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Abstract: The testing association of environmental variables with genetic and epigenetic variation
could be crucial to deciphering the effects of environmental factors playing roles as selective drivers
in ecological speciation. Although ecological speciation may occur in closely related species, species
boundaries may not be established over a short evolutionary timescale. Here, we investigated
the genetic and epigenetic variations using amplified fragment length polymorphism (AFLP) and
methylation-sensitive amplification polymorphism (MSAP), respectively, and tested their associations
with environmental variables in populations of four closely related species in the R. pseudochrysan-
thum complex. No distinctive species relationships were found using genetic clustering analyses,
neighbor-joining tree, and neighbor-net tree based on the total AFLP variation, which is suggestive of
the incomplete lineage sorting of ancestral variation. Nonetheless, strong isolation-by-environment
and adaptive divergence were revealed, despite the significant isolation-by-distance. Annual mean
temperature, elevation, normalized difference vegetation index, and annual total potential evap-
otranspiration were found to be the most important environmental variables explaining outlier
genetic and epigenetic variations. Our results suggest that the four closely related species of the
R. pseudochrysanthum complex share the polymorphism of their ancestor, but reproductive isolation
due to ecological speciation can occur if local environmental divergence persists over time.

Keywords: ecological speciation; environmentally-associated dependent evolution; genetic and
epigenetic variation; incomplete lineage sorting; local adaptation

1. Introduction

Divergence between species and between populations in close association with envi-
ronments is an important aspect of research in evolutionary biology [1]. Local ecological
lineages are expected to be invoked by environmental heterogeneity [2] and may result
in ecological speciation [3]. Range shifts via expansions toward polar and high elevation
range limits are expected and the dispersal capability is crucial for species adaptation and
survival [4,5]. A biogeographical upward shift of distribution in response to postglacial
climatic warming is commonly found [6,7]. Populations shifting upward may evoke adap-
tive divergence at elevational marginal populations [8–10], albeit leading-edge populations
are likely under survival threat when facing with habitat reduction and high-elevation
environments [7,11]. Trailing-edge populations may be the most vulnerable and may be
under the risk of extinction if global change dramatically exceeds a species’ past rates of
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thermal niche evolution [9,10,12]. Nonetheless, locally adapted alleles that correspond to
environmental conditions can be found in trailing- and leading-edge populations at the
species’ range margins [9–12].

Natural selection driven by environmental factors can act on both genetic and epige-
netic variations, leading to ecological adaptation and speciation [10,13–16]. Researchers
can quantify genetic variation in natural populations by using techniques involving next
generation sequencing (NGS), such as restriction site-associated sequencing [17]. Amplified
fragment length polymorphism (AFLP) [18], despite being less powerful than NGS tech-
niques, is an efficient technique which reveals hundreds of molecular markers generated
from the genome sequences of non-model organisms that may be involved in adaptive evo-
lution [19,20]. Epigenetic variation can influence gene expression without DNA sequence
alteration [15,16]. Genome-wide changes in methylation status can be accessed via methods,
such as the genome-wide sequencing of cytosine methylation [21], which are dependent on
detailed genome sequence information. In non-model organisms, epigenetic variation can
be quantified using methylation-sensitive amplification polymorphism (MSAP) [22], which
is independent of the availability of the genome sequence information. Stably inherited
epigenetic variation may play a crucial role at the interface between the environment and
the genome [15,16,23]. Epialleles occurring in natural populations associated strongly with
environment can be important for population adaptive evolution and survival [23,24].

The Rhododendron pseudochrysanthum complex comprises four closely related species,
including R. hyperythrum, R. morii, R. pseudochrysanthum, and R. rubropunctatum, that belong
to the subgenus Hymenanthes [25]. At elevations above 3000 m, R. pseudochrysanthum
grows on the periphery of cold adapted coniferous forests. R. morii inhabits the periphery
of warm-temperate evergreen broadleaved forests at elevations around 2400–3000 m in
central and southern Taiwan. Populations of these two species overlap at elevations
of approximately 3000 m in the mountains of Hohuanshan and Tahsueshan in central
Taiwan [25]. R. hyperythrum is found dominating the alpine tundra at an elevation of
around 3500 m on the peak of Nanhutashan in central Taiwan. R. rubropunctatum is
distributed in the northern subtropical evergreen broadleaved forests at elevations around
600–1200 m [25].

Close phylogenetic relationships were observed between the species of the R. pseu-
dochrysanthum complex based on chloroplast DNA (cpDNA) sequences [26]. Populations
of this species complex experienced north-to-south expansions during the last glacial
maximum (LGM) [26]. Effective population size reductions of high-elevation Hohuan-
shan and Tahsueshan populations were found [10], based on the expressed sequence tag
simple sequence repeats (EST-SSRs) data, indicating past range retractions because of
the upward range shifts to higher elevations [5–7]. The current distributions of species
in the R. pseudochrysanthum complex are the outcome of the past upward migration of
R. hyperythrum, R. morii, and R. pseudochrysanthum populations to high elevations and the
restriction of R. rubropunctatum populations in northern lower elevations. Only one out
of the 26 EST-SSR loci assessed was found to be an environmentally-dependent selective
outlier in global comparison and was also in pair population comparisons involving the
low-elevation R. rubropunctatum populations [10]. Although the chance of potential ad-
vantageous mutations may be reduced if the effective population size decreases [1–5,13],
population adaptive divergence found in species with low effective population size is not
uncommon, particularly when selection is strong [2,3,13,14].

Tree species may diverge ecologically and lead to reproductive isolation because of
divergent environments [1–3]. Selection can create a pattern of isolation-by-environment
(IBE) [27,28] in contrast to gene flow between populations impeded solely by geographic
distance (isolation-by-distance, IBD). Closely related species can be in various stages of
divergence, before complete reproductive isolation is invoked by environmental differ-
ences [1]. The detection of adaptive divergence in the elevational trailing- and leading-edge
populations is probable in the R. pseudochrysanthum complex, due to its demographic
history of glacial expansion and postglacial upward shifting, using a large number of
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molecular markers. Here, 171 and 132 samples from nine and six populations of the R. pseu-
dochrysanthum complex were surveyed for AFLP and MSAP variation, respectively. The
genetic and epigenetic variations surveyed were used to test the hypothesis of the early
stage ecological speciation in the R. pseudochrysanthum complex.

