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Numerous experiments have proved that microRNAs (miRNAs) could be used as
diagnostic biomarkers for many complex diseases. Thus, it is conceivable that predicting
the unobserved associations between miRNAs and diseases is extremely significant
for the medical field. Here, based on heterogeneous networks built on the information
of known miRNA–disease associations, miRNA function similarity, disease semantic
similarity, and Gaussian interaction profile kernel similarity for miRNAs and diseases,
we developed a computing model of biased random walk with restart on multilayer
heterogeneous networks for miRNA–disease association prediction (BRWRMHMDA)
through enforcing degree-based biased random walk with restart (BRWR). Assessment
results reflected that an AUC of 0.8310 was gained in local leave-one-out cross-
validation (LOOCV), which proved the calculation algorithm’s good performance.
Besides, we carried out BRWRMHMDA to prioritize candidate miRNAs for esophageal
neoplasms based on HMDD v2.0. We further prioritize candidate miRNAs for breast
neoplasms based on HMDD v1.0. The local LOOCV results and performance analysis of
the case study all showed that the proposed model has good and stable performance.

Keywords: microRNA, disease, association prediction, degree, biased random walk with restart

INTRODUCTION

MicroRNA (miRNA) is a noncoding single-stranded RNA with a length of about 22 nucleotides
and pervasive in both animals and plants (Axtell et al., 2011). MiRNAs play their regulator role
through binding to imperfect complementary sites within the 3′ untranslated regions (UTRs)
of their messenger RNA (mRNA) targets (Reinhart et al., 2000; Ambros, 2004; Bartel, 2009).
Nowadays, a large number of experimental studies have proved that miRNAs regulate multiple
biological activities and per miRNA can regulate hundreds of gene targets (Lee et al., 1993;
Pasquinelli and Ruvkun, 2002; Brennecke et al., 2003; Lin et al., 2003; Cheng et al., 2005; Karp
and Ambros, 2005; Miska, 2005; Pillai et al., 2005; Cui et al., 2006; Lu et al., 2008; Bartel, 2009;
Alshalalfa and Alhajj, 2013). Moreover, miRNAs have potential influences on almost all genetic
pathways, and the upregulation and downregulation of miRNA expression in the human body
are correlated to various complex diseases (Liu et al., 2008). It indicates that miRNAs have close
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associations with many complex diseases, and miRNAs may
be used as a tumor suppressor gene to treat cancer in clinical
medicine (Cheng et al., 2005). For example, the abnormal
expression of miR-21 could be conducive to the growth and
spread of human hepatocellular cancer (HCC) via the regulation
of phosphatase and tensin homolog (PTEN) expression and
PTEN-dependent pathways (Meng et al., 2007). MiR-10b is
expressed in metastatic breast cancer cells highly and has a
positive regulatory effect on cell migration and invasion (Ma
et al., 2007). Research further suggested that the overexpression
of miR-17-92 in lung cancer could enhance cell proliferation
(Hayashita et al., 2005). Moreover, the miRNA family of let-
7 was reported to downregulate in lung cancers and regulate
an oncogene of RAS, so the inhibition of let-7 may help
in the treatment of the cancer (Johnson et al., 2005). Also,
through targeting an antiapoptotic factor of B-cell lymphoma-2
(BCL2), miR-15 and miRNA-16 were proved to downregulate in
chronic lymphocytic leukemias and induce apoptosis (Cimmino
et al., 2005). Certainly, identification of potential miRNA–disease
associations has become a very significant research goal in
the field of biomedical research. Predicting potential miRNAs
related to diseases would promote people’s understanding of the
pathogenesis of diseases at the molecular level and benefit for the
diagnosis, treatment, and prevention of diseases. Recently, some
reliable databases have been developed to store experimental
verified miRNA–disease associations, such as HMDD v2.0 (Li
et al., 2014), miR2Disease (Jiang et al., 2009), and dbDEMC
(Yang et al., 2010). Using traditional experiment approach
to identify potential miRNA-disease associations is usually
complex, time consuming and expensive. It is an urgent
need for scholars to develop calculation models to predict new
miRNA–disease associations. We expect that miRNA–disease
pairs with high scores could be selected for experimental
verification, which would significantly reduce the time and cost
of biological experiments.

Great progress has been made in developing calculation
models for the potential miRNA–disease association prediction in
recent years. These prediction models are usually proposed by the
consideration of complex network-based or machine learning-
based methods (Chen et al., 2019a). For the experimentally
confirmed miRNA–disease associations that have been collected,
a lot of calculation models were put forward for the identification
of new miRNA–disease associations on the basis of the hypothesis
that functionally similar miRNAs are often associated with
phenotypically similar diseases (Perez-Iratxeta et al., 2002;
Aerts et al., 2006). In 2013, human disease-related miRNA
prediction (HDMP), an effective prediction algorithm based
on weighted k most similar neighbors, was proposed by Xuan
et al. (2015). In the model, functional similarity between each
miRNA pair was calculated by combining the information of
their related disease terms and disease phenotype similarity.
Then the possibility of unobserved miRNA–disease pairs was
predicted via the sum of subscores of miRNA’s k neighbor.
The subscore for a neighbor of a miRNA can be calculated
based on the weight of the neighbor and the functional
similarity between the neighbor and the miRNA. In 2014, based
on known miRNA–disease associations, disease similarity, and

miRNA similarity, a global method of regularized least squares
for miRNA–disease association (RLSMDA) was introduced by
Chen and Yan (2014) to uncover novel associations between
miRNAs and diseases under the framework of a semisupervised
classifier. In 2015, based on the constructed miRNA functional
network, another new model of miRNAs associated with diseases
prediction (MIDP) was developed by Xuan et al. (2015) to
prioritize candidate miRNAs for investigated diseases with
known related miRNAs. In the model, for the marked nodes
and unmarked nodes, transition matrices are different, and
the transition weight of marked nodes was higher than that
of unmarked nodes. Moreover, due to the fact that MIDP
could not predict potential miRNAs (diseases) associated with
new diseases (miRNAs) without any known related miRNAs
(diseases), an extension approach of MIDPE was also proposed
to predict potential miRNAs (diseases) associated with new
diseases (miRNAs). Chen et al. (2017) published a model of
ranking-based KNN for miRNA–disease association prediction
(RKNNMDA), in which the KNN approach was employed
to gain the k-nearest-neighbors of each miRNA and disease
according to the collected data information. Then, based on
the Hamming loss of per disease pair and miRNA pair, a
support vector machine (SVM) ranking model was introduced
to achieve scores of potential miRNA–disease associations.
Furthermore, Chen and Huang (2017) presented a computational
model named Laplacian regularized sparse subspace learning
for miRNA–disease association prediction (LRSSLMDA), which
projected miRNAs’ feature and diseases’ feature into a common
subspace. Then, the local structures of the training data were
obtained based on Laplacian regularization, and the final
predicted scores would be obtained by carrying out the L1-
norm constraint. Chen et al. (2018a) put forward a machine
learning-based method of extreme gradient boosting machine
for miRNA–disease association prediction (EGBMMDA), in
which a feature vector for the miRNA–disease pair was
established by merging three matrices of miRNA functional
similarity, disease semantic similarity, and known miRNA–
disease associations. Then, based on the characteristics and the
gradient boosting framework, a regression tree was applied to
obtained scores of potential miRNA–disease associations. In
the same year, a computational model of ensemble learning
and link prediction for miRNA–disease association prediction
(ELLPMDA) was brought forward by Chen et al. (2018f); they
inferred new miRNA–disease associations via the weight-based
integration of three classified results gained from common
neighbors, Jaccard index and Katz index. Also, from the angle
of reducing the noise of the original collected known miRNA–
disease association information, Chen et al. (2018e) further
brought up a calculation method of matrix decomposition and
heterogeneous graph inference for miRNA–disease association
prediction (MDHGI). The sparse learning method was carried
out firstly on the initial association information to reduce
noise. Then, an iterative formula for propagating miRNA
and disease information was established based on the built
heterogeneous network to predict potential miRNA–disease
associations. Besides, Chen et al. (2018c) presented a novel
method of inductive matrix completion for miRNA–disease
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association prediction (IMCMDA) through enforcing a low-rank
inductive matrix completion approach on the collected datasets.
Chen et al. (2018d) also developed a prediction model of bipartite
network projection for miRNA–disease association prediction
(BNPMDA). In the model, the bias ratings for miRNAs
and diseases were built based on agglomerative hierarchical
clustering. Then, through assigning transfer weights to resource
allocation links between miRNAs and diseases according to the
bias ratings, the bipartite network recommendation algorithm
was implemented to predict the potential miRNA–disease
associations. Chen et al. (2019b) put forward a machine learning-
based method named ensemble of decision tree-based miRNA–
disease association prediction (EDTMDA), which identifies
potential disease–miRNA association by implementing ensemble
learning based on decision trees (DTs) and dimensionality
reduction based on principal component analysis (PCA).
In recent years, Chen et al. (2021) further proposed the
neighborhood constraint matrix completion for miRNA–disease
association prediction (NCMCMDA), which combined the
neighborhood constraint with matrix completion. The prediction
problem in NCMCMDA can be transformed into an optimization
problem, and a fast iterative shrinkage–thresholding algorithm
was implemented to solve it.

