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Urbanisation and industrialisation are on the rise all over the world. Environmental contaminants such as potentially toxic elements (PTEs) 
are directly linked with both phenomena. Two PTEs that raise greatest concern are arsenic (As) and lead (Pb) as soil and drinking water 
contaminants, whether they are naturally occurring or the consequence of  human activities. Both elements are potential carcinogens. This 
paper reviews the mechanisms by which As and Pb impair metabolic processes and cause genetic damage in humans. Despite efforts to 
ban or limit their use, due to high persistence both continue to pose a risk to human health, which justifies the need for further toxicological 
research.
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Potentially toxic elements (PTE), such as lead (Pb), cadmium 
(Cd), arsenic (As), zinc (Zn), silver (Ag), chromium (Cr), and copper 
(Cu), occur naturally in metal-rich areas such as ultramafic or karst 
(1, 2). However, the major sources of  exposure are anthropogenic 
as consequence of  industrial and urban development, such as metal 
processing in mining, petroleum refining and combustion, smelting, 
other metal-based industrial operations (3, 4), production of  
chemical-based fertilisers (5), transportation (road and maritime 
traffic) (6), and even personal care products such as face cosmetics, 
skin lightening products, and herbal cosmetics (7). Rural areas are 
not spared, as long-range transboundary emissions can affect even 
the most remote regions (8, 9).

Humans are mainly exposed through inhalation, ingestion, and/
or skin, and reports associate exposure with varying metabolic 
changes affecting the heart, kidney, liver, brain, developing foetus, 
and even the DNA (10–14). PTEs have also been associated with 
cancer, Parkinson’s disease, and rare autoimmune disorder and/or 
degenerative diseases (15–17). They can also elicit genotoxic, 
cytotoxic, and carcinogenic effects (15, 16).

The aim of  this paper is to review current knowledge about the 
sources of  emission, human exposure, and mechanisms of  toxicity 
and genotoxicity, as well as the carcinogenic potential of  As and Pb, 
two elements that rank the highest on the Substance Priority List 
(SPL) issued by the Agency for Toxic Substances and Disease 
Registry (ATSDR) (18). Despite the efforts to ban or limit their use, 
both are highly persistent in the environment and continue to pose 

a risk to human health, which justifies the need for further 
toxicological research.

ARSENIC

Arsenic is a metalloid that occurs naturally in soil and many 
kinds of  rocks (19). It occurs in three major chemical forms. The 
most common organic As compounds are arsanilic acid 
(C6H8AsNO3), methylarsonic acid (MMA) (CH3AsO3H2), and 
dimethylarsinic acid (DMA) (C2H7AsO2) (20–23). In addition to 
them, there are arsenolipids, predominantly present in fish and 
seafood. They appear in nine main structural groups, of  which 
arseno-fatty acids (AsFAs) and arseno-hydrocarbons (AsHCs) are 
of  particular interest due to their cytotoxicity, comparable to that 
of  inorganic As (23). Inorganic compounds include arsenic trioxide 
(As2O3), sodium arsenate (NaAsO2), lead arsenate (PbHAsO4), 
arsenic trichloride (AsCl3), calcium arsenate (Ca3(AsO4)2), and arsine 
gas (AsH3).

Arsenic has three ionised states: pentavalent arsenate (AsV+), 
trivalent arsenite (AsIII+), and arsines (AsIII-), and either of  these 
states can be found in inorganic and organic forms. However, the 
trivalent or pentavalent states are the most common and mobile 
(24). The inorganic forms are generally considered more toxic, with 
trivalent arsenite being most toxic (22).

Humans are exposed to As through contaminated drinking 
water, medicines, cosmetics, or diet, as shown in Table 1. Upon 
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ingestion or inhalation, inorganic and organic As is readily absorbed 
in the gastrointestinal tract (≥75 % for AsIII+, AsV+, MMA, and 
DMA) or lungs, respectively (14). Arsine gas (AsH3) is the most 
toxic form of  As, and inhalation of  over 32 mg/m3 is lethal after 
exposure of  more than one hour. With inhalation of  80–160 mg/m3, 
death occurs in less than an hour, and with inhalation of  >800 mg/m3 
it is instantaneous (22, 25).

