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Abstract: New supramolecular complexes, based on H-bonding interactions between 4-(pyridin-4-yl)
azo-(2-chlorophenyl) 4-alkoxybenzoates (Bn) and 4-[(4-(n-hexyloxy)phenylimino)methyl]benzoic
acid (A6), were prepared and their thermal and mesomorphic properties investigated via differential
scanning calorimetry (DSC) and Fourier-transform infrared spectroscopy (FT-IR) in order to confirm
their H-bonding interactions. The mesophase behavior of each mixture was examined by DSC and
polarized optical microscopy (POM). According to the findings of the study, in all of the designed
mixtures, the introduction of laterally polar chlorine atom to the supramolecular complexes produces
polymorphic compounds possessing smectic A, smectic C and nematic mesophases, in addition,
all products have low melting transitions. Thermal stabilities of the associated phases depend on
the position and orientation of the lateral polar Cl− atom as well as the length of terminal flexible
alkoxy chain. Comparisons were made between the present lateral Cl− complexes and previously
investigated laterally-neat complexes in order to investigate the impact of the addition, nature and
orientation of polar substituent on the mesomorphic behavior. The investigations revealed that,
the polarity and mesomeric nature of inserted lateral substituent into the base component play an
essential role in affecting their mesomorphic properties. Furthermore, for current complexes, induced
polymorphic phases have been found by introducing the chlorine atom.

Keywords: polymorphic phases; lateral chloro; supramolecular dimers; hydrogen bonding; induced
phase; mesomorphic properties

1. Introduction

Supramolecular hydrogen bonded complexes (SMHBCs) have recently attracted an
increasing amount of scientific attention [1–5]. Supramolecular chemistry [6] and liquid-
crystals (LCs) [7,8] in these systems, proved to have efficient qualities for optical and
industrial applications [9,10]. H-bonding intermolecular interactions [1–5] are a good
approach for designing self-assembly LCs via multiple non-covalent bonds. Several inves-
tigations indicated that the combination of a carboxylic acid and a pyridine derivative, in
a hydrogen-bonded complex, are the optimum H-bond acceptor and donor and the best
choice for most of these studies. Furthermore, the use of multifunctional components in the
development of non-covalent interactions can result in improved characteristics of SMHB
LC network architectures [6,7].

Because of their abilities to cis/trans isomerization, as a result of temperature and light
irradiation, azo-pyridine molecules are incorporated within the liquid-crystal molecule
to make them photo-responsive [6,7]. Modifying the core structure of azo-pyridine based
derivatives or adding lateral substituents might result in significant changes in their
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photo-physical and photochemical capabilities [6,7]. Many properties of liquid crystalline
materials are greatly improved by the addition of lateral groups of varying size and
polarity. This could be due to the disruption of molecular packing, which lowers both
the melting temperature and thermal stability of LC mesophases [11–18]. Azo-pyridines
have recently been employed to create nano-fiber supramolecular self-assembling and
hydrogen/halogen-bonding LCs with photo-induced transition phenomena [19–23].

Our research focuses on designing photosensitive SMLCs by intermolecular interac-
tions with the appropriate H-bond donors and acceptors [24–33]. The overall molecular
architectures, as well as the combination of rigid (aromatic) and flexible segments (alkyl
chains), produce anisotropic structures. These changes in LC features may have an impact on
mesomorphism as well as the properties important for their technical applications [34–37].

Several two- or three-ring systems based on Schiff base LCs have also been reported
and their mesomorphic properties investigated in order to investigate the correlation
between the geometry of mesogens and their mesomorphic properties [38–42]. In gen-
eral, the mesomorphic thermal stability depends on the polarity and/or polarizability
of the different mesogens present within the molecule. Most of the investigated deriva-
tives for the formation of LC blends, through H-bonding interactions, are derivatives of
benzoic acid [43–45].

The aim of the present investigation is to construct novel H-bonded supramolecular
complexes of new conformation (Figure 1), between 4-(pyridin-4-yl) azo-(2-chlorophenyl)
4-alkoxybenzoates (Bn) and 4-[(4-(n-hexyloxy)phenyl iminomethine]benzoic acid (A6),
in order to explore the geometrical and thermal parameters of the examined complexes
to better understand and regulate the mesomorphic features of soft material complexes.
Moreover, the effect of different spatially oriented lateral-polar groups on the thermal and
phase behavior of produced intermolecular H-bonded complexes with varying positions
on the central ring of the azo-pyridine based moiety was investigated.
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Figure 1. Supramolecular complexs, A6/Bn.