Some scholars have also introduced some calculation models
on the basis of various types of association networks, rather than
limited to the miRNA–disease network. In 2014, through the
analysis of miRNA–protein associations and protein–disease
associations, Mork et al. (2014) developed a scoring scheme
for the potential miRNA–disease association prediction. In
2016, through taking advantage of miRNA–disease associations,
miRNA–neighbor associations, miRNA–target associations,
miRNA–word associations, and miRNA–family associations,
Pasquier and Gardes (2016) expressed the distribution
information of miRNAs and diseases in a high-dimensional
vector space and then inferred association scores between
miRNAs and diseases according to their vector similarity. In
2017, based on the phenome–miRNA network constructed
by known miRNA–disease associations, miRNA functional
similarity, disease semantic similarity, and phenotypic similarity,
a combinatorial prioritization algorithm was proposed by Yu
et al. (2017) to predict potential miRNA–disease associations. In
2018, through constructing a three-layer heterogeneous network
based on the integration of known miRNA–lncRNA interactions,
miRNA–disease associations, miRNA similarity, disease
similarity, and lncRNA similarity, Chen et al. (2018b) designed a
method of triple-layer heterogeneous network-based inference
for miRNA–disease association prediction (TLHNMDA) by
establishing two information spreading iterative formulas.

In this manuscript, based on a multilayer heterogeneous
network established by known miRNA–disease associations,
disease semantic similarity, miRNA functional similarity, and
Gaussian interaction profile kernel similarity for diseases and
miRNAs, we put forward a calculating model of biased random
walk with restart on multilayer heterogeneous networks for
miRNA–disease association prediction (BRWRMHMDA).
In the model, degree-based biased random walk with
restart (BRWR) was implemented to predict potential

miRNA–disease associations on the basis of the constructed
multilayer heterogeneous network. For evaluating the property
of the introduced calculation model, local leave-one-out
cross-validation (LOOCV) was presented and the outcome
showed that BRWRMHMDA possesses an AUC of 0.8310
in local LOOCV. In the case study, we not only employed
BRWRMHMDA to infer candidate miRNAs for esophageal
neoplasms in the light of known miRNA–disease associations
extracted from HMDD v2.0 (Li et al., 2014) but also implemented
the model to predict breast neoplasms-associated miRNAs on
the basis of known miRNA–disease associations collected from
HMDAD v1.0. From the result of LOOCV and the case study,
we can be sure that BRWRMHMDA has better prediction
ability, and BRWRMHMDA can be used to predict potential
miRNA–disease associations.

MATERIALS AND METHODS

Human miRNA–Disease Association
The dataset of 5,430 experimentally verified associations between
383 diseases and 495 miRNAs came from the HMDD v2.0
database (Li et al., 2014). We used the variables nm and nd
to refer to the number of diseases and miRNAs in the dataset,
respectively. Afterward, an adjacency matrix A was established
to indicate known miRNA–disease associations. If miRNA m(i)
is related to d(j), the value of entity A(i, j) would equal to 1,
otherwise 0.

A(i, j) =
{

1, if miRNAm(j) is related to disease d(i)
0, otherwise

(1)

MiRNA Functional Similarity
Since functionally similar miRNAs are more likely to be
associated with phenotypically similar diseases on the
basis of the previous study (Wang et al., 2010), we got
the information of miRNA functional similarity from
http://www.cuilab.cn/files/images/cuilab/misim.zip. After that,
we constructed a miRNA functional similarity matrix FS with
the row and column of nm. It is remarkable that the value of
entity FS(i, j) refers to the similarity score between miRNA m(i)
and miRNA m(j).

Disease Semantic Similarity Model 1
Each disease can be described as a directed acyclic graph (DAG)
according to previous literature (Wang et al., 2010). For example,
disease D can be described as DAG = (D,T(D),E(D)), where
T(D) refers to all disease nodes, and E(D) indicates all edges that
connect disease nodes based on DAG(D). Inspired by previous
work (Xuan et al., 2013), the contribution value of disease d in
DAG(D) to the semantic value of disease D can be defined as
follows:{

DD1(d) = 1 if d = D
DD1(d) = max

{
1∗DD1(d′)|d′ ∈ children of d

}
if d 6= D

(2)
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where 1 is the semantic contribution decay factor, and the
semantic value of disease D can be described as follows:

DV1(D) =
∑

d∈T(D)

DD1(d) (3)

Considering that two diseases would have greater similarity if
they share larger part of their DAGs, we defined the semantic
similarity between disease d(i) and d(j) in disease semantic
similarity model 1 as follows:

SS1(d(i), d(j)) =

∑
t∈T(d(i))∩T(d(j))(Dd(i)1(t)+ Dd(j)1(t))

DV1(d(i))+ DV1(d(j))
(4)

Disease Semantic Similarity Model 2
Also inspired by previous work (Xuan et al., 2013), we also
introduced disease semantic similarity model 2. For two diseases
in the same layer of DAG(D), if the first disease occurs more
frequently in DAG(D) than the second disease, the second disease
would be regarded to be more specific to disease D. By the
consideration of the idea that the contribution of different disease
terms in the same layer of DAG(D) may be the difference, the
contribution of disease d in DAG(D) to the semantic value of
disease D could be described as follows:

DD2(d) = − log[
the number of DAGs including d

the number of disease
] (5)

The value of semantic similarity in disease semantic similarity
model 2 between disease d(i) and d(j) could be calculated as
follows:

SS2(d(i), d(j)) =

∑
t∈T(d(i))∩T(d(j))(Dd(i)2(t)+ Dd(j)2(t))

DV2(d(i))+ DV2(d(j))
(6)

where
DV2(D) =

∑
d∈T(D)

DD2(d) (7)

Gaussian Interaction Profile Kernel
Similarity
The calculation of Gaussian interaction profile kernel similarity
for diseases and miRNAs depends on the topologic information
of known miRNA–disease associations (van Laarhoven et al.,
2011). For diseases, we used a binary vector IP(d(u)) (i.e., the
uth row of the adjacency matrix A) to indicate the interaction
profiles of disease d(u). Accordingly, the Gaussian interaction
profile kernel similarity between diseases d(u) and d(v) can be
described.