However, dermal absorption is less likely (26, 27). Whichever 
the route, absorbed As is mainly transported by the blood and 
deposited in the liver, kidney, lungs, skin, and, to a lesser extent, 
bones and muscles (28, 29). In the body, pentavalent arsenate is 
reduced to arsenite, which is further methylated in the liver into 
MMAv and DMAv, which are eliminated in urine and faeces (30, 31). 
Methylation was previously considered as a detoxification process, 
as both products are readily excreted by the kidneys. In contrast, 
recent studies have shown that methylated trivalent arsenite is as 
toxic, if  not even more toxic, than their parent compound or 
inorganic forms (32–34).

The symptoms of  As toxicity depend on the chemical form, 
exposure route and duration, and individual health. Acute As 
poisoning can result in nausea, vomiting, erythropenia, leukopenia, 
and a pricking sensation in the hands and legs. Skin lesions, systemic 
damage, nasal perforations, and vascular diseases are associated with 
long-term exposure (13). Chronic toxicity is known as arsenicosis. 
Chronic arsenicosis can facilitate the development of  skin, lung, 
liver, and bladder cancer (35–37).

Mechanisms of  toxicity

The mechanisms of  As toxicity and genotoxicity in humans are 
not yet fully understood. Most toxicologically relevant data originate 
from in vitro studies. Important to note, As toxicity depends on its 
chemical form.

Arsenate and phosphate group

Arsenate (pentavalent) is a phosphate analogue with similar 
chemical structure and properties, which is why it replaces phosphate 
in several biological reactions. One reaction that has been studied 
in vitro (22) is glycolysis. In normal glycolysis, glucose is catabolised 
by phosphates to generate adenosine triphosphate (ATP) (38). 

Arsenate, however, interrupts ATP generation through a mechanism 
called arsenolysis (22). During normal glycolysis, phosphate is linked 
enzymatically to D-glyceraldehyde-3-phosphate to form 
1,3-bisphospho-D-glycerate. Arsenate may replace phosphate to 
form an unstable product 1-arsenato-3-phospho-D-glycerate, which 
is further hydrolysed into arsenate and 3-phosphoglycerate, 
bypassing the generation of  ATP from 1,3-biphospho-D-glycerate 
(22, 39). Arsenolysis may also occur during oxidative phosphorylation. 
In the mitochondria, ATP is synthesised from phosphate and 
adenosine diphosphate (ADP), but in the presence of  arsenate, 
ADP-arsenate is formed instead (39, 40). The resulting decline in 
ATP generation can affect the normal functioning of  cellular 
systems.

Arsenite and thiol groups

Arsenite (trivalent) can also diminish ATP generation via its 
reaction with thiol, that is, sulphydryl, groups (-SH), which have a 
major role in the activity of  certain enzymes, coenzymes, and 
receptors. Arsenite binding to critical thiol groups in such molecules 
can interfere with some biochemical reactions and result in cellular 
toxicity (29, 41). An example that has been studied in vitro is that of  
pyruvate dehydrogenase, an enzyme in the citric acid cycle. Arsenite’s 
affinity for thiols, especially dithiols, alters the lipoic acid moiety 
and consequently inhibits pyruvate dehydrogenase activity (39, 40), 
which, in turn, can impair cellular respiration and reduce ATP 
generation (29, 42). Methylated trivalent arsenicals such as MMA³+ 
have been shown to be even more potent inhibitors of  pyruvate 
dehydrogenase, GSH reductase, and thioredoxin reductase, all of  
which contain thiol groups (43). Inhibition of  these enzymes can 
alter key redox reactions and may eventually lead to cytotoxicity or 
even cell death (41, 44).