2. Experimental
2.1. Preparation of Supramolecular Complexes

The two components 4-[(4-(n-hexyloxy)phenylimino)methine]benzoic Acid (A6), and
lateral chloro azo-pyridine derivatives (Bn), were tested to exhibit identical transition
temperatures as previous investigations [45,46].

The 1:1 molar ratios of any two complementary components SMHBCs (A6/Bn) were
made by melting the required amounts of each component at approximately 230 ◦C,
stirring to achieve an intimate blend, and then cooling to room-temperature with stir-
ring. (Scheme 1). An example to prepare the SMHBC A6/B10: 0.0325 mg of 4-[(4-
(n-hexyloxy)phenylimino)methyl]benzoic Acid (A6) and 0.0494 mg of 4-(2-(pyridin-4-
yl)diazenyl-(2-chlorophenyl) 4-decyloxy benzoate (B10) were melted together to form
the complex.
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2.2. Characterizations

Details are given in supplementary data and Figures S1 and S2.
A diamond tip Perkin Elmer ATR spectrometer was used to record FT-IR spectra for

structural characterization. Fourier transform infrared spectroscopy was used to record
all spectra with wave numbers between 4000 and 400 cm−1. All spectra were obtained
at room temperature and vector normalized after being calibrated for the base line. The
number of scan and spectral resolution were 32 scan and 4 cm−1; respectively.

3. Results and Discussion
3.1. Spectroscopic Confirmation of SMHBCs Interactions

FT-IR spectra data have demonstrated the formation of SMHBCs. Individual deriva-
tives as well as their H-bonded supramolecular complexes were subjected to FT-IR spec-
troscopic measurements. Figure 2 shows, as examples of the FT-IR spectrum of acid A6,
azo-pyridine base B10, and their complex A6/B10. It was reported that, there was no
substantial effect of the length of the alkoxy chain on the wave number of the C=O group
stretching vibration for the azo-pyridine homologues [46,47]. As seen from Figure 2, the
stretching vibration of the C=O group of the hexyloxy acid derivative (A6) was assigned to
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the signal at ≈1683 cm−1. The stretching vibration of the C=O carboxylic moiety is one of
the most important indicators for the interactions of H-bonded supramolecular complexes.
The strength of the O-H bond is reduced when the carboxylic group OH-group is shared
in the H-bonding formation. The FT-IR data indicated that the formation of H-bonds had
substantial influence on the stretching frequency of the C=O group of the free carboxylic
acid (nearly 7 cm−1). The supramolecular complex formation, on the other hand, has a
strong stretching vibration effect on the C=O of the azo-pyridine base’s ester bond, with
their wave number increasing from 1729 to 1736 cm−1 for complex A6/B10. That attributed
to the polarity of electron-withdrawing Cl-atom enhanced the double bond character of
ester linkage in azo-pyridine component and leads to an increment in the absorption of
carbonyl group. Furthermore, it has been observed [48–52] that the presence of three Fermi
resonance vibration bands of the H-bonded OH groups A-, B-, and C-types is a substantial
evidence for the formation of H-bond within the complexes. The vibrational peak of the
A-type Fermi band of SMHBC A6/B10 emerges at ≈3040 cm−1. In addition, the peak at
≈2543 cm−1 could be due to both the O-H in-plane bending vibration and its fundamental
stretch (B-type). The C-type Fermi band was allocated at≈1925 cm−1 due to the interaction
between the overtone of the torsional effect and the basic stretching vibration of the OH.
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Figure 2. Collective FT-IR spectra of acid A6, base B10 and their complex A6/B10.

3.2. Mesomorphic Study

All designed complexes (1:1 molar ratio), A6/Bn, were prepared from one homologue
of the acid component (A6), and five homologues of the azo-pyridine component (Bn).
The characterization for their mesophase properties was carried out by POM and DSC.
The mesomphase textures formed under the POM were verified by the DSC analyses and
types of phases were identified for all investigated complexes (A6/Bn). An example of
DSC thermogram is depicted in Figure 3 for the 1:1 A6/B10 SMHBC. DSC transitions
were measured for second heating/cooling cycles to ensure the thermal stability of the
designed complexes.
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Figure 3. DSC thermogram of A6/B10 SMHBC at heating rate 10 ◦C min−1 during heating and
cooling scans.