KD(d(u), d(v)) = exp(−γd
∣∣∣∣IP(d(u))− IP(d(v))

∣∣∣∣2) (8)

The parameter γd was used to regulate the kernel bandwidth and
could be acquired via the normalization of a new bandwidth γ

′

d
by the average number of associated miRNAs for each disease.

γd = γ
′

d/

 1
nd

nd∑
u=1

∣∣∣∣IP(d(u))
∣∣∣∣2 (9)

For miRNAs, the binary vector IP(m(i)) (i.e., the ith column
of the adjacency matrix A) was introduced to indicate the
interaction profiles of miRNA m(i). At last, the Gaussian
interaction profile kernel similarity between miRNA m(i) and
m(j) can be constructed as follows:

KM(m(i),m(j)) = exp(−γm
∣∣∣∣IP(m(i))− IP(m(j))

∣∣∣∣2) (10)

γm = γ
′

m/

(
1
nm

nm∑
i=1

||IP(m(i))||2
)

(11)

Integrated Similarity for miRNAs and
Diseases
Based on past work (Chen et al., 2016), integrated similarity
for a pair of diseases (d(u) and d(v)) can be defined via
the combination of disease semantic similarity and Gaussian
interaction profile kernel similarity for diseases. The formula of
integrated similarity for diseases is displayed as follows:

SD(d(u), d(v)) =
SS1(d(u)+ d(v))+ SS2(d(u), d(v))

2
d(u) and d(v) has

semantic similarity
KD(m(u),m(v)) otherwise

(12)
Also, the integrated similarity for a pair of miRNAs (m(i) and
m(j)) could be formed by taking miRNA functional similarity
with Gaussian interaction profile kernel similarity for miRNA
into account (Chen et al., 2016).

SM(m(i),m(j)) ={
FS(m(i),m(j)) m(i) and m(j) has functional similarity
KM(m(i),m(j)) otherwise

(13)

BRWRMHMDA
Via the integration of known miRNA–disease associations,
disease semantic similarity, miRNA functional similarity, and
Gaussian interaction profile kernel similarity for miRNAs and
diseases, we put forward a calculating model of BRWRMHMDA
based on the degree for the identification of potential miRNA–
disease associations by enforcing BRWR on a constructed
multilayer heterogeneous network according to previous work
(Bonaventura et al., 2014) (see Figure 1).

In the model, based on the constructed multisource dataset,
we used Wdd, Wmm, Wdm to represent the initial matrix
of integrated disease similarity, integrated miRNA similarity,
and known miRNA–disease associations, respectively. Then, the
multilayer heterogeneous network was constructed and described

as W=
[
Wdd Wdm
Wmd Wmm

]
. In BRWR, if we predicted potential

miRNAs for disease d(i), the disease d(i) is the seed node in the
disease network. If the miRNA m(j) is associated with disease
d(i), miRNA m(j) is the seed node for disease d(i) in the miRNA
network. If the miRNA m(j) has no known association with
disease d(i), miRNA m(j) is the candidate node for disease d(i) in
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FIGURE 1 | Comparing to the other calculating algorithms (ELLPMDA, IMCMDA, EGBMMDA, MDHGI, TLHNMDA, MaxFlow, RLSMDA, HDMP, WBSMDA, MirAI,
and MIDP) in terms of AUCs, BRWRMHMDA gained a better AUC value of 0.8310. It indicates that the proposed model is more suitable for the miRNA–disease
association prediction.

the miRNA network. For predicting potential miRNAs for disease
d(i), the original probability vector v0 of the miRNA network is
computed through assigning equal probability to the seed nodes
in the miRNA network with a total equal to 1. In the disease
network, the probability value of 1 was assigned to d(i), and the
probability value of 0 was assigned to other diseases to form u0,

where the initial seed node probability P0
=

[
α∗u0

(1− α)∗v0

]
; α and

(1− α) refer to the weight of the disease network and the miRNA
network, respectively.

Seed nodes at each step move to their immediate neighbors
with a probability (1− δ) or return to the seed nodes with a
restart probability δ (δ ∈ (0, 1)). P0 was the initial probability
vector, and Pt+1 was a probability vector of node at time t + 1,
which could be defined as follows:

Pt+1
= (1− δ)MPt + δP0 (14)

where matrix M=
[
Mdd Mdm
Mmd Mmm

]
is the transition matrix of our

established network. In random walk with restart (RWR), the
transition probability M(i, j) of a walker from node i to node j
can be described as follows:

M(i, j) =
W(i, j)∑
l
W(i, l)

(15)

where W(i, j) is the similarity between node i and node j. In
this model, BRWR of degree biased random walk was proposed
to identify potential miRNA–disease associations. Biases were
usually considered to be related to graph topological properties.
For example, a walk at node xi selects it neighbors of xj
with a probability fj = f (xj) relying on the node property xj.
Usually, the node property can be described as a function of
the vertex properties (the network degree, closeness centrality,
etc.) or the edge properties (multiplicity or shortest path), or the
combination of them (Gomez-Gardenes and Latora, 2008). There
are other related bias choice of maximal entropy (Burda et al.,
2009). Thus, the transition probability of a walker from i to j in
BRWR can be defined as

M(i, j) =
W(i, j)fj∑
l
W(i, l)fl

(16)

Therefore, in the disease similarity network, the transition
probability from vertex di to dj can be defined as

Mdd(i, j) = p(dj|di) ={
Wdd(i, j)fj/

∑
jWdd(i, j)fj if

∑
jWdm(i, j) = 0

(1− λ)Wdd(i, j)fj/
∑

jWdd(i, j)fj otherwise
(17)

Frontiers in Genetics | www.frontiersin.org 5 August 2021 | Volume 12 | Article 720327

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org/
https://www.frontiersin.org/journals/genetics#articles


fgene-12-720327 August 4, 2021 Time: 13:51 # 6

Qu et al. MiRNA-Disease Association Prediction

In the miRNA similarity network, the transition probability from
mi tomj can be defined as

Mmm(i, j) = p(mj|mi) ={
Wmm(i, j)fj/

∑
jWmm(i, j)fj if

∑
jWdm(j, i) = 0

(1− λ)Wmm(i, j)fj/
∑

jWmm(i, j)fj otherwise
(18)

In the miRNA–disease association network, the transition
probability from vertex di to mj can be defined as

Mdm(i, j) = p(mj|di) ={
λWdm(i, j)fj/

∑
jWdm(i, j)fj if

∑
jWdm(i, j) 6= 0

0 otherwise
(19)

The transition probability from vertex mi to dj can be defined as

Mmd(i, j) = p(dj|mi) ={
λWdm(j, i)fj/

∑
jWdm(j, i)fj if

∑
jWdm(j, i) 6= 0

0 otherwise
(20)

In this paper, we focus on the case of BRWR by considering the
degree nodes. Therefore, fj = f (xj) in the model is the degree of
node xj in the transition probability. The degree fi of a disease
node i is defined by computing the number of edges involved in
the disease node. Therefore, in the disease similarity network, the
degree of disease node j can be defined as fj =

∑
iWdd(i, j). In the

miRNA similarity network, the degree of miRNA node j can be
defined as fj =

∑
iWmm(i, j). In the transition probability matrix

of the miRNA–disease association network, the degree of miRNA
mj can be described as fj =

∑
iWdm(i, j). Also, in the transition

probability matrix of the miRNA–disease association network,
the degree of disease dj can be described as fj =

∑
iWdm(j, i).