Arsenic and oxidative stress

Another mechanism of  As toxicity is the generation of  reactive 
oxygen species (ROS) and reactive nitrogen species (RNS) that leads 
to oxidative stress in cells and can result in cellular damage and death 
(15, 45). Detectable levels of  superoxide anion (O2·

–), hydrogen 
peroxide(H2O2), hydroxyl radical (OH), and nitric oxide (NO) have 
been found in human vascular smooth muscle cells (VSMC) (46, 
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Table 1 Main sources and routes of  exposure of  As

Main sources Sources Route of  exposure
Earth crust Rocks (e.g., volcanic eruptions), naturally enriched areas (e.g., serpentine areas) Ingestion/ Inhalation

Dietary sources Seafood, contaminated water, accumulation in food crops, fruits and grains Ingestion

Medicinal sources Arsenic trioxide treatment for acute promyelocytic leukemia 
Arsenic-based drugs in veterinary medicine Ingestion

Cosmetics Skin lightening products and fairness creams Intradermal

Industrial sources Pesticide production, wood preservatives, microelectronics production, 
microwave devices, and lasers Ingestion/inhalation

Air Use of  pesticides and agrochemicals, industrial sources Inhalation
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stress through intracellular redox reactions (17, 67). In response to 
oxidative stress, certain early response genes are activated to protect 
against and prevent further damage. The major pathways involved 
in arsenic-induced ROS are nuclear factor kappa B (NF-κB), tumour 
suppressor protein (p53) activating protein-1 (AP-1), Nrf2-
antioxidant response element (ARE) signalling pathway, microRNAs 
(miRNAs), mitophagy pathway, tyrosine phosphorylation system, 
and mitogen-activated protein kinases (MAPKs) (1, 32, 68). Both 
NF-κB and AP-1 are stress-response transcription factors that 
regulate the expression of  genes involved in cellular antioxidant 
defence.

At low concentrations and shorter exposure periods, arsenite 
has been shown to induce both of  these transcription factors in 
normal cells (69, 70).

NF-κB dimers are normally present in the cytoplasm of  
unstimulated cells, but are inactive due to interaction with specific 
inhibitors (71). Production of  ROS at As levels ranging from 1 to 
10 µmol/L stimulates NF-κB (32). Concentrations above 10 µmol/L 
induce phosphorylation and degradation of  NF-κB inhibitors, 
leading to the release of  NF-κB dimers, which then move to the 
nucleus and induce transcription of  target genes (31, 72, 73). Some 
reports (72, 74) suggest that arsenite can interfere with the DNA 
binding of  NF-κB, although this was observed at physiologically 
non-relevant concentrations. AP-1, on the other hand, is maintained 
within the nucleus and is composed of  homodimers or heterodimers 
of  Jun and Fos proteins (32). Trivalent methylated arsenicals are 
potent inducers of  AP-1-dependent gene transcription and its 
regulator proteins (75). Transactivation of  AP-1 is achieved through 
phosphorylation of  its activation domain by c-Jun N-terminal kinase 
(JNK) (75).

The ARE pathway protects cells from oxidative damage thanks 
to the Nrf2 -induced expression of  cytoprotective genes. Nrf2 is 
regulated by its repressor, kelch-like epichlorohydrin-associated 
protein 1 (Keap1) (76, 77). In the presence of  excess reactive species, 
cysteine residues in Keap1 are s-alkylated and Nrf2 accumulates and 
translocates to the nucleus, where it binds to the ARE motif  in the 
promoter region of  target genes and antioxidant enzymes (32). 
Arsenite can impair Nrf2 ubiquitination and activate the Nrf2-
induced antioxidant signalling pathway (77). The Nrf2 pathway may 
play a dual role in As toxicity, depending on the dose, exposure time, 
and cell types. Exposure of  human skin fibroblasts to As2O3 at 
concentrations ranging from 0 to 10 µmol/L for 24 h upregulated 
the expression of  Nrf2 and its downstream target gene HO-1, which 
resulted with reduced levels of  ROS (78). In human choriocarcinoma 
JAr cells, As increased oxidative stress with the production of  H2O2, 
leading to an increase in Nrf2/small Maf  DNA binding activity and 
HO-1 expression (79). Similar results have been observed in mouse 
lymphatic endothelial cells (80).