The AFLP and MSAP variations surveyed were used in a combination of phyloge-
netic; genetic clustering; genetic differentiation; genome scans; and multivariate analytic
techniques to answer four specific questions: (1) Is there species integrity in the four closely
related species of the R. pseudochrysanthum complex? (2) Are AFLP and MSAP FST outliers;
detected by genome scans methods; associated strongly with environmental variables?
(3) Does IBE play a stronger role than IBD in explaining outlier genetic and epigenetic varia-
tions? And (4) What are the most important environmental variables contributing to outlier
genetic and epigenetic variations? Answering these questions will provide information to
investigate the probable evolutionary process shaping the patterns of genetic diversity and
phylogenetic relationships and a probability of ecological speciation of four closely related
species in the R. pseudochrysanthum complex.

2. Results
2.1. Genetic Diversity Based on the Total AFLP Variation

With 171 individuals of the R. pseudochrysanthum complex (Table 1, Figure 1), eight
primer combinations generated a total of 384 AFLP loci with an overall repeatability of
96.2% (Table S1). The proportion of polymorphic loci ranged from 56.0% (population
PTHS) to 69.8% (population PLLS) with an average of 62.0% (Table 1). The average level of
unbiased expected heterozygosity (uHE) was 0.2211 and ranged from 0.2038 (population
PTHS) to 0.2439 (population RTGK). The analysis with the linear mixed effect model
(LMM) showed no overall uHE significant difference when compared between species
(Wald χ2 = 4.4342, p = 0.2182). Only the population pair between PLLS and PTHS had a
significant uHE difference after Tukey’s p value adjustment (t = −2.637, p = 0.0085; Table
S2), albeit an overall significant difference was revealed (Wald χ2 = 21.241, p = 0.0065). The
test for multilocus linkage disequilibrium revealed a significant departure from random
associations in both the index of association (IA) and the modified index of association (rD)
between AFLP loci (Table 1).

Table 1. Site properties and genetic parameters of sampled populations of the Rhododendron pseu-
dochrysanthum complex estimated based on the total AFLP variation.

Species
Population

Longitude
Latitude Altitude (m) N %p uHE

(SE)
IA
(p)

rD
(p)

R. hyperythrum

Nanhutashan
(HNHTS)

121.4381
24.3575 3500 41 (45) 63.5 0.2074 (0.009) 2.037 (0.001) 0.008 (0.001)

R. morii

Alishan (MALS) 120.8006
23.51111 2100 18 65.1 0.2160 (0.009) 3.926 (0.001) 0.017 (0.001)

Hohuanshan
(MHHS)

121.2575
24.11944 2800 14 (15) 57.3 0.2152 (0.009) 2.172 (0.001) 0.010 (0.001)

Tahsueshan
(MTHS)

121.1281
24.31861 3085 8 (9) 60.4 0.2260 (0.010) 2.969 (0.001) 0.016 (0.001)
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Table 1. Cont.

Species
Population

Longitude
Latitude Altitude (m) N %p uHE

(SE)
IA
(p)

rD
(p)

R. pseudochrysanthum

Lulinshan (PLLS) 120.8719
23.46139 2862 20 69.8 0.2393 (0.009) 2.539 (0.001) 0.009 (0.001)

Hohuanshan
(PHHS)

121.2619
24.13417 3400 17 (20) 64.3 0.2218 (0.009) 3.601 (0.001) 0.151 (0.001)

Tahsueshan
(PTHS)

121.1303
24.32361 3121 19 (20) 56.0 0.2038 (0.010) 2.024 (0.001) 0.009 (0.001)

R. rubropunctatum

Tsaigongken
(RTGK)

121.5217
25.18972 886 13 59.4 0.2439 (0.010) 4.881 (0.001) 0.020 (0.001)

Tsankuangliao
(RTKL)

121.8633
25.09444 630 21 (23) 62.5 0.2161 (0.010) 3.384 (0.001) 0.015 (0.001)

Total 171 (132)

Average 17 (22) 62.03 (4.26) 0.2211 (0.009)

N, Number of samples used in AFLP and MSAP (number in parenthesis); %p, the percentage of polymorphic loci;
uHE, unbiased expected heterozygosity. IA, index of association; rD, modified index of association.
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Figure 1. Geographic distribution of the nine populations of four closely related species in the
Rhododendron pseudochrysanthum complex occurring in Taiwan. The countries’ boundary (polygon)
map was derived from the default map database in ArcGIS v.10.3 (Supplementary Methods). The
elevation gradients of Taiwan (background) were presented in ArcGIS based on the 20 m digital
elevation model. The locations of the sampling sites were plotted using Tools in ArcGIS by their
coordinates. See Table 1 for abbreviations of the nine populations of the R. pseudochrysanthum complex.
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2.2. Environmental Heterogeneity

Overall environmental heterogeneity between the sampling sites was found using
permutational multivariate analysis of variance (PERMANOVA), based on the 11 retained
environmental variables (Supplementary Methods, Table S3) (p = 0.001). These environ-
mental variables include: bioclimatic (BIO1, annual mean temperature; BIO2, mean of
the difference of the monthly maximum and minimum temperatures; and BIO12, annual
precipitation); topographic (aspect, elevation, and slope); and ecological (CLO, cloud cover;
NDVI, normalized difference vegetation index; PET, annual total potential evapotranspira-
tion; RH, relative humidity; and WSmean, mean wind speed) variables. When compared
between sample sites of different species, either significant or non-significant environmen-
tal differences can be found (Table S4). However, no significant environmental difference
was found when comparing between the sample sites of the same species.