Therefore, based on BRWR of degree nodes, the potential
miRNA–disease associations would be obtained.

RESULTS

Performance Evaluation
Since BRWR is a local calculating method, it cannot infer
candidate miRNAs for all diseases simultaneously. Therefore,
in order to analyze the performance of BRWRMHMDA,
the proposed method has been extensively compared with
some classic algorithms (ELLPMDA, IMCMDA, EGBMMDA,
MDHGI, TLHNMDA, MaxFlow, RLSMDA, HDMP, WBSMDA,
MirAI, and MIDP) based on the 5,430 known miRNA–disease
associations from the HMDD v2.0 database (Li et al., 2014) via
local LOOCV. In local LOOCV, each known miRNA–disease
association was considered as a test sample in turn, and the rest of
5,429 known associations were treated as training samples. After
enforcing BRWRMHMDA, the score of the test sample would be
sorted with the scores of all unobserved pairs between miRNAs
and the investigated disease. The proposed approach would be
regarded as reliable if the test sample’s ranking is higher than a
set threshold. Then a receiver operating characteristics (ROC)
curve with the true positive rate (TPR, sensitivity) versus the

false positive rate (FPR, 1-specificity) at various thresholds would
be drawn. Sensitivity refers to the percentage of test samples
ranked higher than the given threshold, and specificity refers to
the percentage of candidates ranked lower than the threshold.
Finally, the area under the ROC curve (AUC) was calculated
to accurately evaluate the prediction ability of BRWRMHMDA.
The value of the AUC is between 0 and 1, and the higher the
value of the AUC, the better the prediction performance of
the algorithm. If the value of the AUC is 0.5, the prediction
performance of BRWRMHMDA is random. The final assessment
results showed that BRWRMHMDA has better prediction
performance with an AUC of 0.8310 than those of the other
server classical algorithms of ELLPMDA (0.8181), IMCMDA
(0.8034), EGBMMDA (0.8221), MDHGI (0.8240), TLHNMDA
(0.7756), MaxFlow (0.7774), RLSMDA (0.6953), HDMP (0.7702),
WBSMDA (0.8031), MirAI (0.6299), and MIDP (0.8196) (see
Figure 2). Here, the AUC value of MirAI is lower than that
reported in its literature (Pasquier and Gardes, 2016) because
MirAI was proposed on the basis of a collaborative filtering
algorithm affected by the data sparsity problem. Compared with
the training set in the original literature, our dataset is relatively
scarce. The training set in the original literature contains 83
diseases and at least 20 known related miRNAs for each disease,
while our training set contains 383 diseases and most diseases-
related miRNAs are rare.

Case Studies
In order to further analyze the performance of the algorithm
effectively, we carried out two types of case studies. The first type
of case studies is the prediction of potential miRNAs associated
with esophageal neoplasms based on the known miRNA–disease
association collect from HMDD v2.0. The second type of
case studies is the prediction of potential miRNAs associated
with breast neoplasms based on the known miRNA–disease
association collect from HMDD v1.0.

Esophageal neoplasm is one of the most lethal cancers
in the world; its main nature is highly invasive and of low
survival rate (Domper Arnal et al., 2015). The disease contains
two main histological types of squamous cell cancer and
adenocarcinoma (Zhang et al., 2016). Malnutrition is a main
risk factor for esophageal squamous cell carcinoma (ESCC), and
obesity is the main risk factor for esophageal adenocarcinoma
(Domper Arnal et al., 2015). Accordingly, looking for sensitive
molecular biomarkers and individual treatment approach for
early diagnosis of esophageal cancer has become the main
clinical and basic research direction. Numerous studies suggested
that miRNAs play an important role in diseases and can be a
biomarker for esophageal neoplasms’ treatment. For example,
miR-506 was abnormally expressed in a variety of tumors
and could be used as a prognostic biomarker for ESCC
(Li et al., 2016). Besides, plasma miR-718 was reported to
downregulate in ESCC patients and might be treated as a
potential diagnostic marker for the disease (Sun et al., 2016).
Here, we employed BRWRMHMDA to prioritize candidate
miRNAs for esophageal neoplasms according to the dataset of
5,430 known miRNA–disease associations between 383 diseases
and 495 miRNAs. As a result, of the first 50 miRNAs predicted
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FIGURE 2 | Flowchart of BRWRMHMDA to prioritize candidate miRNAs for diseases. Through employing BRWR on the established heterogeneous networks, final
scores p∞ of candidate miRNAs predicted for each disease would be gotten after some steps.

for esophageal neoplasms in the ranking, 49 miRNAs have
been confirmed by the database of dbDEMC and miR2Disease
(see Table 1). For example, the predicted association score
between hsa-mir-125b and esophageal neoplasms is ranked first.
Yu et al. (2020) have found that hsa-mir-125b suppresses cell
proliferation and metastasis by targeting HAX-1 in ESCC, which
proves that hsa-mir-125b is related to esophageal neoplasms.
Moreover, the predicted association score between hsa-mir-
200b and esophageal neoplasms is ranked second. Researchers
have confirmed that hsa-mir-200b is downregulated in ESCC
in the comparison of the respective adjacent benign tissues
(Zhang et al., 2014). Therefore, hsa-mir-200b is associated with
esophageal neoplasms.

Breast neoplasm is one of the three most common cancers
for women (Siegel et al., 2018). In particular, metastatic breast
cancer (MBC) is usually incurable, and about 5% of patients
have metastases at diagnosis (Torre et al., 2015). With recent
research, miR-10b sponge has been shown to effectively inhibit
the growth of MDA-MB-231 and MCF-7 cells in breast cancer
(Liang et al., 2016). In addition, miR-223 was demonstrated
to function as a potential tumor marker for breast neoplasm
through suppressing its protein expression of FOXO1 (Wei
et al., 2017). Accordingly, identifying breast neoplasm-related
miRNAs is meaningful, which could help the medical diagnosis
and treatment for MBC (McGuire et al., 2015). Here, we
enforced BRWRMHMDA to infer potential miRNAs related
to breast neoplasms on the basis of 1,395 known miRNA–
disease associations between 137 diseases and 271 miRNAs
collected from HMDD v1.0. The results showed that 48 of
the first 50 miRNAs predicted for breast neoplasms have
been confirmed by the databases of dbDEMC, miR2Disease,
and HMDD v2.0 (see Table 2). For example, hsa-let-7b was
predicted to associate with breast neoplasms, and the predicted
score is ranked second. It is worth noting that hsa-let-7b
can significantly change oncogenic signaling in breast cancer

cells. Consequently, hsa-let-7b may have important roles in
breast neoplasm progression and can be considered as potential
targets for breast neoplasm therapy and diagnosis (Bozgeyik,
2020). Besides, hsa-mir-16 was predicted to be related to breast
neoplasms, and the predicted score is ranked third. Haghi et al.
indicated that has-mir-16 and has-mir-34a can collaborate in
breast tumor suppression, which proved that hsa-mir-16 has
association with breast neoplasms.