In addition, As may induce epigenetic modifications by altering 
DNA methylation. The cell uses DNA methylation as an epigenetic 
mechanism to control gene expression. Thus, genes can either be 
expressed or repressed depending on the type of  regulatory element 

47), human-hamster hybrid cells (48, 49) and vascular endothelial 
cells (28) exposed to As. Even at environmentally relevant 
concentrations or at non-lethal concentrations (below 5 µmol/L), 
As can still stimulate O2·

– and H2O2 generation (50). In addition, it 
can also affect antioxidant enzymes (such as with GSH, see above) 
(51, 52).

Arsenolipids

Currently, only a few studies have assessed the potential risk of  
arsenolipids for human health. Arseno-hydrocarbons (AsHCs) are 
more toxic than arseno-fatty acids (AsFAs). Arsenolipids also lower 
the levels of  cellular ATP (53–56). The mechanism is unclear but 
may be related to mitochondrial membrane damage and disrupted 
mitochondrial function. Studies with Drosophila melanogaster have 
shown that AsHCs can pass the blood-brain barrier (BBB) and 
affect development (54, 55). AsHCs can also enter the milk of  
lactating mothers after ingestion of  fish. Exposure via breastmilk 
has been shown to affect neurodevelopment in infants and can be 
linked to the attention deficit hyperactivity disorder (ADHD) (53, 
56).

Mechanism of  genotoxicity

Various forms of  As are genotoxic. Even methylated arsenicals, 
formerly thought to be harmless, can induce chromosome 
aberrations and are potent DNA-damaging agents (57). Arsenic and 
arsenic-containing compounds can activate or indirectly cause 
genetic changes or damage (58–60).

Potential mechanisms of  As genotoxicity include ROS 
generation, chromosome aberrations (chromatid breaks and gaps), 
sister chromatid exchange, and the induction of  micronucleated 
cells (61, 62). In recent studies, As has been linked to epigenetic 
modifications through key mechanisms of  gene regulation and DNA 
methylation (63). ROS can react chemically with DNA resulting in 
the structural damage of  chromosomes, which can further lead to 
cellular transformation and possibly to tumour proliferation (23, 
64). Arsenic-induced chromosome aberrations originate from ROS-
mediated single- or double-strand DNA breaks. The latter usually 
arise at sites where there are single-strand breaks nearby, on the 
opposite DNA strands, or due to endonuclease action (2, 33, 2, 65). 
If  this happens at the late G1 phase or S phase (DNA synthesis) 
due to insufficient time for repair, chromatid-type or chromosome-
type aberrations may occur in the subsequent metaphase (33). In a 
study by Kligerman et al. (66), MMAIII and DMAIII induced 
chromosome mutation in mouse lymphoma cells. Structural 
aberrations can also affect important regions on chromosomes, 
leading to various detrimental effects. Although the mechanism of  
alterations is not fully understood, aberrations in the expression of  
growth control genes are a key step toward carcinogenesis.

Inorganic As has been shown to modulate the expression of  
transcription factors – proteins controlling the transcription of  
genetic information from DNA to mRNA – by causing oxidative 
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in which methylation occurs. Arsenic can either induce 
hypomethylation or hypermethylation, with the former being more 
common (81).

Methylation of  arsenite is necessary for its excretion. However, 
methyl groups are also required for normal function of  DNA 
methyltransferases (81, 82). Demanelis et al. (63) described two 
mechanisms of  how As impairs DNA methylation: by lowering the 
express ion of  DNA methyl transferases  3 and DNA 
methyltransferases 1 (83–85) and by depleting methyl groups as it 
is being metabolised and making them unavailable for DNA 
methyltransferases and DNA methylation.