2.3. Genetic Relationships and Clustering Based on the Total AFLP Variation

The analysis of molecular variance (AMOVA) revealed shallow, but significant species
differentiation (ΦCT = 0.0520, p = 0.012; Table 2) based on the total AFLP data. The level of
genetic differentiation between populations within species was significant (ΦSC = 0.1000,
p = 0.001). A significantly moderate level of differentiation between populations of the
R. pseudochrysanthum complex was found (ΦST = 0.1468, p = 0.001; FST = 0.0763, p < 0.001).
Moderate levels of genetic differentiation (FST) were also found to be significant for all
pairwise population comparisons (Table S5). Using the total AFLP data, the mean of the
minimal cross entropy (CE) was minimized at K = 6 (Figure S1a) and the lowest Bayesian
information criterion (BIC) was found at K = 5 (Figure S1b), respectively, using the sNMF
algorithm of landscape and ecological association (LEA) [29] and the discriminant analysis
of principal component (DAPC) [30,31]. Distinct population classification cannot be found,
due to the high degree of shared polymorphism between individuals of different popu-
lations, as was revealed by LEA (Figure 2a). Using DAPC, three population clusters can
be distinguished (Figure 2b). DAPC cluster 1 contains the two low-elevation populations
RTGK and RTKL of R. rubropunctatum. DAPC cluster 2 contains individuals of populations
MALS, PHHS, and PLLS, which belong to R. morii and R. pseudochrysanthum. DAPC cluster
3 included individuals of populations HNHTS, MTHS, and PTHS, which belong to R. hy-
perythrum, R. morii, and R. pseudochrysanthum. Nonetheless, individuals of populations
HNHTS, PHHS, PTHS, and PLLS agglomerated in the periphery of clusters 2 and 3. The
individual neighbor-joining (NJ) tree, generated based on the total AFLP data, with mostly
low bootstrap values, revealed no distinctive relationships of individuals between popu-
lations and between species (Figure 3). Additionally, the center of the neighbor-net (NN)
tree [32] was deeply intertwined and netted, which is supportive of no clear population
and species distinction in the R. pseudochrysanthum complex (Figure S2). These results
indicate the intermingling of individuals between populations of different species located
in different geographic areas.

2.4. Potential Genetic and Epigenetic Outliers Associated with Environmental Variables and the
Most Important Environmental Variables Explaining Outlier Variation

Out of 384 AFLP, 580 MSAP-m (methylated), and 274 MSAP-u (unmethylated) loci
(Supplementary Methods, Table S6), 16 (4.2%), 4 (0.7%), and 15 (5.5%) loci, respectively,
showed evidence of being FST outliers for population differentiation using both BAYES-
CAN [34] and DFDIST [35] in global comparisons (). The AFLP and MSAP primer pairs
for amplification of these 35 outliers and the amplified length (bp) were listed in Table
S7. These 35 loci were found to be associated with various environmental variables using
LFMM (Latent factor mixed model) [36], Samβada [37], and a Bayesian logistic regression
(brm) [38,39]. High levels of genetic differentiation at different hierarchical structures were
found with ΦCT = 0.2283 (p = 0.011), ΦSC = 0.3099 (p = 0.001), ΦST = 0.4675 (p = 0.001)
(Table 2), and among population FST = 0.2929 (p < 0.001), based on the variation of the 16
outlier AFLP loci.
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Figure 2. Analysis of genetic homogeneous groups of 171 individuals from nine populations of
four closely related species in the Rhododendron pseudochrysanthum complex based on the total AFLP
variation using (a) LEA and (b) DAPC. The clustering scenarios for K = 2–4 were displayed in
LEA. LEA, landscape and ecological association [29]; DAPC, discriminant analysis of principal
component [30,31].
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Figure 3. The neighbor-joining (NJ) tree of 171 individuals of four closely related species in the Rhodo-
dendron pseudochrysanthum complex based on the total AFLP variation. The NJ tree was generated
based on Nei’s genetic distances [33] and 1000 bootstrap replicates were used in calculating bootstrap
support values. Tip labels for individuals are colored: R. hyperythrum (blue), R. morii (violet red),
R. pseudochrysanthum (dark green), and R. rubropunctatum (brown). For each node, bootstrap support
values greater than 70%, between 50% and 70%, and smaller than 50% were coded with green, red,
and blue circles, respectively.
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Table 2. Genetic differentiation between species, between populations within species, and between
nine populations of the Rhododendron pseudochrysanthum complex based on the total and outlier AFLP
variation using analysis of molecular variance (AMOVA).

Source of Variation Degree of Freedom Sum of Squares Percent Variation Φ Statistics (p)

Total Data

Between species 3 692.09 5.20 ΦCT = 0.0520 (0.012)

Between populations within species 5 516.28 9.48 ΦSC = 0.1000 (0.001)

Within populations 162 6083.74 85.32 ΦST = 0.1468 (0.001)

Total 170 7292.12 100

Outlier Data

Between species 3 178.32 22.83 ΦCT = 0.2283(0.011)

Between populations within species 5 81.32 23.91 ΦSC = 0.3099 (0.001)

Within populations 162 326.50 53.25 ΦST = 0.4675(0.001)

Total 170 586.140 100

Three AFLP loci, including AC03_1652, AP04_3517, and AP06_2592, were detected as
FST outliers and associated with environmental variables when compared between low-
elevation trailing-edge R. rubropunctatum populations with high-elevation leading-edge
populations of R. hyperythrum, R. morii, and R. pseudochrysanthum (Table S6). AC03_1652 was
the potential selective outlier when compared between the RTKL population of R. rubrop-
unctatum (high allele frequency) and populations MHHS and MTHS of R. morii (low allele
frequencies) (Table S6, Figure S3). AP04_3517 was the selective outlier in comparison of the
R. hyperythrum HNHTS population (high allele frequency) with both R. rubropunctatum pop-
ulations (RTGK and RTKL; low allele frequencies). AP06_2592 was found to be the selective
outlier when comparing R. pseudochrysanthum populations PHHS and PLLS (high allele
frequencies) to the R. rubropunctatum RTGK population (low allele frequency). AC03_1652
was strongly correlated with BIO1 and PET. AP04_3517 was significantly correlated with
BIO1, NDVI, and PET. AP06_2592 was found to be strongly correlated with BIO1, BIO2,
elevation, and CLO. The probability estimates of these three AFLP outlier loci against
the associated environmental gradients were depicted in Figure 4. Low allele frequen-
cies in low-elevation trailing-edge populations in contrast to high allele frequencies in
high-elevation leading-edge populations were found for AFLP outliers such as AC05_1828,
AC05_2733, and AP06_3422 (Table S6, Figure S3). However, these loci were not detected as
FST outliers by either DFDIST or BAYESCAN in pair population comparisons (Table S6).

No apparent contrasting differences in allele frequencies comparing the trailing- and
leading-edge populations were found in all 15 outlier MSAP-u loci. Although a higher
MSAP-m MP5_1240 allele frequency in the low-elevation trailing-edge population (RTKL)
was found in contrast to high-elevation leading-edge populations with lower allele fre-
quencies, no MSAP locus was detected as FST outlier by either BAYESCAN or DFDIST
when comparing low-elevation trailing-edge populations to high-elevation leading-edge
populations (Table S6).