Mesomorphic transitions (temperatures, enthalpies and entropies) values were ana-
lyzed by DSC for all formed SMHBCs and are collected in Table 1. The attached terminal
flexible chain length (n) of the azo-pyridine base component is associated with high affect
on the produced properties of 1:1 mixtures so its impact is represented graphically in
Figure 4. The data in Table 1 and Figure 4 indicate that, independent of terminal carbon
chain length (n) for base derivative, all prepared SMHBCs exhibit enantiotropic polymor-
phic phases. The N phases are observed to cover all complexes in addition to the smectic
phases (SmC and SmA). As usual, the N thermal stability (TN-I) was found to decrease
with length of terminal chain, n.

Table 1. Phase transition temperatures, ◦C (enthalpy of transitions, kJ/mol), total mesophase temper-
ature range and normalized entropy change for the SMHBCs, A6/Bn.

System TCr-SmC TSmC-SmA TSmA-N TN-I ∆T ∆S/RC-A ∆S/RA-N ∆S/RN-I

A6/B6 84.5
(35.30)

128.3
(2.93)

155.9
(1.38)

216.1
(1.16) 131.6 0.88 0.39 0.29

A6/B8 68.9
(29.83)

129.1
(2.29)

156.3
(1.83)

189.8
(1.54) 120.9 0.68 0.51 0.40

A6/B10 70.3
(52.93)

129.3
(2.61)

157.0
(1.65)

187.4
(1.42) 117.1 0.78 0.46 0.37

A6/B12 75.1
(49.52)

129.5
(2.52)

157.3
(1.27)

187.0
(1.09) 111.9 0.75 0.35 0.28

A6/B16 83.7
(40.06)

130.1
(2.29)

157.9
(1.63)

186.9
(1.58) 103.2 0.68 0.45 0.41

Abbreviations: Cr = crystal; N = nematic; SmC = smectic C; SmA = smectic A; I = isotropic liquid.
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It should be noted that, the present azo-pyridine homologous series (the lateral Cl
atom attached to the meta-position with respect to the ester carbonyl linkage) is purely
nematogenic possessing the N phases with low thermal stabilities [46] while the 4-[(4-(n-
hexyloxy)phenylimino)methine]benzoic acid [43] exhibits dimorphic transitions of SmC
and N mesophases with high thermal stability. We can deduce from Table 1 and Figure 4
that, all formed complexes A6/Bn exhibit an induced SmA mesophase independent of the
terminal length of chains (n). Moreover, the smectic phases stabilities are slightly enhanced
with the increment of n (Figure 4). The insertion of the lateral Cl atom in SMHBC structure
weakens the side-by-side cohesion forces, thus increasing the predominance of the N phase
formation for all 1:1 SMHBCs compared by our previous laterally neat SMHBCs [53],
that briefly discussed in Section 3.3. Moreover, the molecular architecture and volume of
the lateral moiety affect the mesophase thermal stability and the polarizability of whole
molecule [35]. Further, the length of the terminal chain and the orientation of the lateral
substituent are essential factors in determining the type and the temperature range of the
produced mesophase.

As can be seen from Table 1 and Figure 4, the mesomorphic ranges of the investigated
SMHBCs A6/Bn decrease with n. The complex A6/B6 exhibits the highest mesomorphic
temperature range (131.6 ◦C) than the other complexes, whereas, A6/B16 has relatively the
smallest mesophase range (103.2 ◦C). The wide N temperature rang value is also confirmed
for A6/B6 enantiotropically. Moreover, the N stability decreases with the alkoxy chain
length of the base component. Additionally, the melting transitions of present SMHBCs
are slightly affected by the length of the terminal chain (n) of the azo-pyridines. From the
present investigation, it could be concluded that, as the molecular anisotropy increases as a
result of lengthening of the acid moiety and due to the position of the lateral Cl atom in
the SMHB structural shape, the stability of mesophases are increased and an induced SmA
phase is produced compared to previous laterally-neat series [53]. Moreover, it was found
that from computational calculations of azo-pyridines [45], the introduction of Cl lateral
substituent increases the polarizability and shows enhancement of mesophase stability
temperature range of whole molecule. Textures of the formed mesophases as examples
from POM are shown in Figure 5.
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3.3. Effect of Position and Role of Lateral Polar Group on the SMHBCs Stability