Genotoxicity of  As is a useful property in some cases, for 
example in antitumor therapy. Arsenic trioxide (As2O3) has shown 
some potential in the treatment of  hypertrophic scars (78). Li et al. 
(86) reported that varying concentrations of  As2O3 significantly 
inhibited cell proliferation, activation of  caspase-3 (mediator of  cell 
death), and JNk activation (86) in hepatocellular carcinoma (HepG2) 
cells. Antiproliferative effects of  As on hepatocellular carcinoma 
have been studied extensively over the years and reported in several 
papers (87–89). However, recent findings by Chen et al. (90) suggest 
that hypoxic hepatocellular carcinoma cells develop resistance 
against As2O3 due to upregulation of  the transcription factor HIF-
1α. Similar antitumor effects of  As2O3 have been observed in glioma 
cells, in which As exerts anti-tumour effects via apoptosis and 
autophagy (91–93). While this is promising, the use of  As for 
treatment calls for great caution, because normal cells respond 
differently to As exposure, and further studies are needed to ensure 
high target specificity and eliminate adverse effects.

Mechanism of  carcinogenicity

The International Agency for Research on Cancer (IARC) 
classifies inorganic As as a group I carcinogen (63). Potential 
mechanisms of  As carcinogenicity include genotoxicity, tumour 
production, co-carcinogenesis, cell proliferation, altered DNA 

methylation, ROS production and oxidative stress (94), and 
production of  dimethyl arsenate (DMAv), which at extremely high 
concentrations is carcinogenic in rat bladder (95, 96).

LEAD

Lead (Pb) is a widely used element due to its softness, 
malleability, ductility, poor conductibility, and resistance to corrosion. 
Its extensive use has brought about human exposure in various ways, 
mainly through environmental pollution. For many years now, it has 
been banned in petrol, paint, and several other applications, but 
being a non-biodegradable element, it persists in the environment, 
and is easily accumulated in all ecosystems. Pb is highly toxic (4, 97, 
98), especially for the nervous system development in children. In 
2017, the Institute for Health Metrics and Evaluation (IHME) 
estimated that Pb exposure accounted for 1.06 million deaths and 
24.4 million disability-adjusted life years (DALYs) worldwide due 
to long-term effects on health (99). Table 2 shows the main sources 
and routes of  human exposure.

Ingestion and inhalation dominate, while absorption through 
the skin is minimal and mostly concerns organic tetraethylated and 
tetramethylated Pb. When Pb-contaminated food, water, or soil is 
ingested, it is easily absorbed by the digestive system (100). When 
inhaled from polluted air, it is directly absorbed through the lungs 
(smaller particles) or cleared by the mucociliary transport (larger 
particles) only to be swallowed and absorbed in the gastrointestinal 
tract (28).

Absorbed Pb is transported by the blood to soft (e.g., liver, 
kidney, brain, spleen, ovary, and prostate) and mineralising (bone, 
teeth) tissues. Its elimination takes about 30–40 days from the first 
and about 10–20 years from the second (99, 100).

Lead has no physiological function in the human body but 
impairs multiple biochemical processes, and affects the renal, 
reproductive, and nervous (especially in children) systems (101, 102).

Table 2 Main sources and route of  exposure of  Pb

Main sources Sources Route of  exposure

Earth crust Naturally enriched areas (e.g., black shale areas) Ingestion and dermal contact

Dietary sources Contaminated food, lead accumulated in plants (e.g., urban 
agriculture), game hunting meat Ingestion

Medicinal sources Some traditional medicines Ingestion

Cosmetics Lipstick, Nail polish Intradermal (organic forms only)

Industrial sources Lead-based paints, mining and smelting, lead acid battery 
production, solder and glassware production, recycling activities Ingestion/Inhalation

Recreational activities Use of  indoor firearms, recreational shooting activities and/or 
fishing activities Inhalation, dermal contact, ingestion

Air Combustion of  lead-based gasoline, tobacco smoke, leaded 
aviation fuel Inhalation

Drinking water Lead pipes Ingestion

Soil Contaminated soil Ingestion (mainly in children)
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Until 2012, having a blood Pb level of  10 µg/dL or above was 

considered “level of  concern” in children. Since 2012, the US 
Centers for Disease Control has lowered this threshold to 5 µg/dL 
(103–105). This reference value was then also adopted for adults 
by the National Institute for Occupational Safety and Health 
(NIOSH) in 2015 (106). According to the World Health Organization 
(WHO), there is no safe blood Pb concentration. Flannery and 
Middleton (107) have recently published an extensive report 
regarding blood Pb levels in children and adverse effects associated 
with reference values. Table 3 summarises symptoms of  Pb toxicity, 
depending on its concentration in blood.