Eleven environmental variables, including three bioclimatic (BIO1, BIO2, and BIO12),
three topographic (aspect, elevation, and slope), and five ecological (CLO, NDVI, PET, RH,
and WSmean) variables (Table S3), were used separately for forward selection analysis [40]
to assess their contributions in explaining outlier AFLP variation. For the investigation
of the contributions of environmental variables in explaining outlier MSAP variation,
ecological variables CLO and WSmean were removed due to collinearity with the other
three ecological variables in the six populations examined for MSAP. The most impor-
tant environmental variables in the three environmental categories were BIO1 (adjusted
R2 = 0.1576), elevation (adjusted R2 = 0.1394), and PET (adjusted R2 = 0.1150), respectively,
explaining the outlier AFLP variation (Table 3). The most important environmental vari-
ables in the three environmental categories were BIO1 (adjusted R2 = 0.1925), elevation
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(adjusted R2 = 0.1272), and PET (adjusted R2 = 0.1664), respectively, explaining the outlier
MSAP-m variation. BIO1 (adjusted R2 = 0.3446), elevation (adjusted R2 = 0.1772), and
NDVI (adjusted R2 = 0.3518) were the most important environmental variables in the three
environmental categories, respectively, explaining the outlier MSAP-u variation.
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Figure 4. Logistic regression plots of the three AFLP loci associated strongly with environmental
variables when comparing the low-elevation Rhododendron rubropunctatum populations with the
high-elevation populations of species including R. hyperythrum, R. morii, and R. pseudochrysanthum.
Values of the y-axis are the predicted probabilities of AFLP loci and the number of the x-axis are
the values of environmental variables. Logistic regression was performed based on the generalized
linear model with a logit link function and a binomial residual distribution. The presence/absence
of the three loci (AC03_1652, AP04_3517, and AP06_2592) were used as response variables and the
environmental variables strongly correlated with the loci were used as predictor variables in analysis
using the glm function of R (Supplementary Methods). BIO1, annual mean temperature; BIO2, mean
of the difference of the monthly maximum and minimum temperatures; CLO, cloud cover; NDVI,
normalized difference vegetation index, PET, annual total potential evapotranspiration.
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Table 3. Relative contribution (adjusted R2) and F test of environmental variables explaining outlier
genetic and epigenetic variations of the Rhododendron pseudochrysanthum complex using a forward
selection procedure.

Outlier Genetic/Epigenetic
Variation

Category of
Environmental Variables Adjusted R2 Cumulative

Adjusted R2 F Value (p)

AFLP
Bioclimate

BIO1 0.1576 0.1576 32.81 (0.001)
BIO2 0.1070 0.2646 25.59 (0.001)

BIO12 0.0429 0.3076 11.42 (0.001)
Topology
Elevation 0.1394 0.1394 28.54 (0.001)

Aspect 0.0518 0.1912 11.83 (0.001)
Slope 0.0431 0.2343 10.45 (0.001)

Ecology
PET 0.1150 0.1150 23.09 (0.001)
CLO 0.0848 0.1998 18.90 (0.001)

NDVI 0.0497 0.2495 12.13 (0.001)
RH 0.0458 0.2953 11.85 (0.001)

WSmean 0.0245 0.3197 6.97 (0.001)

MSAP-m
Bioclimate

BIO1 0.1925 0.1925 32.22 (0.001)
BIO2 0.0382 0.2307 7.46 (0.001)

Topology
Elevation 0.1272 0.1272 20.09 (0.001)

Aspect 0.0336 0.1608 6.21 (0.001)
Slope 0.0200 0.1804 4.08 (0.001)

Ecology
PET 0.1664 0.1664 27.16 (0.001)

NDVI 0.0350 0.2014 6.70 (0.001)

MSAP-u
Bioclimate

BIO1 0.3446 0.3446 69.89 (0.001)
BIO2 0.1720 0.5166 47.25 (0.001)

BIO12 0.0236 0.5402 7.63(0.001)
Topology
Elevation 0.1772 0.1772 29.22 (0.001)

Aspect 0.0613 0.2386 11.47 (0.001)
Slope 0.0463 0.2848 9.35 (0.001)

Ecology
NDVI 0.3518 0.3518 72.09 (0.001)
PET 0.0996 0.4514 24.69 (0.001)

Aspect (0–360◦) and slope (0–90◦). BIO1, annual mean temperature; BIO2, mean of the difference of the monthly
maximum and minimum temperatures; BIO12, annual precipitation; CLO, cloud cover; NDVI, normalized
difference vegetation index; RH, relative humidity; PET, annual total potential evapotranspiration; WSmean,
mean wind speed.

2.5. Relative Contribution of IBD and IBE Explaining Outlier Genetic and Epigenetic Variations

The retained 11 and 9 environmental variables were used in testing for IBD and IBE,
respectively, based on the total variation. Significant relationships between environmental
and geographic distances were found using a Mantel test and multiple matrix random-
ization regression (MMRR) [41] (Table 4). Except for the MSAP-m data, significant IBD
was found in all the analyses based on the total variation using a Mantel test and MMRR.
Partial Mantel tests found significant IBE based on the total AFLP and MSAP-u variations.
A significant adaptive divergence can be inferred based on the three outlier datasets, con-
trolling for geography using the partial Mantel test (AFLP: Mantel r = 0.2858, p = 0.001;
MSAP-m: Mantel r = 0.1551, p = 0.001; MSAP-u: Mantel r = 0.0825, p = 0.002).
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Table 4. Isolation-by-environment and isolation-by-distance tested using Mantel test, partial Mantel
tests, and multiple matrix regression with randomization (MMRR). Euclidean distance matrices
were generated based on AFLP, MSAP-m, and MSAP-u (G), geography (D), and environment (E).
MMRR was used to infer the effects of geographic (βD) and environmental (βE) distances on genetic
(AFLP) and epigenetic (MSAP-m and MSAP-u) distances. R2 represents the total amount of variation
explained by both geographic and environmental factors. When outlier datasets were used, strong
adaptive divergence can be inferred if significance was found controlling for geographic effect.