At last, we have released the whole prediction results via the
implementation of BRWRMHMDA for all miRNA–disease pairs
between 383 diseases and 495 miRNAs from HMDD v2.0 (see
Supplementary Table 1).

DISCUSSION

Through integrating known miRNA–disease associations, disease
semantic similarity, miRNA function similarity, and Gaussian
interaction profile kernel similarity for miRNAs and diseases,
BRWRMHMDA was employed in this manuscript to prioritize
candidate miRNAs for diseases via the implementation of degree-
based BRWR on the established networks. The assessment results
of LOOCV showed that the developed algorithm outperforms the
other 11 classic prediction algorithms in accuracy. We further
enforced the proposed algorithm to infer candidate miRNAs
for esophageal neoplasms in the light of known miRNA–disease
associations extracted from HMDD v2.0 and infer candidate
miRNAs for breast neoplasms in the light of known miRNA–
disease associations extracted from HMDD v1.0. The results of
the case study fully demonstrated the stability of this introduced
algorithm. It is worth mentioning that our research group will
keep on studying this issue in depth. Furthermore, we hope
more external research groups would select potential associations
with high prediction scores and verify them based on biological
experiment in the future.
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TABLE 1 | The implementation of BRWRMHMDA to prioritize candidate miRNAs
for esophageal neoplasms based on experimentally confined miRNA–disease
associations collected from HMDD v2.0 and 47 of the first 50 predicted
miRNAs were confirmed.

miRNA Evidence miRNA Evidence

hsa-mir-125b dbDEMC hsa-mir-429 dbDEMC

hsa-mir-200b dbDEMC hsa-mir-106a dbDEMC

hsa-mir-18a dbDEMC hsa-mir-24 dbDEMC

hsa-mir-17 dbDEMC hsa-mir-30c dbDEMC

hsa-mir-221 dbDEMC hsa-mir-218 unconfirmed

hsa-mir-19b dbDEMC hsa-mir-93 dbDEMC

hsa-mir-16 dbDEMC hsa-mir-132 dbDEMC

hsa-mir-1 dbDEMC hsa-mir-30a dbDEMC

hsa-mir-222 dbDEMC hsa-mir-127 dbDEMC

hsa-let-7i dbDEMC hsa-mir-195 dbDEMC

hsa-mir-29a dbDEMC hsa-mir-199b dbDEMC

hsa-let-7e dbDEMC hsa-mir-10b dbDEMC

hsa-let-7d dbDEMC hsa-mir-15b dbDEMC

hsa-mir-29b dbDEMC hsa-mir-107 dbdemc and
miR2Disease

hsa-let-7f unconfirmed hsa-mir-7 dbDEMC

hsa-mir-181b dbDEMC hsa-mir-224 dbDEMC

hsa-mir-181a dbDEMC hsa-mir-18b dbDEMC

hsa-mir-125a dbDEMC hsa-mir-133b dbDEMC

hsa-let-7g dbDEMC hsa-mir-335 dbDEMC

hsa-mir-9 dbDEMC hsa-mir-194 dbdemc and
miR2Disease

hsa-mir-146b dbDEMC hsa-mir-302b dbDEMC

hsa-mir-106b dbDEMC hsa-mir-20b dbDEMC

hsa-mir-182 dbDEMC hsa-mir-124 dbDEMC

hsa-mir-142 dbDEMC hsa-mir-373 dbdemc and
miR2Disease

hsa-mir-122 unconfirmed hsa-mir-191 dbDEMC

Actually, the method’s high accuracy in the miRNA–disease
association predictions mainly rely on the following attractive
properties. First, the training set of known miRNA–disease
associations used in this manuscript was collected from a very
reliable database of HMDD v2.0, and the several bioinformatics
data (disease semantic similarity, miRNA function similarity,
and Gaussian interaction profile kernel similarity for miRNAs
and diseases) mentioned in the paper were accurately calculated
and integrated. All the reliable biological information mentioned
above would attribute to the accuracy of BRWRMHMDA.
Second, compared with the machine learning-based methods that
randomly select negative samples as the training set, the proposed
algorithm only uses positive samples as the training set that
would provide higher prediction value. At last, BRWRMHMDA,
a degree-biased random walk, could fully take advantage of
the information about node degree and improve the prediction
accuracy. From the preceding discussion, it is no surprise that
this algorithm is superior to other comparison algorithms and has
good performance.

However, the proposed model still has some weaknesses and
shortcomings. For example, despite the biological information
collected here being reliable, the number of 5,430 experimentally

TABLE 2 | The implementation of BRWRMHMDA to prioritize candidate miRNAs
for breast neoplasms based on experimentally confined miRNA–disease
associations collected from HMDD v1.0 and 48 of the first 50 predicted
miRNAs were confirmed.

miRNA Evidence miRNA Evidence

hsa-let-7i dbDEMC and
miR2Disease and
HMDD

hsa-mir-203 dbDEMC and
miR2Disease and
HMDD

hsa-let-7b dbDEMC and HMDD hsa-mir-32 dbDEMC

hsa-mir-16 dbDEMC and HMDD hsa-mir-30e unconfirmed

hsa-let-7e dbDEMC and HMDD hsa-mir-532 dbDEMC

hsa-let-7g dbDEMC and HMDD hsa-mir-335 dbDEMC and
miR2Disease and
HMDD

hsa-let-7c dbDEMC and HMDD hsa-mir-150 dbDEMC

hsa-mir-92a HMDD hsa-mir-199b dbDEMC and HMDD

hsa-mir-126 dbDEMC and
miR2Disease and
HMDD

hsa-mir-99a dbDEMC

hsa-mir-223 dbDEMC and HMDD hsa-mir-98 dbDEMC and
miR2Disease

hsa-mir-92b dbDEMC hsa-mir-142 unconfirmed

hsa-mir-373 dbDEMC and
miR2Disease and
HMDD

hsa-mir-128b miR2Disease

hsa-mir-101 dbDEMC and
miR2Disease and
HMDD

hsa-mir-107 dbDEMC and HMDD

hsa-mir-191 dbDEMC and
miR2Disease and
HMDD

hsa-mir-224 dbDEMC and HMDD

hsa-mir-182 dbDEMC and
miR2Disease and
HMDD

hsa-mir-27a dbDEMC and
miR2Disease and
HMDD

hsa-mir-99b dbDEMC hsa-mir-195 dbDEMC and
miR2Disease and
HMDD

hsa-mir-106a dbDEMC hsa-mir-124 dbDEMC and HMDD

hsa-mir-181a dbDEMC and
miR2Disease and
HMDD

hsa-mir-30a miR2Disease and
HMDD

hsa-mir-29c dbDEMC and
miR2Disease and
HMDD

hsa-mir-520b dbDEMC and HMDD

hsa-mir-100 dbDEMC and HMDD hsa-mir-95 dbDEMC

hsa-mir-18b dbDEMC and HMDD hsa-mir-23b dbDEMC and HMDD

hsa-mir-372 dbDEMC hsa-mir-491 dbDEMC

hsa-mir-24 dbDEMC and HMDD hsa-mir-183 dbDEMC and HMDD

hsa-mir-130a dbDEMC hsa-mir-31 dbDEMC and
miR2Disease and
HMDD

hsa-mir-15b dbDEMC hsa-mir-192 dbDEMC

hsa-mir-196b dbDEMC hsa-mir-135a dbDEMC and HMDD

verified miRNA–disease associations extracted from HMDD v2.0
is still far from enough. If more associations between miRNAs
and diseases are validated, the prediction accuracy of the model
would be higher. Moreover, except for the fact that miRNA
similarity could be calculated via the consideration of miRNA
functional similarity and Gaussian interaction profile kernel for
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miRNAs, it could also be calculated based on other miRNA
features. At the same time, disease similarity could also be
calculated based on other disease features. Also, the model could
not predict candidate miRNAs for new diseases that have no
known related miRNAs. In addition, due to the fact that the
proposed algorithm is a local ranking model, it could not infer
candidate miRNAs for all diseases simultaneously.

