Hence, their estimates are a primary focus of our under-

standing of VF dynamics in E. coli. Here, we demonstrated differences in rates of speciation

depending on the absence (λ0) or presence (λ1) of the given trait of virulence. Fig 4A shows

results obtained for intestinal E. coli strains and Fig 4B shows results for strains isolated from

Table 3. The comparison of parameter P1 to the different proportions: N1/(N1+N0); q01/λ0; λ0/λ1 for particular virulence factors (VF gene). The P1 denotes probabil-

ity of maintaining the virulence factors in E. coli strains. K and U define the isolation environment, stool and urine, respectively.

VF gene P1 N1/(N1+N0) q01/λ0 λ0/λ1

astA-K 0,5 0,056911 0,062749222 1

astA-U 0,162009059 0,15625 0,166929019 5,923011389

cnf1-K 0,026247741 0,02439 0,026974121 36757,41693

cnf1-U 0,562593524 0,296875 0,07770742 0,474817981

fimG-K 0,5 0,97561 0,017012576 1

fimG-U 0,892325172 0,898438 0,494043 0,198624374

fyuA-K 0,5 0,601626 0,328658853 1

fyuA-U 0,681386744 0,609375 0,86451878 0,409062184

hly1-K 0,059809609 0,04065 0,063872785 1196660,446

hly1-U 0,635089603 0,3125 0,091917429 0,466567334

iroN-K 0,281900561 0,292683 0,287407517 0,441978106

iroN-U 0,704457027 0,65625 2,458813734 0,171547728

iutA-K 0,691463682 0,626016 6696,322014 8,32E-05

iutA-U 0,516360148 0,484375 1,185543854 0,290593584

papC-K 0,278749076 0,268293 0,459292231 123,6434019

papC-U 0,300632736 0,351563 0,120384425 0,275223691

sat-K 0,783173018 0,373984 0,154136119 0,660475068

sat-U 0,111249184 0,117188 0,126134155 0,235297811

sfa-K 0,016700084 0,01626 0,016986588 8386,222371

sfa-U 0,694965581 0,335938 0,073105204 0,498620108

tsh-K 0,101117086 0,065041 0,113933518 591123,6118

tsh-U 0,064591836 0,054688 0,069382734 532869,461

usp-K 0,016700084 0,01626 0,016986588 8386,222371

usp-U 0,623225843 0,3125 0,080864901 0,481605114

https://doi.org/10.1371/journal.pcbi.1005931.t003
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urine. In the case of strains isolated from stool samples a higher rate of propagation can be

observed for those not possessing cnf1, hly1, papC, sfa, tsh and usp genes. It is not surprising

given that such virulence factors (except tsh) typically occur in uropathogens [1,30–32]. On the

other hand, possession of iron and iutA resulted in much higher rate of propagation. In the case

of strains isolated from urine most of the virulence factors had a stimulating effect on dissemi-

nation of strains except for astA and tsh genes. One could expect this, as urine is not naturally

inhabited by microorganisms and therefore, numerous virulence factors facilitate colonization.

The transition between states rates–q01, q10.

Here we studied rates of mutation in pathogenic (q01) and non-pathogenic (q10) directions for

strains isolated from stool (Fig 5A) and urine (Fig 5B). Interestingly, in both cases when differ-

ences were pronounced the q10 transition was preferred. This is consistent with the fact that

maintenance of a VF is energetically costly for microorganisms and additionally, lack of the

virulence factor allows for “hiding” from the host’s immunological defense system. Further-

more, highly virulent strains may sensitize individuals allowing for recurrent infections caused

by these less virulent strains [1,33].

Fig 3. The concept of the investigation. Each strain of E. coli has been assigned an individual profile of the TRS-PCR and a set of virulence traits (see Materials and

Methods). The method of predicting pathogenicity relies on using BiSSE model and microsatellites TRS-PCR profiling. Additionally the wrapper scripts calculate

probability of pathogenicity.

https://doi.org/10.1371/journal.pcbi.1005931.g003
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Fig 4. The rates of speciation depending on the absence or possessing the given trait of virulence for collection of

strains isolated from stool (A) and urine (B). Open bars–lack of the VF (λ0); hatched bars–presence of the VF (λ1).

https://doi.org/10.1371/journal.pcbi.1005931.g004
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Fig 5. The transition rates between states–q01, q10 for collection of strains isolated from stool (A) and urine (B). Open

bars–non-pathogenic direction (q10); hatched bars–pathogenic direction (q01).

https://doi.org/10.1371/journal.pcbi.1005931.g005
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Probability of maintaining the VF in E. coli strains

Based on the estimated BiSSE rates it was possible to estimate the long term proportions (P1: =

v1/(v0+v1), see S1 Appendix, Thm. 2.2) of the VF features in the populations. The results are

shown in Fig 6. Among analyzed VF features the following traits had a higher than 50% chance

for being maintained in an E. coli population–cnf1, fimG, fyuA, hly1, iroN, iutA, sat, sfa and

usp. The vast majority of these traits exhibited pathogenicity maintenance in the strains iso-

lated from urine. This seems to be justified by the fact that the VFs mentioned above are neces-

sary for the colonization of the urinary tract in humans i.e. adhesins (fimG, sfa), toxins (hly1,

cnf1, sat), iron uptake system (fyuA, iutA, iroN) and bacteriocin (usp) [1,31,32,34]. These VFs,

however, are not necessary for the development of intestinal pathogens. If the non-pathogenic

strains speciate faster than the pathogenic ones (i.e. λ0>λ 1), then a Taylor expansion of P1

points to a very simple formula for it: q01/λ 0 (provided this is lesser than 1). In Table 3 we also

included this simplified calculation.