Mechanisms of  toxicity

The mechanisms of  Pb toxicity include oxidative imbalance 
(that could lead to oxidative stress), interference with enzymes, and 
various phenomena at the molecular level, including single nucleotide 
polymorphisms and epigenetic modifications, while recent studies 
also report changes in regulatory RNA or microRNA (miRNA) 
molecules (108, 109). Oxidative stress, however, is considered the 
major mechanism of  Pb-induced toxicity.

Lead and oxidative stress

Lead induces oxidative stress via the generation of  ROS [such 
as hyperoxides (HO2·), singlet oxygen, and hydrogen peroxide 
(H2O2)] and depletion of  intrinsic antioxidants that counter ROS 
(110–112).

Pb leads to the generation of  ROS mostly by inhibiting 
δ-aminolevulinic acid dehydratase, which catalyses porphobilinogen 
(PBG) formation (113, 114). This, in turn, results in the accumulation 
of  of  δ-aminolevulinic acid (ALA) through the negative feedback 
loop. ALA is a potent neurotoxin associated with neurological 
damage and the inhibition of  Na+, K+-ATPase, and adenylate cyclase 
activities (115, 116). Increased ALA levels generate free ROS, 
especially H2O2 and superoxide radicals. These radicals cause lipid 

peroxidation and, by interaction with oxyhaemoglobin, they 
contribute to further generation of  hydroxyl radicals (117). These, 
in turn, oxidise haemoglobin and impair oxygen transport to tissues. 
Hydroxyl radicals can also trigger red blood cell lysis (117).

Lead and thiol groups

Under normal circumstances, intrinsic antioxidants rise to 
mitigate ROS effects (118, 119). However, Pb can impair glutathione, 
one of  the body’s main antioxidants, as it binds covalently with the 
thiol group in glutathione, glutathione reductase (GR), glutathione 
peroxidase (GPX), and glutathione-S-transferase (110, 119). A 
similar mechanism has been reported for other antioxidant enzymes 
such as catalase (CAT) and superoxide dismutase (SOD) (120). 
Along with inactivating these enzymes through covalent binding, 
Pb replaces zinc ions, which are important cofactors for their activity 
(110, 121).

In this sense, SOD, GPX, and CAT levels inversely correlate 
with increased blood Pb levels (122). For example, Kshirsagar et al. 
(123) reported that a 458 % increase in blood Pb (p<0.001) in 
occupationally exposed individuals was accompanied by a 50.4 % 
decrease in SOD (p<0.001) and a 34.33 % decrease in CAT 
(p<0.001) levels compared to non-exposed individuals.

Another enzyme whose activity is impaired by Pb is glucose-6-
phosphate dehydrogenase (G6PD), which also contains numerous 
thiol groups. It supplies cells with nicotinamide adenine dinucleotide 
phosphate (NADP). Its reduced form, NADPH, serves as a donor 
of  reducing equivalents in the antioxidant system. Since red blood 
cells lack other NADPH-producing enzymes, their survival depends 
on NADPH supplied by G6PD. Animal studies report varying 
effects of  Pb on G6PD but all point to three possible and concurrent 
mechanisms of  action. The first involves higher demand for 
NADPH and, ultimately, higher G6PD activity in red blood cells in 
response to increased ROS (124, 125 ). The second involves G6PD 
inhibition due to a formation of  a Pb and thiol group complexes 
in the enzyme (126, 127). This, however, is more likely to occur in 
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Table 3 Symptoms of  Pb toxicity at different blood lead concentrations [adapted from Rehman et al. (103)]

Acute Toxicity Mild toxicity 
(40–60 µg/dL)

Moderate toxicity 
(60–100 µg/dL)

Severe toxicity 
(>100 µg/dL)

Metallic taste Myalgia Arthralgia (especially nocturnal) Lead palsy (wrist or foot drop)

Abdominal pain Paraesthesia Muscular exhaustibility A bluish black lead line on gums (Barton's line) 

Constipation or diarrhoea Fatigue Tremor Lead colic (intermittent severe abdominal 
cramps)

Vomiting Irritability Headache Lead encephalopathy

Hyperactivity or lethargy Abdominal discomfort Diffuse abdominal pain

Ataxia Anorexia, metallic taste, vomiting

Behavioural changes Constipation

Convulsions and coma Weight loss

Hypertension
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vitro than in vivo. The third involves glutathione depletion, which in 
turn increases the demand for NADPH (121, 128).