Mantel Test
Mantel r (p)

Partial Mantel Test
Mantel r (p)

G vs. E G vs. D E vs. D G vs. E|D

Total Data

AFLP 0.3634
(0.001)

0.4070
(0.001)

0.7175
(0.001) 0.1123 (0.001)

MSAP-m 0.0300
(0.256)

−0.003
(0.481)

0.8167
(0.001) 0.0560 (0.062)

MSAP-u 0.2844
(0.001)

0.2658
(0.001)

0.8167
(0.001) 0.1210 (0.001)

Outlier
Data

AFLP 0.5286
(0.001)

0.4959
(0.001) 0.2858 (0.001)

MSAP-m 0.3306
(0.001)

0.3003
(0.001) 0.1551 (0.001)

MSAP-u 0.2545
(0.001)

0.2553
(0.001) 0.0825 (0.002)

MMRR

G vs. E G vs. D E vs. D G vs. E|D

R2 βD (p) βE (p)

Total Data

AFLP 0.2800
(0.001)

0.3014
(0.001)

0.6443
(0.001) 0.1902 0.2068

(0.001)
0.1467
(0.001)

MSAP-m −0.0230
(0.664)

−0.0400
(0.435)

0.9431
(0.001) 0.0046 −0.1643

(0.001)
0.1319
(0.010)

MSAP-u 0.1925
(0.001)

0.1653
(0.001)

0.9431
(0.001) 0.0509 −0.1467

(0.001)
0.3307
(0.001)

Outlier Data

AFLP 0.4678
(0.001)

0.4469
(0.001) 0.2897 0.2488

(0.001)
0.3074
(0.001)

MSAP-m 0.3247
(0.001)

0.3024
(0.001) 0.1074 −0.0175

(0.576)
0.3412
(0.001)

MSAP-u 0.2158
(0.001)

0.1885
(0.001) 0.0493 −0.1351

(0.005)
0.3431
(0.001)

MMRR implements a combined model of geographic and environmental distances,
which revealed patterns of significant IBE based on the total data. MMRR showed that
environmental and geographic factors together explained 19.02% AFLP, 0.46% MSAP-m,
and 5.09% MSAP-u variation of the total data; and 28.97% AFLP, 10.74% MSAP-m, and
4.93% MSAP-u variation of the outlier data. Additionally, MMRR revealed genetic and
epigenetic adaptive divergences strongly correlated with environments based on the outlier
datasets (AFLP: βE= 0.3074, p = 0.001 vs. βD = 0.2488, p = 0.001; MSAP-m: βE = 0.3412,
p = 0.001 vs. βD = −0.0175, p = 0.5755; MSAP-u: βE = 0.3431, p = 0.001 vs. βD = −0.1351,
p = 0.001; Table 4).
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3. Discussion

Genetic diversity in natural plant populations can be shaped by the mating system,
pollen and seed dispersal, life form, past incidents such as range expansions, bottlenecks or
founder events, and natural selection [7,10,20,26]. The levels of AFLP diversity were also
found to be lower in the four species of the R. pseudochrysanthum complex compared with
other Rhododendron species, including R. calophytum, R. purdomii, R. concinnum, R. clementi-
nae, and R. capitatum [42]. However, the levels of AFLP diversity in the species of the
R. pseudochrysanthum complex were similar to a narrowly distributed endangered species,
Rhododendron protistum var. giganteum [43]. The species level AFLP diversity in the R. pseu-
dochrysanthum complex was also similar to the average AFLP diversity summarized for
13 plant species [19]. Maintaining intraspecific genetic diversity is critical for a species
to adapt and crucial to short-term and long-term survival [2,3,44]. Outcrossing is the
predominant mating system in Rhododendron [45–47] and is thought to enhance the level
of population genetic diversity; however, the relatively lower levels of population genetic
diversity in species of the R. pseudochrysanthum complex might have resulted from past
evolutionary history, such as population retractions due to postglacial upward shifting [10].
Since the LGM, a 1500 to 1600 m upward migration of forests was reported [48] and the pop-
ulation sizes of tree species, such as Rhododendron, in Taiwan are expected to decrease [7,10].
Range reductions can have significant genetic and evolutionary impacts, resulting in the
loss of genetic diversity and consequences for population survival, and detrimental effects
may have a marked influence on the distribution of marginal populations [49,50].

Although gene flow plays a critical role in shaping the current population genetic
structure, the degree of gene flow estimated empirically may also reflect the population de-
mographic history [51]. The DAPC clustering results demonstrated the apparent distinction
of individuals of R. rubropunctatum from individuals of other species in the R. pseudochrysan-
thum complex (Figure 2b), but such inference cannot be made based on the results of LEA
(Figure 2a), the NJ tree (Figure 3), and the NN tree (Figure S2). These results suggest that
the four closely related species in the R. pseudochrysanthum complex can be combined into a
single species [52] and are consistent with the results obtained based on cpDNA [26] and
nuclear internal transcribed spacer sequences [53].

The pattern of relatively homogeneous levels of genetic diversity (Table S2) can be ex-
pected under an incomplete lineage sorting scenario [54]. The omnipresence of the intermin-
gling of individuals between populations and between species, indicated by both NJ and
NN trees (Figure 3, Figure S2), suggests short divergence times between taxa with historical
large population sizes and/or the retention of ancestral polymorphism [10,26]. Nonetheless,
these results may also be caused by the hybridization within the R. pseudochrysanthum
complex, in which individuals of different populations and different species are grouped
into the same clades. The predominant insect pollination in Rhododendron [55,56] and
the tiny, winged seeds produced are likely to be dispersed by wind over a distance of
approximately 30–80 m [56,57]; long distance recurrent gene flow leading to hybridization
among individuals of different populations of the R. pseudochrysanthum complex is less
likely. However, historical migration cannot be excluded [10,26]. The hypothesis predicts
a positive correlation between the pairwise population spatial distance and population
genetic differentiation due to limited gene flow, and historical gene flow can be inferred
by regressing the pairwise population differentiation on geographic distance [54]. In the
present study, historical gene flow can be inferred because of the significant correlations of
pairwise FST (estimated based on the total AFLP) with Euclidean distances between the
sample sites, calculated based on geographic coordinates, which were were found using
Spearman’s rank correlation test (ρ = 0.669, S = 2570, p < 0.0001; Figure S4).

There are more than 200 peaks exceeding 3000 m in elevation with varied geographic
topographies in mountainous regions in Taiwan. Because gravity is a crucial factor in
seed dispersal [47,56], the contemporary seed dispersal of Rhododendron might be even
more limited, considering that elevational differences and mountain ranges can be effective
barriers to genetic exchange [58] in the distribution range of this species complex. Moreover,
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the general significant IBD pattern suggests a dispersal limitation at the spatial scale, which
was assessed using a Mantel test and MMRR (Table 4). However, the current gene flow
between species distributed in close proximity is probable, particularly in the case of R. pseu-
dochrysanthum and R. morii, because their flowering times overlap, with the later flowers
during March to May and the former flowers during April to June. Overlapping flowering
times can result in a low level of genetic differentiation such as between population MHHS
and population PTHS (FST = 0.0660), which are distributed in Hohuanshan (Table S5).