Nowadays, more and more researchers are studying the
regulatory interactions between ncRNA classes, as well as
the associations between ncRNA and other biological entities
including diseases, small molecules, etc. Prediction of ncRNA-
related networks will greatly expand our understanding of
ncRNA function and its regulatory network. Simultaneously,
predictions including miRNA–lncRNA interactions, miRNA–
circRNA interactions, drug–target interactions, small molecule–
miRNA associations, and disease–lncRNA associations have
made great progress. In the field of miRNA–disease association
prediction, the number of known miRNA–disease associations
is limited, which will affect the prediction performance of the
model. In the future, integrating multisource biological data
that was mentioned above to build a multilayer heterogeneous
network based on machine learning-based method can effectively
improve the prediction performance of the model.

DATA AVAILABILITY STATEMENT

The original contributions presented in the study are included
in the article/Supplementary Material, further inquiries can be
directed to the corresponding author/s.

AUTHOR CONTRIBUTIONS

JQ implemented the experiments, analyzed the result, and
wrote the manuscript. C-CW analyzed the result, revised
the manuscript, and supervised the project. S-BC and ZM
analyzed the result and revised the manuscript. W-DZ and
X-LC contributed to the analysis of the data for the manuscript
and revised the manuscript. All authors read and approved the
final manuscript.

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found
online at: https://www.frontiersin.org/articles/10.3389/fgene.
2021.720327/full#supplementary-material

REFERENCES
Aerts, S., Lambrechts, D., Maity, S., Van Loo, P., Coessens, B., De Smet, F., et al.

(2006). Gene prioritization through genomic data fusion. Nat. Biotechnol. 24,
537–544. doi: 10.1038/nbt1203

Alshalalfa, M., and Alhajj, R. (2013). Using context-specific effect of miRNAs to
identify functional associations between miRNAs and gene signatures. BMC
Bioinformatics 14:S1. doi: 10.1186/1471-2105-14-S12-S1

Ambros, V. (2004). The functions of animal microRNAs. Nature 431, 350–355.
doi: 10.1038/nature02871

Axtell, M. J., Westholm, J. O., and Lai, E. C. (2011). Vive la difference: biogenesis
and evolution of microRNAs in plants and animals. Genome Biol. 12:221. doi:
10.1186/gb-2011-12-4-221

Bartel, D. P. (2009). MicroRNAs: target recognition and regulatory functions. Cell
136, 215–233. doi: 10.1016/j.cell.2009.01.002

Bonaventura, M., Nicosia, V., and Latora, V. (2014). Characteristic times of biased
random walks on complex networks. Phys. Rev. E Stat. Nonlin. Soft. Matter.
Phys. 89:012803.

Bozgeyik, E. (2020). Bioinformatic analysis and in vitro validation of Let-7b
and Let-7c in breast cancer. Comput. Biol. Chem. 84:107191. doi: 10.1016/j.
compbiolchem.2019.107191

Brennecke, J., Hipfner, D. R., Stark, A., Russell, R. B., and Cohen, S. M. (2003).
bantam encodes a developmentally regulated microRNA that controls cell
proliferation and regulates the proapoptotic gene hid in Drosophila. Cell 113,
25–36. doi: 10.1016/s0092-8674(03)00231-9

Burda, Z., Duda, J., Luck, J. M., and Waclaw, B. (2009). Localization of the maximal
entropy random walk. Phys. Rev. Lett. 102:160602.

Chen, X., and Huang, L. (2017). LRSSLMDA: laplacian regularized sparse
subspace learning for MiRNA-disease association prediction. PLoS Comput.
Biol. 13:e1005912. doi: 10.1371/journal.pcbi.1005912

Chen, X., and Yan, G. Y. (2014). Semi-supervised learning for potential human
microRNA-disease associations inference. Sci. Rep. 4:5501.

Chen, X., Huang, L., Xie, D., and Zhao, Q. (2018a). EGBMMDA: extreme gradient
boosting machine for MiRNA-disease association prediction. Cell Death Dis.
9:3.

Chen, X., Qu, J., and Yin, J. (2018b). TLHNMDA: triple layer heterogeneous
network based inference for MiRNA-disease association prediction. Front.
Genet. 9:234. doi: 10.3389/fgene.2018.00234

Chen, X., Sun, L. G., and Zhao, Y. (2021). NCMCMDA: miRNA-disease
association prediction through neighborhood constraint matrix completion.
Brief. Bioinform. 22, 485–496. doi: 10.1093/bib/bbz159

Chen, X., Wang, L., Qu, J., Guan, N. N., and Li, J. Q. (2018c). Predicting miRNA-
disease association based on inductive matrix completion. Bioinformatics 34,
4256–4265.

Chen, X., Wu, Q. F., and Yan, G. Y. (2017). RKNNMDA: ranking-based KNN for
MiRNA-disease association prediction. RNA Biol. 14, 952–962. doi: 10.1080/
15476286.2017.1312226

Chen, X., Xie, D., Wang, L., Zhao, Q., You, Z. H., and Liu, H. (2018d). BNPMDA:
bipartite network projection for MiRNA-disease association prediction.
Bioinformatics 34, 3178–3186. doi: 10.1093/bioinformatics/bty333

Chen, X., Xie, D., Zhao, Q., and You, Z. H. (2019a). MicroRNAs and complex
diseases: from experimental results to computational models. Brief. Bioinform.
20, 515–539. doi: 10.1093/bib/bbx130

Chen, X., Yan, C. C., Zhang, X., You, Z. H., Deng, L., Liu, Y., et al.
(2016). WBSMDA: within and Between score for MiRNA-disease association
prediction. Sci. Rep. 6:21106.

Chen, X., Yin, J., Qu, J., and Huang, L. (2018e). MDHGI: matrix decomposition
and heterogeneous graph inference for miRNA-disease association prediction.
PLoS Comput. Biol. 14:e1006418. doi: 10.1371/journal.pcbi.1006418

Chen, X., Zhou, Z., and Zhao, Y. (2018f). ELLPMDA: ensemble learning and link
prediction for miRNA-disease association prediction. RNA Biol. 15, 807–818.