Altogether, Pb exposure may both increase or decrease G6PD 
activity, depending on concentration, duration of  exposure, and the 
integrity of  the cellular antioxidant system (118, 129).

Lead and ions

Another significant mechanism of  Pb toxicity is substitution of  
divalent cations vital for biological processes like Ca2+, Mg2+, Fe2+, 
Zn2+ and monovalent cations like Na+ (110, 121). Pb²+, for example, 
can replace Ca2+ at binding sites and activate or inhibit them, 
depending on its level (121, 130). This effect is the most prominent 
in the nervous system. After replacing Ca2+, Pb can cross the BBB 
and accumulate in astroglial cells (110, 121). The neurotoxic effect 
on immature astroglial cells is particularly pronounced, as they play 
an important role in the development of  BBB (131).

Mechanism of  genotoxicity

Several studies using different Pb-containing compounds in 
various biological systems have provided evidence of  direct or 
indirect interaction between Pb and genetic material. Genotoxic 
effects observed in vitro and in animal and human studies range from 
the production of  free radicals, inhibition of  DNA repair to DNA 
double-strand breaks, chromosome aberrations, sister chromatid 
exchange (SCE), and increased micronucleus (MN) frequency (132, 
133).

Recent studies have linked increased Pb levels to chromosome 
aberrations and sister chromatid exchange (SCE). Das and De (134) 
reported chromatid breaks as the main aberration in 100 patients 
with high blood Pb levels. Other chromosome abnormalities 
observed include chromosome breaks and dicentrics (109, 134). 
Older studies have reported no Pb-related increase in SCE frequency 
or have attributed an increase in that parameter to tobacco use in 
research subjects (135, 136). However, there are several recent 
studies (137–139) that associate Pb-exposure with an increase in 
SCE frequency.

Another marker of  genotoxicity is micronucleation. Micronuclei 
are formed as a result of  chromosome breaks (originated from 
unrepaired or incorrectly repaired DNA lesions) or mitotic spindle 
dysfunction. Their formation may be induced by oxidative stress or 
exposure to clastogens, including Pb (140–142). Balasubramanian 
et al. (143) reported an increase in MN frequency and DNA damage 
in workers exposed to Pb compared to the control group, which 
was related to years of  exposure and accumulated genome damage.

Oxidative stress triggered by Pb can induce the formation of  
8-hydroxy-2-deoxyguanosine (8-OHdG), which is a molecular 
marker for DNA oxidative damage. Its concentration in urine was 
reported to be significantly higher in workers exposed to Pb (144). 
Higher 8-OHdG levels were also reported in human lymphoblastoid 
TK6 cells exposed to Pb (145).

Another potential mechanism of  Pb genotoxicity is the signalling 
pathway of  the nuclear factor erythroid 2-related factor 2 (Nrf2). 
Nrf2 and NF-κB are the two key transcriptional factors that interact 
to regulate cellular redox status in response to oxidative stress and 
inflammation, respectively. Pb-induced oxidative stress can disrupt 
this interaction impairs cell proliferation, cell cycle progression and, 
eventually, leads to cell death (146). Oxidative stress induced in 
bovine granulosa cells by Pb concentrations ranging from 1 to 10 
µg/mL downregulates both Nrf2 and NF-κB and their downstream 
genes (147). Similar observations of  oxidative stress, including 
downregulation of  Nrf2, inflammation, and apoptosis were made 
in rat testis (148).