Environmental differences due to landscape heterogeneity in various deep valleys and
high peaks of mountainous regions in Taiwan may play a role in limiting rather than pro-
moting Rhododendron dispersal, and IBE would be relatively pronounced in contrast to IBD.
Strong IBE indicates habitat isolation or immigrant inviability and may lead to reproduc-
tive isolation due to local environmental conditions, resulting in the reduced survival and
reproduction of migrants [27,28]. We combined the use of one measure of environmental
distance matrix generated from multiple environmental variables and an individual-based
approach [59]; strong adaptive divergence was found, using a partial Mantel test and
MMRR regression analysis, based on the outlier datasets (Table 4). Because geography
and environment are not mutually exclusive in influencing genetic variation, both IBD and
IBE can be effective in restricting gene flow between populations via direct and indirect
processes [17,20,27,28,41]. Our results showed strong adaptive divergence using both the
partial Mantel test and MMRR based on the outlier AFLP and MSAP datasets, suggesting
that adaptive evolution caused by environmental differences may be important to the
on-going and future process of ecological speciation in the R. pseudochrysanthum complex.

Three outlier loci (AC03_1652, AP04_3517, and AP06_2592) were found by pairwise
comparisons between the leading- and trailing-edge populations, with high or low allele
frequencies, indicating an adaptation associated with local environments. Increases in
the levels of genetic divergence and the rate of speciation are, among others, found to
be closely associated with temperature [60,61]. Temperature shifts have been found to
play prominent roles in driving adaptive genetic and epigenetic variations in various
plant species [10,17,20,23,24,62,63]. Our results suggest that temperature was the most
important bioclimatic factor, with a high adjusted R2 value (Table 3), explaining the genetic
and epigenetic variations among populations of the R. pseudochrysanthum complex. PET
is a measure that accounts for water loss via transpiration [64] and was found to be the
most important ecological factor (Table 3) highly associated with adaptive AFLP and
MSAP-m variations (Table S6). PET was found to be associated with adaptive genetic
variation in Picea glauca [65] and may be related to the increase in the adaptive capacity
of trees under global warming in a drying climate. PET-related drought stress has also
been found to be associated with epigenetic variation in Vicia faba [66]. Genetic differences
between Saccharum species [67] and between populations of Populus angustifolia [68] were
found to be related to the difference in traits that have the ability to maintain a favorable
water balance. NDVI is a measure of surface coverage activity, representing the degree of
vegetation greenness, suggestive of a biotic competitive environment that might play a
role in interactions with other species in a local ecological community [69,70]. NDVI has
been shown to be correlated with epigenetic variation in a coniferous species, Taiwania
cryptomerioides [71]. The measurement of NDVI can range from −1 to 1, and a higher NDVI
value indicates greater plant health [72]. The habitat of R. hyperythrum had a relatively
lower NDVI value compared with that of other populations of the R. pseudochrysanthum
complex (Table S3). The R. hyperythrum population at a high elevation might have evolved a
local adaptation because of a selective outlier (AP04_3517) (Table S6) with a very high allele
frequency in contrast to the extremely low allele frequencies of low-elevation populations
(Figure S3). However, the habitat of the R. hyperythrum population with a low NDVI
value suggests that it may be under threat of high elevation environments (e.g., a high
UV condition).

Elevation is the most important topographic factor explaining outlier genetic and
epigenetic variations (Table 3). Environmental variables can be classified into those highly
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correlated with altitude, such as annual mean temperature (r = −0.973), and those with
a lower correlation coefficient, such as PET (r = −0.668) and NDVI (r = −0.420) in this
study [73], which could have played roles in driving the population adaptive genetic and
epigenetic divergences in the R. pseudochrysanthum complex. The elevational difference in
meters is not a factor driving population divergence and may not be a useful predictor for
distribution modeling [74]. However, elevation-dependent environmental conditions can
be complex [75] and altitude-associated abiotic conditions may play important roles in shap-
ing non-random variations of outlier allele frequencies and resulting in spatially-structured
intraspecific genetic and epigenetic variations [10,24,76,77]. It is interesting that we found
a higher probability estimate of an outlier AFLP locus (AP06_2592) with high allele fre-
quencies at high-elevation populations (Figure 4). This locus was found to be significantly
positively or negatively correlated with the environmental variables examined, such as
annual mean temperature, mean of the difference of the monthly maximum and minimum
temperatures, and cloud cover (Figure 4, Table S6, Figure S3). Additionally, elevational
differences explaining outlier genetic and epigenetic variations may not only represent
those abiotic factors examined in this study but also those that are not examined [78].

4. Materials and Methods
4.1. Sampling, Genotyping, and Epigenotyping

We collected fresh leaf samples of 171 individuals from nine populations of the R. pseu-
dochrysanthum complex (Table 1, Figure 1) and used them for total DNA extraction [79]
(Supplementary Methods). We surveyed the genetic variation of 171 individuals from nine
populations using AFLP (Table 1). Due to a technical problem, 132 individuals from six
populations were used in epigenotyping using MSAP. In AFLP, a total of 10 µL reaction vol-
ume, containing 6 µL (200 ng) of total genomic DNA digested with 0.5 µL EcoRI (20 UµL−1)
and mixed with 1 µL MseI (10 UµL−1), 1.5 µL ddH2O, and 1 µL CutSmart buffer (New
England Biolabs, Ipswich, MA, USA), was incubated at 37 ◦C for 1.5 h. The reaction was
terminated at 65 ◦C for 15 min. The digested DNA products were ligated with 1 µL (5 µM)
of the EcoRI adaptor and 1 µL (50 µM) of the MseI adaptor using 1 µL (5 UµL−1) T4 DNA
ligase (Thermo Scientific, Vilnius, Lithuania), 3 µL ddH2O, and 4 µL 5X ligation buffer
(Thermo Scientific, Vilnius, Lithuania) in a 10 µL ligation reaction mixture at 22 ◦C for 1 h.