Chen, X., Zhu, C. C., and Yin, J. (2019b). Ensemble of decision tree reveals potential
miRNA-disease associations. PLoS Comput. Biol. 15:e1007209. doi: 10.1371/
journal.pcbi.1007209

Cheng, A. M., Byrom, M. W., Shelton, J., and Ford, L. P. (2005). Antisense
inhibition of human miRNAs and indications for an involvement of miRNA
in cell growth and apoptosis. Nucleic Acids Res. 33, 1290–1297. doi: 10.1093/
nar/gki200

Cimmino, A., Calin, G. A., Fabbri, M., Iorio, M. V., Ferracin, M., Shimizu, M.,
et al. (2005). miR-15 and miR-16 induce apoptosis by targeting BCL2. Proc. Natl.
Acad. Sci. U.S.A. 102, 13944–13949. doi: 10.1073/pnas.0506654102

Cui, Q., Yu, Z., Purisima, E. O., and Wang, E. (2006). Principles of microRNA
regulation of a human cellular signaling network. Mol. Syst. Biol. 2:46. doi:
10.1038/msb4100089

Domper Arnal, M. J., Ferrandez Arenas, A., and Lanas Arbeloa, A. (2015).
Esophageal cancer: risk factors, screening and endoscopic treatment in Western

Frontiers in Genetics | www.frontiersin.org 9 August 2021 | Volume 12 | Article 720327

https://www.frontiersin.org/articles/10.3389/fgene.2021.720327/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fgene.2021.720327/full#supplementary-material
https://doi.org/10.1038/nbt1203
https://doi.org/10.1186/1471-2105-14-S12-S1
https://doi.org/10.1038/nature02871
https://doi.org/10.1186/gb-2011-12-4-221
https://doi.org/10.1186/gb-2011-12-4-221
https://doi.org/10.1016/j.cell.2009.01.002
https://doi.org/10.1016/j.compbiolchem.2019.107191
https://doi.org/10.1016/j.compbiolchem.2019.107191
https://doi.org/10.1016/s0092-8674(03)00231-9
https://doi.org/10.1371/journal.pcbi.1005912
https://doi.org/10.3389/fgene.2018.00234
https://doi.org/10.1093/bib/bbz159
https://doi.org/10.1080/15476286.2017.1312226
https://doi.org/10.1080/15476286.2017.1312226
https://doi.org/10.1093/bioinformatics/bty333
https://doi.org/10.1093/bib/bbx130
https://doi.org/10.1371/journal.pcbi.1006418
https://doi.org/10.1371/journal.pcbi.1007209
https://doi.org/10.1371/journal.pcbi.1007209
https://doi.org/10.1093/nar/gki200
https://doi.org/10.1093/nar/gki200
https://doi.org/10.1073/pnas.0506654102
https://doi.org/10.1038/msb4100089
https://doi.org/10.1038/msb4100089
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org/
https://www.frontiersin.org/journals/genetics#articles


fgene-12-720327 August 4, 2021 Time: 13:51 # 10

Qu et al. MiRNA-Disease Association Prediction

and Eastern countries. World J. Gastroenterol. 21, 7933–7943. doi: 10.3748/wjg.
v21.i26.7933

Gomez-Gardenes, J., and Latora, V. (2008). Entropy rate of diffusion processes on
complex networks. Phys. Rev. E Stat. Nonlin. Soft. Matter. Phys. 78:065102.

Hayashita, Y., Osada, H., Tatematsu, Y., Yamada, H., Yanagisawa, K., Tomida, S.,
et al. (2005). A polycistronic microRNA cluster, miR-17-92, is overexpressed in
human lung cancers and enhances cell proliferation. Cancer Res. 65, 9628–9632.
doi: 10.1158/0008-5472.can-05-2352

Jiang, Q., Wang, Y., Hao, Y., Juan, L., Teng, M., Zhang, X., et al. (2009).
miR2Disease: a manually curated database for microRNA deregulation in
human disease. Nucleic Acids Res. 37, D98–D104.

Johnson, S. M., Grosshans, H., Shingara, J., Byrom, M., Jarvis, R., Cheng, A., et al.
(2005). RAS is regulated by the let-7 microRNA family. Cell 120, 635–647.
doi: 10.1016/j.cell.2005.01.014

Karp, X., and Ambros, V. (2005). Encountering microRNAs in cell fate signaling.
Science 310, 1288–1289. doi: 10.1126/science.1121566

Lee, R. C., Feinbaum, R. L., and Ambros, V. (1993). The C. elegans heterochronic
gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell
75, 843–854. doi: 10.1016/0092-8674(93)90529-y

Li, S. P., Su, H. X., Zhao, D., and Guan, Q. L. (2016). Plasma miRNA-506 as a
prognostic biomarker for esophageal squamous cell carcinoma.Med. Sci. Monit.
22, 2195–2201. doi: 10.12659/msm.899377

Li, Y., Qiu, C., Tu, J., Geng, B., Yang, J., Jiang, T., et al. (2014). HMDD
v2.0: a database for experimentally supported human microRNA and disease
associations. Nucleic Acids Res. 42, D1070–D1074.

Liang, A. L., Zhang, T. T., Zhou, N., Wu, C. Y., Lin, M. H., and Liu, Y. J.
(2016). MiRNA-10b sponge: an anti-breast cancer study in vitro. Oncol. Rep.
35, 1950–1958. doi: 10.3892/or.2016.4596

Lin, S. Y., Johnson, S. M., Abraham, M., Vella, M. C., Pasquinelli, A., Gamberi,
C., et al. (2003). The C elegans hunchback homolog, hbl-1, controls temporal
patterning and is a probable microRNA target. Dev. Cell 4, 639–650. doi:
10.1016/s1534-5807(03)00124-2

Liu, Z., Sall, A., and Yang, D. (2008). MicroRNA: an emerging therapeutic target
and intervention tool. Int. J. Mol. Sci. 9, 978–999. doi: 10.3390/ijms906
0978

Lu, M., Zhang, Q., Deng, M., Miao, J., Guo, Y., Gao, W., et al. (2008). An analysis
of human microRNA and disease associations. PLoS One 3:e3420. doi: 10.1371/
journal.pone.0003420

Ma, L., Teruya-Feldstein, J., and Weinberg, R. A. (2007). Tumour invasion and
metastasis initiated by microRNA-10b in breast cancer. Nature 449, 682–688.
doi: 10.1038/nature06174

McGuire, A., Brown, J. A., and Kerin, M. J. (2015). Metastatic breast cancer: the
potential of miRNA for diagnosis and treatment monitoring. Cancer Metastasis
Rev. 34, 145–155. doi: 10.1007/s10555-015-9551-7

Meng, F., Henson, R., Wehbe-Janek, H., Ghoshal, K., Jacob, S. T., and Patel, T.
(2007). MicroRNA-21 regulates expression of the PTEN tumor suppressor gene
in human hepatocellular cancer. Gastroenterology 133, 647–658. doi: 10.1053/j.
gastro.2007.05.022

Miska, E. A. (2005). How microRNAs control cell division, differentiation and
death. Curr. Opin. Genet. Dev. 15, 563–568. doi: 10.1016/j.gde.2005.08.005

Mork, S., Pletscher-Frankild, S., Palleja Caro, A., Gorodkin, J., and Jensen, L. J.
(2014). Protein-driven inference of miRNA-disease associations. Bioinformatics
30, 392–397. doi: 10.1093/bioinformatics/btt677

Pasquier, C., and Gardes, J. (2016). Prediction of miRNA-disease associations with
a vector space model. Sci. Rep. 6:27036.