Mechanism of  carcinogenicity

The IARC classifies Pb as a group 2A carcinogen (149). Pb-
induced carcinogenicity is owed to increased oxidative stress, 
membrane alterations, impaired cell signalling, and impaired 
neurotransmission (150). It likely starts with ROS damaging the 
DNA, disrupting DNA repair and affecting genes that regulate the 
growth of  tumour cells (151).

By inhibiting δ-aminolevulinic acid dehydratase, Pb favours the 
accumulation of  ALA, which triggers ROS production, but also 
acts as a carcinogen (116). ALA-mediated oxidative DNA damage 
occurs through the production of  8-OHdG, 8-hydroxyguanine 
(8-oxo-7,8-dihydroguanine),  and 8-oxo-7,8-dihydro-2-
deoxyguanosine (8-oxodG) (116, 152). A number of  studies has 
reported positive correlation between ALA levels and markers of  
oxidative stress and carcinogenesis (116, 137, 141, 153). Furthermore, 
hydroxyl radicals (HO•) generated by ALA attack DNA strands and 
interact with its nucleobases to produce various oxidation products. 
All DNA nucleobases are susceptible to HO•. The 8-oxodG lesion 
(HO• interaction with guanine) is the most abundant and is 
promutagenic (141). Unrepaired 8-oxodG can lead to genomic 
instability through transversions and the formation of  double-strand 
breaks (116, 154). Furthermore, several studies (155–157) have 
revealed the epigenetic function of  8-oxodG, and its role in 
carcinogenesis through gene regulation.

CONCLUSION

This review sheds new light on the mechanisms of  toxicity and 
genotoxicity of  As and Pb. Both PTEs have been proven to affect 
various metabolic processes and impair the function of  some organ 
systems, cause genetic damage, prevent DNA repair, and 
consequently promote carcinogenesis and tumour growth.

Both elements are still persistent in the environment, with 
millions of  people at risk of  exposure. In this sense, previously 
implemented strategies for preventing, monitoring, limiting and 
managing exposures to As, Pb, and other PTEs, heavy metals in 
particular, should be strictly followed. Engineering solutions can 
limit most occupational exposures, and it is essential to monitor 
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levels of  heavy metals so that such solutions can be implemented. 
Good occupational hygiene is another effective method of  limiting 
exposure.

Since both As and Pb are highly persistent in the environment, 
regardless of  the fact that their primary sources have been removed, 
they still may contaminate water, soil, and food crops. To prevent 
and minimise secondary exposure, effective soil remediation and 
food monitoring are needed.

This review shows that the knowledge about both PTEs is still 
insufficient, and that it is necessary to regularly revise the existing 
concepts and accumulate data relevant for risk assessment. In this 
regard, it is recommended to focus on findings obtained using 
various sensitive genotoxicity tests and novel -omics approaches, 
which could help to better understand the process of  carcinogenesis 
triggered by high levels of  exposure to As and Pb.
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Metabolički i genski poremećaji – pregled mehanizama toksičnosti i genotoksičnosti arsena i olova

Urbanizacija i industrijalizacija su u porastu u cijelome svijetu. S obama ovim fenomenima izravno su povezana zagađivala iz okoliša, poput 
potencijalno toksičnih elemenata (PTE). Dva elementa koja izazivaju najveću zabrinutost su arsen (As) i olovo (Pb) u tlu i vodi, bilo da su 
tamo došli prirodnim putem ili zbog ljudske djelatnosti. Oba su i potencijalno kancerogena. U ovom preglednom radu razmatraju se 
mehanizmi kojima As i Pb ugrožavaju metaboličke procese i izazivaju oštećenja genoma. Unatoč zabranama i naporima da se ograniči 
njihovo korištenje, oba su elementa perzistentna u okolišu i predstavljaju rizik za ljudsko zdravlje, zbog čega je potrebno nastaviti s njihovim 
toksikološkim istraživanjima.

KLJUČNE RIJEČI: arsen trioksid; ljudsko zdravlje; metali; oksidacijski stres; oštećenje DNA; reaktivne kisikove vrste; toksikologija; 
zakonska regulativa