Fig 6. The Probability (P1) of maintaining the virulence factors in E. coli strains isolated from stool (hatched bars) and urine samples (open bars). Values

above 0,5 (horizontal black line) indicate higher than 50% chance for being maintained.

https://doi.org/10.1371/journal.pcbi.1005931.g006

Pathogenicity behavior, state-dependent model and TRS profiling

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1005931 January 31, 2018 16 / 20

https://doi.org/10.1371/journal.pcbi.1005931.g006
https://doi.org/10.1371/journal.pcbi.1005931


Discussion

In this paper we presented a comprehensive approach for predicting pathogenicity in a popu-

lation based on a state dependent model and TRS-PCR profiling. Additionally, this paper

shows that it is possible to apply this approach to real laboratory genetic data–from 251 E. coli
strains. Our first research goal was to infer dendrograms for the E. coli population. This

required the gathering of a unique collection of bacterial populations (251 strains) and a

detailed laboratory genetic analysis, including CGG- and GTG-PCR profiling as well as the

identification of pathogenic traits. Next, we applied the BiSSE model to such a collection of

genetic data. Any BiSSE analysis of biological data runs the risk of low power and one should

be careful with drawing conclusions. However, in our case there is place for "guarded opti-

mism” as we restrict our model by excluding the two parameters most difficult to estimate (the

extinction rates). We used AICc to distinguish between competing models and remembering

that ". . . low power should tend to reduce our ability to detect differences between parameters,
rather than exacerbate them" [25] we notice that most VFs have equal transition rates. The

exceptions to this are hly1 (in U), iroN (in K) iutA (in U), papC (both U and K), sat (in U), sfa
(in U), usp (in U), cnf1 (in U). In all of these cases we have q10>q01, i.e. the loss of pathogenicity

is favoured. Furthermore we can see that asymmetry (loss of pathogenicity) is preferred in the

urine environment. Such a behavior was previously observed by others [1,33].

Our computational results confirmed previous biological observations demonstrating a

prevalence of some virulence traits in specific bacterial sub-groups [21,30]. The necessity of

harboring some VFs in E. coli pathogens was indicated. For example, UPEC strains exist

within the intestinal tract of humans but possess specific factors (adhesins, toxins, sidero-

phores and bacteriocins) that permit their successful transition from the intestines to the urine

tract. These VFs are encoded by genes located at the selected regions of chromosomal DNA,

plasmids and/or transposons, named pathogenicity islands (PAIs). PAIs are flexible genetic

elements, holding the mobility sequences, which are transferred horizontally between the bac-

terial cells [2,3]. This phenomenon is significant for bacterial population evolution/diversity.

Additionally, it allows for VFs’ synergy during the process of pathogenicity. For example, iroN
and sfa are located on PAI III in E. coli 536 and hly and cnf1 are encoded by PAI II in E. coli
J96. It may suggest that these VF pairs will be co-transmitted. However, in our study only

35,8% of strains harboring iroN encodes also sfa and 86,6% of strains encoded for both hly
and cnf1. In the latter case however, we need to keep in mind that alpha-haemolysin gene

cluster is present also on plasmids and the other PAIs, some of which do not encode the

CNF-1 [35]. In addition, one needs to remember that not always the PAIs are transmitted

completely and due to recombination errors, some sets of features may not be lost or acquired

jointly [28].

As mentioned above, our research has been conducted using 251 E. coli strains that

included two collections–from urine and stool samples. These collections were not equal in

terms of their virulence factors repertoires (Table 1) therefore, it would be interesting to extend

this research to more strains harboring numerous intestinal VFs. Since the population studied

was divided into two collections isolated from two different environments one could also con-

sider the GeoSSE model to capture potential differences between the urine and stool environ-

ments. However, on the one hand the sample size of 251 is probably too small for such a

complex model (10 parameters, even with extinction set to 0). On the other hand the BiSSE

model is a submodel of GeoSSE. GeoSSE has separate BiSSE models in each environment and

then transition rates between the environments. Hence, as we analyze the two environments

separately ignoring the transitions, the use of GeoSSE would probably result in noticing finer

details in the data, i.e. studying it with a tool that has a higher resolution-the interaction
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between the environments. BiSSE allows us to observe more general properties inside each

environment. These are already consistent with biological intuition.

Additionally, this paper presents a method of estimating the probability of persistence of

the VF in E. coli strains. Noteworthy, this is a comprehensive approach and it may be used to

predict pathogenicity of other bacterial taxa. We believe that our developed software should be

useful for biologists that want to use restricted BiSSE models or who want to parametrize the

parameters. Our wrapper function seems to be flexible enough for such purposes.

Conclusions

The binary state dependent model and TRS-profiling appear to be useful tools for predicting

persistence of pathogenicity in an E. coli population.

Supporting information

S1 Appendix. Predicting pathogenicity behavior in E. coli population through a state-

dependent model and TRS profiling.

(PDF)
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