Pasquinelli, A. E., and Ruvkun, G. (2002). Control of developmental timing by
micrornas and their targets. Annu. Rev. Cell Dev. Biol. 18, 495–513. doi: 10.
1146/annurev.cellbio.18.012502.105832

Perez-Iratxeta, C., Bork, P., and Andrade, M. A. (2002). Association of genes
to genetically inherited diseases using data mining. Nat. Genet. 31, 316–319.
doi: 10.1038/ng895

Pillai, R. S., Bhattacharyya, S. N., Artus, C. G., Zoller, T., Cougot, N., Basyuk, E.,
et al. (2005). Inhibition of translational initiation by Let-7 MicroRNA in human
cells. Science 309, 1573–1576. doi: 10.1126/science.1115079

Reinhart, B. J., Slack, F. J., Basson, M., Pasquinelli, A. E., Bettinger, J. C., Rougvie,
A. E., et al. (2000). The 21-nucleotide let-7 RNA regulates developmental timing
in Caenorhabditis elegans. Nature 403, 901–906. doi: 10.1038/35002607

Siegel, R. L., Miller, K. D., and Jemal, A. (2018). Cancer statistics, 2018. CA Cancer
J. Clin. 68, 7–30. doi: 10.3322/caac.21442

Sun, L., Dong, S., Dong, C., Sun, K., Meng, W., Lv, P., et al. (2016). Predictive
value of plasma miRNA-718 for esophageal squamous cell carcinoma. Cancer
Biomark. 16, 265–273. doi: 10.3233/cbm-150564

Torre, L. A., Bray, F., Siegel, R. L., Ferlay, J., Lortet-Tieulent, J., and Jemal, A.
(2015). Global cancer statistics, 2012. CA Cancer J. Clin. 65, 87–108. doi:
10.3322/caac.21262

van Laarhoven, T., Nabuurs, S. B., and Marchiori, E. (2011). Gaussian interaction
profile kernels for predicting drug-target interaction. Bioinformatics 27, 3036–
3043. doi: 10.1093/bioinformatics/btr500

Wang, D., Wang, J., Lu, M., Song, F., and Cui, Q. (2010). Inferring the human
microRNA functional similarity and functional network based on microRNA-
associated diseases. Bioinformatics 26, 1644–1650. doi: 10.1093/bioinformatics/
btq241

Wei, Y. T., Guo, D. W., Hou, X. Z., and Jiang, D. Q. (2017). miRNA-223 suppresses
FOXO1 and functions as a potential tumor marker in breast cancer. Cell Mol.
Biol. (Noisy-le-grand) 63, 113–118. doi: 10.14715/cmb/2017.63.5.21

Xuan, P., Han, K., Guo, M., Guo, Y., Li, J., Ding, J., et al. (2013). Prediction of
microRNAs associated with human diseases based on weighted k most similar
neighbors. PLoS One 8:e70204. doi: 10.1371/journal.pone.0070204

Xuan, P., Han, K., Guo, Y., Li, J., Li, X., Zhong, Y., et al. (2015). Prediction of
potential disease-associated microRNAs based on random walk. Bioinformatics
31, 1805–1815. doi: 10.1093/bioinformatics/btv039

Yang, Z., Ren, F., Liu, C., He, S., Sun, G., Gao, Q., et al. (2010). dbDEMC: a database
of differentially expressed miRNAs in human cancers. BMC Genomics 11 Suppl
4:S5. doi: 10.1093/nar/gkw1079

Yu, H., Chen, X., and Lu, L. (2017). Large-scale prediction of microRNA-disease
associations by combinatorial prioritization algorithm. Sci. Rep. 7:43792.

Yu, Z., Ni, F., Chen, Y., Zhang, J., Cai, J., and Shi, W. (2020). miR-125b suppresses
cell proliferation and metastasis by targeting HAX-1 in esophageal squamous
cell carcinoma. Pathol. Res. Pract. 216:152792. doi: 10.1016/j.prp.2019.152792

Zhang, H. F., Zhang, K., Liao, L. D., Li, L. Y., Du, Z. P., Wu, B. L., et al. (2014).
miR-200b suppresses invasiveness and modulates the cytoskeletal and adhesive
machinery in esophageal squamous cell carcinoma cells via targeting Kindlin-2.
Carcinogenesis 35, 292–301. doi: 10.1093/carcin/bgt320

Zhang, L., Ma, J., Han, Y., Liu, J., Zhou, W., Hong, L., et al. (2016). Targeted therapy
in esophageal cancer. Expert. Rev. Gastroenterol. Hepatol. 10, 595–604.

Conflict of Interest: The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be construed as a
potential conflict of interest.

Publisher’s Note: All claims expressed in this article are solely those of the authors
and do not necessarily represent those of their affiliated organizations, or those of
the publisher, the editors and the reviewers. Any product that may be evaluated in
this article, or claim that may be made by its manufacturer, is not guaranteed or
endorsed by the publisher.

Copyright © 2021 Qu, Wang, Cai, Zhao, Cheng and Ming. This is an open-access
article distributed under the terms of the Creative Commons Attribution License
(CC BY). The use, distribution or reproduction in other forums is permitted, provided
the original author(s) and the copyright owner(s) are credited and that the original
publication in this journal is cited, in accordance with accepted academic practice. No
use, distribution or reproduction is permitted which does not comply with these terms.

Frontiers in Genetics | www.frontiersin.org 10 August 2021 | Volume 12 | Article 720327

https://doi.org/10.3748/wjg.v21.i26.7933
https://doi.org/10.3748/wjg.v21.i26.7933
https://doi.org/10.1158/0008-5472.can-05-2352
https://doi.org/10.1016/j.cell.2005.01.014
https://doi.org/10.1126/science.1121566
https://doi.org/10.1016/0092-8674(93)90529-y
https://doi.org/10.12659/msm.899377
https://doi.org/10.3892/or.2016.4596
https://doi.org/10.1016/s1534-5807(03)00124-2
https://doi.org/10.1016/s1534-5807(03)00124-2
https://doi.org/10.3390/ijms9060978
https://doi.org/10.3390/ijms9060978
https://doi.org/10.1371/journal.pone.0003420
https://doi.org/10.1371/journal.pone.0003420
https://doi.org/10.1038/nature06174
https://doi.org/10.1007/s10555-015-9551-7
https://doi.org/10.1053/j.gastro.2007.05.022
https://doi.org/10.1053/j.gastro.2007.05.022
https://doi.org/10.1016/j.gde.2005.08.005
https://doi.org/10.1093/bioinformatics/btt677
https://doi.org/10.1146/annurev.cellbio.18.012502.105832
https://doi.org/10.1146/annurev.cellbio.18.012502.105832
https://doi.org/10.1038/ng895
https://doi.org/10.1126/science.1115079
https://doi.org/10.1038/35002607
https://doi.org/10.3322/caac.21442
https://doi.org/10.3233/cbm-150564
https://doi.org/10.3322/caac.21262
https://doi.org/10.3322/caac.21262
https://doi.org/10.1093/bioinformatics/btr500
https://doi.org/10.1093/bioinformatics/btq241
https://doi.org/10.1093/bioinformatics/btq241
https://doi.org/10.14715/cmb/2017.63.5.21
https://doi.org/10.1371/journal.pone.0070204
https://doi.org/10.1093/bioinformatics/btv039
https://doi.org/10.1093/nar/gkw1079
https://doi.org/10.1016/j.prp.2019.152792
https://doi.org/10.1093/carcin/bgt320
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org/
https://www.frontiersin.org/journals/genetics#articles

	Biased Random Walk With Restart on Multilayer Heterogeneous Networks for MiRNA–Disease Association Prediction
	Introduction
	Materials and Methods
	Human miRNA–Disease Association
	MiRNA Functional Similarity
	Disease Semantic Similarity Model 1
	Disease Semantic Similarity Model 2
	Gaussian Interaction Profile Kernel Similarity
	Integrated Similarity for miRNAs and Diseases
	Brwrmhmda

	Results
	Performance Evaluation
	Case Studies

	Discussion
	Data Availability Statement
	Author Contributions
	Supplementary Material
	References