Pre-selective amplification was performed using 4 µL diluted digested samples (1:9 dilu-
tion with ddH2O) as a template in a 20 µL volume containing 8.6 µL ddH2O, 2 µL 10X PCR
buffer (Zymeset Biotech, Taipei, Taiwan), 1.6µL EcoRI (16µM; E00: 5′-GACTGCGTACCAATTC-
3′), 1.6 µL MseI (16 µM; M00: 5′-GATGAGTCCTGAGTAA-3′) primers, 1.6 µL dNTPs
(2.5 mM), 0.4 µL MgCl2 (0.15 mM), and 0.2 µL Taq DNA polymerase (5 UµL−1; Zymeset).
The pre-selective amplification was performed with an initial holding at 72 ◦C for 2 min
and pre-denaturation at 94 ◦C for 3 min, followed by 25 cycles of 30 s at 94 ◦C, 30 s at
56 ◦C, and 1 min at 72 ◦C, with a final 5 min holding at 72 ◦C. Eight EcoRI-MseI (E00
and M00) selective primer combinations with additional bases added at the ends were
used for AFLP selective amplification (Table S1). EcoRI selective primer was labeled with
fluorescent dye (6-carboxyfluorescein or hexachloro-fluorescein) and amplification was
performed in a 20 µL volume containing 11.3 µL ddH2O, 2 µL 10X PCR buffer (Zymeset),
2 µL EcoRI (20 µM), 2 µL MseI (20 µM) primers, 1.6 µL dNTPs (2.5 mM), 0.1 µL Taq DNA
polymerase (5 UµL−1; Zymeset), and 1 µL diluted pre-selective amplified product (1:19
dilution with ddH2O). We performed selective amplification with an initial holding at
94◦C for 3 min, followed by 13 cycles of 30 s at 94 ◦C, 30 s at 65–56 ◦C (decreasing the
temperature by 0.7 ◦C each cycle), 1 min at 72 ◦C, then 23 cycles of 30 s at 94 ◦C, 30 s
at 56 ◦C, and 1 min at 72 ◦C, with a final 5 min holding at 72 ◦C. In MSAP, the AFLP
protocol was adapted by replacing restriction enzyme MseI with the methylation-sensitive
enzymes HpaII and MspI in two separate experiments. Ten MSAP selective primer combina-
tions were used with additional nucleotides at the ends of the E00 and HM00 (HpaII-MspI,
5′-ATCATGAGTCCTGCTCGG-3′) (Table S1).



Plants 2022, 11, 1226 15 of 22

PCR amplification products were electrophoresed on an ABI 3730XL DNA analyzer
and scored with Peak Scanner v.1.0 (Applied Biosystem, Foster City, CA, USA). We scored
AFLP and MSAP fragments using a fluorescent threshold set at 150 units in the range of
100–500 bp. The “mixed scoring 1” of the MSAP-calc R script [80] in the R environment [81]
was used to transform MSAP markers to two distinct types of data: MSAP-m (methylated)
and MSAP-u (unmethylated) datasets [82]. Error rate per locus for AFLP and MSAP were
calculated (Supplementary Methods, Table S1). Loci with an error rate per locus greater
than 5% were removed [83].

4.2. Genetic Diversity Based on the Total AFLP Variation

The proportion of polymorphic loci and uHE [84,85] were estimated using AFLP-SURV
v.1.0 [86]. uHE per locus was estimated using ARLEQUIN v.6.0 [87]. To test departure
from linkage equilibrium indicating a possibility of inbreeding or non-random associations
between alleles, measures of multilocus linkage disequilibrium, including IA [88] and
rD [89], were estimated using the ia function of R poppr package [90] with 999 permutations.
LMM, considering population as a fixed factor and locus as a random factor, was used to
test the difference of mean uHE per locus among species and among populations using the
lmer function of R lme4 package [91], and significance was tested using the Anova function
of R car package based on type II Wald χ2 statistic [92]. Tukey’s multiple comparison test
was applied for pairwise species and pairwise population comparisons using the lsmeans
function of R emmeans package [93].

4.3. Environmental Heterogeneity

A Pearson’s correlation coefficient threshold of |0.8| between environmental variables
(Supplementary Methods) was used to calculate variance inflation factor (VIF) separately
for variables within each environmental category (bioclimate, ecology, and topography)
(Supplementary Methods) using the vifcor function of R package usdm [94]. VIF values
greater than 5 within each environmental category were removed. Pearson’s correlation
coefficients of pairwise comparisons between variables were calculated and depicted
in Figure S5. Environmental differences among species and among sample sites were
assessed using PERMANOVA implemented in the adonis function of R package vegan [95],
and pairwise comparisons assessed using the pairwise.perm.manova function of R package
RVAideMemoire [96] with 999 permutations and a 5% false discovery rate (FDR).

4.4. AFLP Genetic Clustering and Relationships

Genetic homogeneous groups of individuals were assessed using sNMF algorithm [29]
and DAPC [30] (Supplementary Methods). Individual assignments with K = 1–9 based on
least-squares optimization using the snmf function of R LEA package [29]. The find.clusters
and dapc functions of R adegenet package [31] were used in DAPC analysis. Genetic
relationships among individuals were assessed using NJ and NN trees. The NJ tree was
generated based on Nei’s genetic distances [33] using the nei.dist functions of R poppr
package and the nj function of R package ape [97]. The NN tree was generated using the
neighborNet function of R package phangorn [98]. The bootstrap values were calculated
using 1000 bootstrap replicates with the aboot function of R package poppr for both NJ and
NN trees.

4.5. Test for AFLP and MSAP FST Outliers

BAYESCAN and DFDIST were used to identify FST outliers (Supplementary Methods).
BAYESCAN v.2.1 [34] was used to estimate the ratio of posterior probabilities of selection
over neutrality (the posterior odds (PO)). A logarithmic scale of log10PO > 0.5 was defined
as substantial evidence for selection over neutrality in BAYESCAN [99,100] (Supplementary
Methods). DFDIST was used to estimate a distribution of observed FST versus uHE, and
loci falling above the 95% confidence level of simulated distribution were identified as
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potential FST outliers. Global and pairwise population comparisons were performed in
BAYESCAN and DFDIST.

4.6. AFLP Genetic Differentiation

AMOVA was used to estimate the hierarchical level of genetic differentiation using
the poppr.amova function of R package poppr, and significance was tested using the randtest
function of R package ade4 [101] with 9999 permutations. Both the total and outlier AFLP
data were used in AMOVA. Among population, FST was also estimated using AFLP-SURV.
Pairwise population FST was computed using ARLEQUIN based on the total and outlier
AFLP data, and significance was tested with 10,000 permutations.