The comparison between the mesomorphic behavior of present investigated SMHBCs
(A6/Bn) and their corresponding laterally substituted CH3 analogues, attached in meta-
position with respect to the carbonyl ester group SMHBCs (A6/Cn, Figure 6) [40] was
conducted to analyze the effect of position (spatial orientation) and polarity of the lateral
substituent on the mesophase transition stabilities of the two type of 1:1 supramolecular
complexes (A6/Bn and A6/Cn). Values of thermal stabilities of both series were illustrated
graphically in Figure 7. The designed SMHBCs exhibit polymorphic phases covering all
alkoxy terminal chains. The smectic and nematic ranges vary linearly with all length
of alkoxy-terminal chain (n) (Figure 7). On the other hand, the nematic temperature
ranges of A6/Bn complexes are broader than those of A6/Cn SMHBCs analogues. On the
other side, the smectogenic temperature ranges of A6/Cn complexes showed wide ranges
than A6/Bn complexes. That is, the strength of the intermolecular interactions between
molecules strongly affects both the stability and temperature ranges of the mesophase
formed. Additionally, the location and the mesomeric nature of the lateral group attached
to the base component of the complex greatly affects the polarizability of the H-donors
and acceptors and thus impacts their strength of the hydrogen bonding interactions [54].
Furthermore, the location of lateral electron withdrawing Cl-moiety in the ortho-position
with respect to ester group increases the polarity of whole molecule and consequently
enhances the end-to-end interaction to influence the nematic (N) phase [55], thus resulting
in increased N stability and producing a wide temperature range of the N phase that
appears in all homologues of azo-pyridines (Bn).
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The purpose of this study was seeing what effect introducing the lateral polar Cl
atom on the mesomorphic behavior of 1:1 molar mixtures of SMHBCs (A6/Bn), another
comparison was established between the mesophase stabilities and types of the current
complexes and the previously laterally-free SMHBCs analogues (A6/Dn, Figure 8) [53]. The
study revealed that the laterally-neat complexes (A6/Dn) possess purely SmA mesophase
with high thermal stabilities. Thus, the addition of lateral Cl atom in the ortho position
with respect to the ester spacer induces polymorphic phases (SmC, SmA and N phases).
Moreover, the polarity of the electron withdrawing Cl moiety enhances the nematic phases’
stabilities and mesomorphic temperature ranges.
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3.4. Entropy Change of SMHB Complexes

Normalized entropy changes (∆S/R) for the present SMHBCs A6/Bn of all mesomor-
phic transitions were constructed in Figure 9. For each mesophase transition Figure 9 shows
that, independent of the number of carbons in terminal chains, irregular values of entropy
changes were observed. Such irregular trends may be attributed to the intermolecular inter-
actions that depend on both the position and rotation of the lateral electron-withdrawing
Cl substituent which accordingly affect the molecular ordering of whole molecule of the
complex [56,57]. The resulted lower magnitude of entropy changes for the nematic transi-
tions of homologous complexes may be explained in terms of the lower degree of the linear
alignments of the molecules at high temperatures, whereas the degree of alignments are
highly increased at lower temperature within the smectic mesophases. Furthermore, the ter-
minal chains have pronounced role to make multi-conformational changes in the molecule.
The increment in the conformation and orientation changes of the whole SMHBCs are in
accordance with the estimated entropy changes.
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4. Conclusions

Based on laterally Cl azo-pyridine derivatives and 4-[(4-(n-hexyloxy)phenyliminomethine]
benzoic acid, five new polymorphic complexes of 1:1 SMHB liquid crystalline complexes
were prepared. DSC, POM, and FT-IR measurements confirmed the structure of all of the
formed complexes. All of the 1:1 molar H-bonded complexes investigated were shown to
be polymorphic and processing low melting temperatures. The increased stability of the
laterally chloro-substituted homologues was attributed to their high degree of molecular
interaction, as a result of increasing the polarity of the complex molecule, which allows
for more complex packing than that of their methyl-substituted analogues. Moreover,
induced polymorphic phases have been produced after introduction of the chlorine atom
in the geometrical skeleton. It can be inferred that the development of new nematogenic
supramolecular H-bonded conformers with specified molecular geometry represents a
possible approach for achieving proper mesophase properties. Furthermore, the increases
in conformational and orientation changes of the whole SMHBCs are consistent with the
estimated entropy changes.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/polym13244292/s1, Scheme S1. Synthesis of 4-[(4-(n-hexyloxy)phenylimino)methyl]benzoic
Acid (A6); Figure S1. 1H NMR of A6; Figure S2: C13 NMR of A6; Figure S3. DSC thermogram
of A6/B6 SMHBC at heating rate 10 ◦C min−1 during heating and cooling scans; Figure S4. DSC
thermogram of A6/B8 SMHBC at heating rate 10 ◦C min−1 during heating and cooling scans;
Figure S5. DSC thermogram of A6/B12 SMHBC at heating rate 10 ◦C min−1 during heating and
cooling scans; Figure S6. DSC thermogram of A6/B16 SMHBC at heating rate 10 ◦C min−1 during
heating and cooling scans.
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