4.7. Associations of Genetic and Epigenetic Loci with Environmental Variables

LFMM [36] and Samβada [37] were employed to assess the associations of all genetic
and epigenetic loci with environmental variables (Supplementary Methods). In LFMM,
the number of latent factors was set to 3 and Z-scores of ten independent runs were
combined using Fisher–Stouffer method [102]. p values were adjusted using the genomic
inflation factor (λ) and a 1% FDR. Samβada was used to evaluate the associations of allele
frequencies with the values of environmental variables. Both Wald and G scores with a 1%
FDR for p value adjustment were used in assessing the fit of model with environmental
variables against null model without environmental variables.

Loci found to be associated strongly with environmental variables assessed using
Samβada and LFMM were further tested with a Bayesian logistic regression analysis
implemented in the brm function of R brms package [38,39] (Supplementary Methods).
Student’s t distribution with mean zero and seven degrees of freedom were used as the
weakly informative priors, and the scale of the prior distribution was 2.5 for intercept and
predictors using the set_prior function. Credible intervals (95%) were determined using the
posterior_summary function.

4.8. AFLP and MSAP Isolation-by-Environment and Isolation-by-Distance

The correlations of the total and outlier Euclidean distance matrices with the Euclidean
distance matrix of environmental variables were analyzed in a Mantel test using the mantel
function of R vegan package with 999 permutations. Partial Mantel test was performed,
controlling for geographic effect (latitude and longitude) using the mantel.partial function of
R vegan package. MMRR was performed using the MMRR function [27] of R. Regression
coefficients of IBE or adaptive divergence (βE) and IBD (βD) were obtained and significance
was determined after 999 permutations. Models for redundancy analysis generated using
the rda function of R vegan package were used in the forward selection [40] to test for
the most important environmental variables explaining outlier genetic and epigenetic
variations by using the forward.sel function of R adespatial package [103].

5. Conclusions

Understanding the roles that geography and environment play in speciation is an
important issue in evolutionary biology [1,3,27,28,60,61]. Evolutionary processes, including
incomplete lineage sorting and historical migration, might have played important roles in
causing an intermingling of the genealogical relationships, revealed particularly in the NJ and
NN trees, among individuals of the four closely related species in the R. pseudochrysanthum
complex. A single ancestral phyletic line may diverge into a series of lineages, albeit
with a shallow split in individual-based phylogenetic NJ and NN trees, adapting to rather
different habitats. Our sampling of populations of the R. pseudochrysanthum complex,
distributed at elevations below 1000 m and above 2000 m, and up to 3500 m, spanning
a wide range of annual mean temperatures (5.1–18.9 ◦C), NDVI indexes (0.588–0.837),
and PET indexes (953.2–1227.5), contributed to outlier genetic and epigenetic variations.
The relatively stronger strength of IBE than IBD suggests spatial genetic and epigenetic
structures driven by environmental conditions, and a strong IBE might play critical roles
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in causing the reproductive isolation and ecological speciation of closely related species
in the R. pseudochrysanthum complex. However, locally adapted ecological lineages may
risk extinction when encountering other environmental stressors during the course of
migration. R. hyperythrum that grows in alpine tundra at high elevation may be vulnerable
due to the detrimental effect of high-elevation environments on the growth of this species.
Additionally, the introgression of adaptive genetic and epigenetic alleles and/or their com-
binations [82,104], harbored in low-elevation environments, into the genetic and epigenetic
backgrounds of high-elevation locales, could be important, in particular, in the assisted
migration program in the face of global change [105,106].

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/xxx/s1, Supplementary Methods; Table S1: Primer combinations, number of
markers, and error rate per locus in AFLP and MSAP techniques for investigation in the Rhododendron
pseudochrysanthum species complex; Table S2: Summary of Tukey’s post-hoc pairwise population
comparisons of the mean unbiased expected heterozygosity (uHE) per locus using a linear mixed
effect model. In linear mixed effect model, population was treated as a fixed factor and locus as a
random factor based on the total AFLP variation of the Rhododendron pseudochrysanthum complex;
Table S3: The 11 retained site environmental variables of the nine populations of the Rhododendron
pseudochrysanthum species complex. See Table 1 for abbreviations of the nine populations; Table S4: p
values of pairwise population comparisons of the 11 retained environmental variables of sample site
of the Rhododendron pseudochrysanthum complex using PERMANOVA; Table S5: Pairwise FST (below
diagonal) and p values (above diagonal) between populations of the Rhododendron pseudochrysanthum
complex based on the total and outlier AFLP data using ARLEQUIN with 10,000 permutations;
Table S6: Potential genetic (AFLP) and epigenetic (MSAP-m and MSAP-u) FST outliers identified by
BAYESCAN and DFDIST associated with environmental variables assessed using Samβada, LFMM,
and the brm function of R brms package; Table S7: Primer combination and amplified length for
the 35 outliers presented in the Table S6. See Table S1 for E00, M00, and HM00 primer sequences.
Figure S1: Evaluation of clustering scenarios based on (a) minimum cross-entropy and (b) Bayesian
information criterion analyzed using LEA and DAPC, respectively; Figure S2: The neighbor-net tree
of 171 individuals of four closely related species in the Rhododendron pseudochrysanthum complex.
Tip labels for individuals of the four closely related species are colored: R. hyperythrum (blue),
R. morii (violet red), R. pseudochrysanthum (dark green), and R. rubropunctatum (brown); Figure S3:
Distribution of allele frequencies of the thirty-five FST outliers associated strongly with environmental
variables across the nine populations of the Rhododendron pseudochrysanthum complex; Figure S4: The
relationships of population pairwise FST with Euclidean distances between sample sites. Population
pairwise FST was calculated using ARLEQUIN and Euclidean distances between sample sites were
calculated based on geographic coordinates using the dist function of R stats package. Significance of
the relationships were tested using Spearman’s correlation test (the cor.test function of R stats package)
based on the total (blue line, ρ = 0.669, S = 2570, p < 0.0001) and outlier (red line, ρ = 0.634, S = 2844, p
< 0.0001) AFLP datasets. The light blue and light red shades represent 95% confidence intervals of
predicted values of simple linear regression; Figure S5: Pearson’s correlation coefficients between
the 11 retained environmental variables. Aspect (0–360◦) and slope (0–90◦). BIO1, annual mean
temperature; BIO2, mean of the difference of the monthly maximum and minimum temperatures;
BIO12, annual precipitation; CLO, cloud cover; NDVI, normalized difference vegetation index,
PET, annual total potential evapotranspiration; RH, relative humidity; WSmean, mean wind speed.
References [107–120] are cite d in the supplementary materials.
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